|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/sysctl.h> | 
|  | #include <linux/sched/rt.h> | 
|  | #include <linux/sched/deadline.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "cpupri.h" | 
|  | #include "cpudeadline.h" | 
|  | #include "cpuacct.h" | 
|  |  | 
|  | struct rq; | 
|  |  | 
|  | extern __read_mostly int scheduler_running; | 
|  |  | 
|  | extern unsigned long calc_load_update; | 
|  | extern atomic_long_t calc_load_tasks; | 
|  |  | 
|  | extern long calc_load_fold_active(struct rq *this_rq); | 
|  | extern void update_cpu_load_active(struct rq *this_rq); | 
|  |  | 
|  | /* | 
|  | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | * and back. | 
|  | */ | 
|  | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  |  | 
|  | /* | 
|  | * 'User priority' is the nice value converted to something we | 
|  | * can work with better when scaling various scheduler parameters, | 
|  | * it's a [ 0 ... 39 ] range. | 
|  | */ | 
|  | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  |  | 
|  | /* | 
|  | * Helpers for converting nanosecond timing to jiffy resolution | 
|  | */ | 
|  | #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 
|  |  | 
|  | /* | 
|  | * Increase resolution of nice-level calculations for 64-bit architectures. | 
|  | * The extra resolution improves shares distribution and load balancing of | 
|  | * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup | 
|  | * hierarchies, especially on larger systems. This is not a user-visible change | 
|  | * and does not change the user-interface for setting shares/weights. | 
|  | * | 
|  | * We increase resolution only if we have enough bits to allow this increased | 
|  | * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution | 
|  | * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the | 
|  | * increased costs. | 
|  | */ | 
|  | #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */ | 
|  | # define SCHED_LOAD_RESOLUTION	10 | 
|  | # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION) | 
|  | # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION) | 
|  | #else | 
|  | # define SCHED_LOAD_RESOLUTION	0 | 
|  | # define scale_load(w)		(w) | 
|  | # define scale_load_down(w)	(w) | 
|  | #endif | 
|  |  | 
|  | #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION) | 
|  | #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT) | 
|  |  | 
|  | #define NICE_0_LOAD		SCHED_LOAD_SCALE | 
|  | #define NICE_0_SHIFT		SCHED_LOAD_SHIFT | 
|  |  | 
|  | /* | 
|  | * Single value that decides SCHED_DEADLINE internal math precision. | 
|  | * 10 -> just above 1us | 
|  | * 9  -> just above 0.5us | 
|  | */ | 
|  | #define DL_SCALE (10) | 
|  |  | 
|  | /* | 
|  | * These are the 'tuning knobs' of the scheduler: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * single value that denotes runtime == period, ie unlimited time. | 
|  | */ | 
|  | #define RUNTIME_INF	((u64)~0ULL) | 
|  |  | 
|  | static inline int fair_policy(int policy) | 
|  | { | 
|  | return policy == SCHED_NORMAL || policy == SCHED_BATCH; | 
|  | } | 
|  |  | 
|  | static inline int rt_policy(int policy) | 
|  | { | 
|  | return policy == SCHED_FIFO || policy == SCHED_RR; | 
|  | } | 
|  |  | 
|  | static inline int dl_policy(int policy) | 
|  | { | 
|  | return policy == SCHED_DEADLINE; | 
|  | } | 
|  |  | 
|  | static inline int task_has_rt_policy(struct task_struct *p) | 
|  | { | 
|  | return rt_policy(p->policy); | 
|  | } | 
|  |  | 
|  | static inline int task_has_dl_policy(struct task_struct *p) | 
|  | { | 
|  | return dl_policy(p->policy); | 
|  | } | 
|  |  | 
|  | static inline bool dl_time_before(u64 a, u64 b) | 
|  | { | 
|  | return (s64)(a - b) < 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tells if entity @a should preempt entity @b. | 
|  | */ | 
|  | static inline bool | 
|  | dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) | 
|  | { | 
|  | return dl_time_before(a->deadline, b->deadline); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the priority-queue data structure of the RT scheduling class: | 
|  | */ | 
|  | struct rt_prio_array { | 
|  | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
|  | struct list_head queue[MAX_RT_PRIO]; | 
|  | }; | 
|  |  | 
|  | struct rt_bandwidth { | 
|  | /* nests inside the rq lock: */ | 
|  | raw_spinlock_t		rt_runtime_lock; | 
|  | ktime_t			rt_period; | 
|  | u64			rt_runtime; | 
|  | struct hrtimer		rt_period_timer; | 
|  | }; | 
|  | /* | 
|  | * To keep the bandwidth of -deadline tasks and groups under control | 
|  | * we need some place where: | 
|  | *  - store the maximum -deadline bandwidth of the system (the group); | 
|  | *  - cache the fraction of that bandwidth that is currently allocated. | 
|  | * | 
|  | * This is all done in the data structure below. It is similar to the | 
|  | * one used for RT-throttling (rt_bandwidth), with the main difference | 
|  | * that, since here we are only interested in admission control, we | 
|  | * do not decrease any runtime while the group "executes", neither we | 
|  | * need a timer to replenish it. | 
|  | * | 
|  | * With respect to SMP, the bandwidth is given on a per-CPU basis, | 
|  | * meaning that: | 
|  | *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; | 
|  | *  - dl_total_bw array contains, in the i-eth element, the currently | 
|  | *    allocated bandwidth on the i-eth CPU. | 
|  | * Moreover, groups consume bandwidth on each CPU, while tasks only | 
|  | * consume bandwidth on the CPU they're running on. | 
|  | * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw | 
|  | * that will be shown the next time the proc or cgroup controls will | 
|  | * be red. It on its turn can be changed by writing on its own | 
|  | * control. | 
|  | */ | 
|  | struct dl_bandwidth { | 
|  | raw_spinlock_t dl_runtime_lock; | 
|  | u64 dl_runtime; | 
|  | u64 dl_period; | 
|  | }; | 
|  |  | 
|  | static inline int dl_bandwidth_enabled(void) | 
|  | { | 
|  | return sysctl_sched_rt_runtime >= 0; | 
|  | } | 
|  |  | 
|  | extern struct dl_bw *dl_bw_of(int i); | 
|  |  | 
|  | struct dl_bw { | 
|  | raw_spinlock_t lock; | 
|  | u64 bw, total_bw; | 
|  | }; | 
|  |  | 
|  | extern struct mutex sched_domains_mutex; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  |  | 
|  | #include <linux/cgroup.h> | 
|  |  | 
|  | struct cfs_rq; | 
|  | struct rt_rq; | 
|  |  | 
|  | extern struct list_head task_groups; | 
|  |  | 
|  | struct cfs_bandwidth { | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | raw_spinlock_t lock; | 
|  | ktime_t period; | 
|  | u64 quota, runtime; | 
|  | s64 hierarchal_quota; | 
|  | u64 runtime_expires; | 
|  |  | 
|  | int idle, timer_active; | 
|  | struct hrtimer period_timer, slack_timer; | 
|  | struct list_head throttled_cfs_rq; | 
|  |  | 
|  | /* statistics */ | 
|  | int nr_periods, nr_throttled; | 
|  | u64 throttled_time; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* task group related information */ | 
|  | struct task_group { | 
|  | struct cgroup_subsys_state css; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* schedulable entities of this group on each cpu */ | 
|  | struct sched_entity **se; | 
|  | /* runqueue "owned" by this group on each cpu */ | 
|  | struct cfs_rq **cfs_rq; | 
|  | unsigned long shares; | 
|  |  | 
|  | #ifdef	CONFIG_SMP | 
|  | atomic_long_t load_avg; | 
|  | atomic_t runnable_avg; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct sched_rt_entity **rt_se; | 
|  | struct rt_rq **rt_rq; | 
|  |  | 
|  | struct rt_bandwidth rt_bandwidth; | 
|  | #endif | 
|  |  | 
|  | struct rcu_head rcu; | 
|  | struct list_head list; | 
|  |  | 
|  | struct task_group *parent; | 
|  | struct list_head siblings; | 
|  | struct list_head children; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_AUTOGROUP | 
|  | struct autogroup *autogroup; | 
|  | #endif | 
|  |  | 
|  | struct cfs_bandwidth cfs_bandwidth; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD | 
|  |  | 
|  | /* | 
|  | * A weight of 0 or 1 can cause arithmetics problems. | 
|  | * A weight of a cfs_rq is the sum of weights of which entities | 
|  | * are queued on this cfs_rq, so a weight of a entity should not be | 
|  | * too large, so as the shares value of a task group. | 
|  | * (The default weight is 1024 - so there's no practical | 
|  | *  limitation from this.) | 
|  | */ | 
|  | #define MIN_SHARES	(1UL <<  1) | 
|  | #define MAX_SHARES	(1UL << 18) | 
|  | #endif | 
|  |  | 
|  | typedef int (*tg_visitor)(struct task_group *, void *); | 
|  |  | 
|  | extern int walk_tg_tree_from(struct task_group *from, | 
|  | tg_visitor down, tg_visitor up, void *data); | 
|  |  | 
|  | /* | 
|  | * Iterate the full tree, calling @down when first entering a node and @up when | 
|  | * leaving it for the final time. | 
|  | * | 
|  | * Caller must hold rcu_lock or sufficient equivalent. | 
|  | */ | 
|  | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 
|  | { | 
|  | return walk_tg_tree_from(&root_task_group, down, up, data); | 
|  | } | 
|  |  | 
|  | extern int tg_nop(struct task_group *tg, void *data); | 
|  |  | 
|  | extern void free_fair_sched_group(struct task_group *tg); | 
|  | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | 
|  | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | 
|  | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, int cpu, | 
|  | struct sched_entity *parent); | 
|  | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | 
|  | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | 
|  |  | 
|  | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | 
|  | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | 
|  | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | extern void free_rt_sched_group(struct task_group *tg); | 
|  | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | 
|  | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
|  | struct sched_rt_entity *rt_se, int cpu, | 
|  | struct sched_rt_entity *parent); | 
|  |  | 
|  | extern struct task_group *sched_create_group(struct task_group *parent); | 
|  | extern void sched_online_group(struct task_group *tg, | 
|  | struct task_group *parent); | 
|  | extern void sched_destroy_group(struct task_group *tg); | 
|  | extern void sched_offline_group(struct task_group *tg); | 
|  |  | 
|  | extern void sched_move_task(struct task_struct *tsk); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | 
|  | #endif | 
|  |  | 
|  | #else /* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | struct cfs_bandwidth { }; | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | /* CFS-related fields in a runqueue */ | 
|  | struct cfs_rq { | 
|  | struct load_weight load; | 
|  | unsigned int nr_running, h_nr_running; | 
|  |  | 
|  | u64 exec_clock; | 
|  | u64 min_vruntime; | 
|  | #ifndef CONFIG_64BIT | 
|  | u64 min_vruntime_copy; | 
|  | #endif | 
|  |  | 
|  | struct rb_root tasks_timeline; | 
|  | struct rb_node *rb_leftmost; | 
|  |  | 
|  | /* | 
|  | * 'curr' points to currently running entity on this cfs_rq. | 
|  | * It is set to NULL otherwise (i.e when none are currently running). | 
|  | */ | 
|  | struct sched_entity *curr, *next, *last, *skip; | 
|  |  | 
|  | #ifdef	CONFIG_SCHED_DEBUG | 
|  | unsigned int nr_spread_over; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * CFS Load tracking | 
|  | * Under CFS, load is tracked on a per-entity basis and aggregated up. | 
|  | * This allows for the description of both thread and group usage (in | 
|  | * the FAIR_GROUP_SCHED case). | 
|  | */ | 
|  | unsigned long runnable_load_avg, blocked_load_avg; | 
|  | atomic64_t decay_counter; | 
|  | u64 last_decay; | 
|  | atomic_long_t removed_load; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* Required to track per-cpu representation of a task_group */ | 
|  | u32 tg_runnable_contrib; | 
|  | unsigned long tg_load_contrib; | 
|  |  | 
|  | /* | 
|  | *   h_load = weight * f(tg) | 
|  | * | 
|  | * Where f(tg) is the recursive weight fraction assigned to | 
|  | * this group. | 
|  | */ | 
|  | unsigned long h_load; | 
|  | u64 last_h_load_update; | 
|  | struct sched_entity *h_load_next; | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ | 
|  |  | 
|  | /* | 
|  | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
|  | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
|  | * (like users, containers etc.) | 
|  | * | 
|  | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 
|  | * list is used during load balance. | 
|  | */ | 
|  | int on_list; | 
|  | struct list_head leaf_cfs_rq_list; | 
|  | struct task_group *tg;	/* group that "owns" this runqueue */ | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | int runtime_enabled; | 
|  | u64 runtime_expires; | 
|  | s64 runtime_remaining; | 
|  |  | 
|  | u64 throttled_clock, throttled_clock_task; | 
|  | u64 throttled_clock_task_time; | 
|  | int throttled, throttle_count; | 
|  | struct list_head throttled_list; | 
|  | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | }; | 
|  |  | 
|  | static inline int rt_bandwidth_enabled(void) | 
|  | { | 
|  | return sysctl_sched_rt_runtime >= 0; | 
|  | } | 
|  |  | 
|  | /* Real-Time classes' related field in a runqueue: */ | 
|  | struct rt_rq { | 
|  | struct rt_prio_array active; | 
|  | unsigned int rt_nr_running; | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | struct { | 
|  | int curr; /* highest queued rt task prio */ | 
|  | #ifdef CONFIG_SMP | 
|  | int next; /* next highest */ | 
|  | #endif | 
|  | } highest_prio; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long rt_nr_migratory; | 
|  | unsigned long rt_nr_total; | 
|  | int overloaded; | 
|  | struct plist_head pushable_tasks; | 
|  | #endif | 
|  | int rt_throttled; | 
|  | u64 rt_time; | 
|  | u64 rt_runtime; | 
|  | /* Nests inside the rq lock: */ | 
|  | raw_spinlock_t rt_runtime_lock; | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | unsigned long rt_nr_boosted; | 
|  |  | 
|  | struct rq *rq; | 
|  | struct task_group *tg; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Deadline class' related fields in a runqueue */ | 
|  | struct dl_rq { | 
|  | /* runqueue is an rbtree, ordered by deadline */ | 
|  | struct rb_root rb_root; | 
|  | struct rb_node *rb_leftmost; | 
|  |  | 
|  | unsigned long dl_nr_running; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Deadline values of the currently executing and the | 
|  | * earliest ready task on this rq. Caching these facilitates | 
|  | * the decision wether or not a ready but not running task | 
|  | * should migrate somewhere else. | 
|  | */ | 
|  | struct { | 
|  | u64 curr; | 
|  | u64 next; | 
|  | } earliest_dl; | 
|  |  | 
|  | unsigned long dl_nr_migratory; | 
|  | int overloaded; | 
|  |  | 
|  | /* | 
|  | * Tasks on this rq that can be pushed away. They are kept in | 
|  | * an rb-tree, ordered by tasks' deadlines, with caching | 
|  | * of the leftmost (earliest deadline) element. | 
|  | */ | 
|  | struct rb_root pushable_dl_tasks_root; | 
|  | struct rb_node *pushable_dl_tasks_leftmost; | 
|  | #else | 
|  | struct dl_bw dl_bw; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * We add the notion of a root-domain which will be used to define per-domain | 
|  | * variables. Each exclusive cpuset essentially defines an island domain by | 
|  | * fully partitioning the member cpus from any other cpuset. Whenever a new | 
|  | * exclusive cpuset is created, we also create and attach a new root-domain | 
|  | * object. | 
|  | * | 
|  | */ | 
|  | struct root_domain { | 
|  | atomic_t refcount; | 
|  | atomic_t rto_count; | 
|  | struct rcu_head rcu; | 
|  | cpumask_var_t span; | 
|  | cpumask_var_t online; | 
|  |  | 
|  | /* | 
|  | * The bit corresponding to a CPU gets set here if such CPU has more | 
|  | * than one runnable -deadline task (as it is below for RT tasks). | 
|  | */ | 
|  | cpumask_var_t dlo_mask; | 
|  | atomic_t dlo_count; | 
|  | struct dl_bw dl_bw; | 
|  | struct cpudl cpudl; | 
|  |  | 
|  | /* | 
|  | * The "RT overload" flag: it gets set if a CPU has more than | 
|  | * one runnable RT task. | 
|  | */ | 
|  | cpumask_var_t rto_mask; | 
|  | struct cpupri cpupri; | 
|  | }; | 
|  |  | 
|  | extern struct root_domain def_root_domain; | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * This is the main, per-CPU runqueue data structure. | 
|  | * | 
|  | * Locking rule: those places that want to lock multiple runqueues | 
|  | * (such as the load balancing or the thread migration code), lock | 
|  | * acquire operations must be ordered by ascending &runqueue. | 
|  | */ | 
|  | struct rq { | 
|  | /* runqueue lock: */ | 
|  | raw_spinlock_t lock; | 
|  |  | 
|  | /* | 
|  | * nr_running and cpu_load should be in the same cacheline because | 
|  | * remote CPUs use both these fields when doing load calculation. | 
|  | */ | 
|  | unsigned int nr_running; | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | unsigned int nr_numa_running; | 
|  | unsigned int nr_preferred_running; | 
|  | #endif | 
|  | #define CPU_LOAD_IDX_MAX 5 | 
|  | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
|  | unsigned long last_load_update_tick; | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | u64 nohz_stamp; | 
|  | unsigned long nohz_flags; | 
|  | #endif | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | unsigned long last_sched_tick; | 
|  | #endif | 
|  | int skip_clock_update; | 
|  |  | 
|  | /* capture load from *all* tasks on this cpu: */ | 
|  | struct load_weight load; | 
|  | unsigned long nr_load_updates; | 
|  | u64 nr_switches; | 
|  |  | 
|  | struct cfs_rq cfs; | 
|  | struct rt_rq rt; | 
|  | struct dl_rq dl; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* list of leaf cfs_rq on this cpu: */ | 
|  | struct list_head leaf_cfs_rq_list; | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct list_head leaf_rt_rq_list; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is part of a global counter where only the total sum | 
|  | * over all CPUs matters. A task can increase this counter on | 
|  | * one CPU and if it got migrated afterwards it may decrease | 
|  | * it on another CPU. Always updated under the runqueue lock: | 
|  | */ | 
|  | unsigned long nr_uninterruptible; | 
|  |  | 
|  | struct task_struct *curr, *idle, *stop; | 
|  | unsigned long next_balance; | 
|  | struct mm_struct *prev_mm; | 
|  |  | 
|  | u64 clock; | 
|  | u64 clock_task; | 
|  |  | 
|  | atomic_t nr_iowait; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct root_domain *rd; | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | unsigned long cpu_power; | 
|  |  | 
|  | unsigned char idle_balance; | 
|  | /* For active balancing */ | 
|  | int post_schedule; | 
|  | int active_balance; | 
|  | int push_cpu; | 
|  | struct cpu_stop_work active_balance_work; | 
|  | /* cpu of this runqueue: */ | 
|  | int cpu; | 
|  | int online; | 
|  |  | 
|  | struct list_head cfs_tasks; | 
|  |  | 
|  | u64 rt_avg; | 
|  | u64 age_stamp; | 
|  | u64 idle_stamp; | 
|  | u64 avg_idle; | 
|  |  | 
|  | /* This is used to determine avg_idle's max value */ | 
|  | u64 max_idle_balance_cost; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|  | u64 prev_irq_time; | 
|  | #endif | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | u64 prev_steal_time; | 
|  | #endif | 
|  | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
|  | u64 prev_steal_time_rq; | 
|  | #endif | 
|  |  | 
|  | /* calc_load related fields */ | 
|  | unsigned long calc_load_update; | 
|  | long calc_load_active; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | #ifdef CONFIG_SMP | 
|  | int hrtick_csd_pending; | 
|  | struct call_single_data hrtick_csd; | 
|  | #endif | 
|  | struct hrtimer hrtick_timer; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* latency stats */ | 
|  | struct sched_info rq_sched_info; | 
|  | unsigned long long rq_cpu_time; | 
|  | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 
|  |  | 
|  | /* sys_sched_yield() stats */ | 
|  | unsigned int yld_count; | 
|  |  | 
|  | /* schedule() stats */ | 
|  | unsigned int sched_count; | 
|  | unsigned int sched_goidle; | 
|  |  | 
|  | /* try_to_wake_up() stats */ | 
|  | unsigned int ttwu_count; | 
|  | unsigned int ttwu_local; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct llist_head wake_list; | 
|  | #endif | 
|  |  | 
|  | struct sched_avg avg; | 
|  | }; | 
|  |  | 
|  | static inline int cpu_of(struct rq *rq) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return rq->cpu; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | DECLARE_PER_CPU(struct rq, runqueues); | 
|  |  | 
|  | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  | #define raw_rq()		(&__raw_get_cpu_var(runqueues)) | 
|  |  | 
|  | static inline u64 rq_clock(struct rq *rq) | 
|  | { | 
|  | return rq->clock; | 
|  | } | 
|  |  | 
|  | static inline u64 rq_clock_task(struct rq *rq) | 
|  | { | 
|  | return rq->clock_task; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | extern void sched_setnuma(struct task_struct *p, int node); | 
|  | extern int migrate_task_to(struct task_struct *p, int cpu); | 
|  | extern int migrate_swap(struct task_struct *, struct task_struct *); | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #define rcu_dereference_check_sched_domain(p) \ | 
|  | rcu_dereference_check((p), \ | 
|  | lockdep_is_held(&sched_domains_mutex)) | 
|  |  | 
|  | /* | 
|  | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
|  | * See detach_destroy_domains: synchronize_sched for details. | 
|  | * | 
|  | * The domain tree of any CPU may only be accessed from within | 
|  | * preempt-disabled sections. | 
|  | */ | 
|  | #define for_each_domain(cpu, __sd) \ | 
|  | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ | 
|  | __sd; __sd = __sd->parent) | 
|  |  | 
|  | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) | 
|  |  | 
|  | /** | 
|  | * highest_flag_domain - Return highest sched_domain containing flag. | 
|  | * @cpu:	The cpu whose highest level of sched domain is to | 
|  | *		be returned. | 
|  | * @flag:	The flag to check for the highest sched_domain | 
|  | *		for the given cpu. | 
|  | * | 
|  | * Returns the highest sched_domain of a cpu which contains the given flag. | 
|  | */ | 
|  | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | 
|  | { | 
|  | struct sched_domain *sd, *hsd = NULL; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (!(sd->flags & flag)) | 
|  | break; | 
|  | hsd = sd; | 
|  | } | 
|  |  | 
|  | return hsd; | 
|  | } | 
|  |  | 
|  | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & flag) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sd; | 
|  | } | 
|  |  | 
|  | DECLARE_PER_CPU(struct sched_domain *, sd_llc); | 
|  | DECLARE_PER_CPU(int, sd_llc_size); | 
|  | DECLARE_PER_CPU(int, sd_llc_id); | 
|  | DECLARE_PER_CPU(struct sched_domain *, sd_numa); | 
|  | DECLARE_PER_CPU(struct sched_domain *, sd_busy); | 
|  | DECLARE_PER_CPU(struct sched_domain *, sd_asym); | 
|  |  | 
|  | struct sched_group_power { | 
|  | atomic_t ref; | 
|  | /* | 
|  | * CPU power of this group, SCHED_LOAD_SCALE being max power for a | 
|  | * single CPU. | 
|  | */ | 
|  | unsigned int power, power_orig; | 
|  | unsigned long next_update; | 
|  | int imbalance; /* XXX unrelated to power but shared group state */ | 
|  | /* | 
|  | * Number of busy cpus in this group. | 
|  | */ | 
|  | atomic_t nr_busy_cpus; | 
|  |  | 
|  | unsigned long cpumask[0]; /* iteration mask */ | 
|  | }; | 
|  |  | 
|  | struct sched_group { | 
|  | struct sched_group *next;	/* Must be a circular list */ | 
|  | atomic_t ref; | 
|  |  | 
|  | unsigned int group_weight; | 
|  | struct sched_group_power *sgp; | 
|  |  | 
|  | /* | 
|  | * The CPUs this group covers. | 
|  | * | 
|  | * NOTE: this field is variable length. (Allocated dynamically | 
|  | * by attaching extra space to the end of the structure, | 
|  | * depending on how many CPUs the kernel has booted up with) | 
|  | */ | 
|  | unsigned long cpumask[0]; | 
|  | }; | 
|  |  | 
|  | static inline struct cpumask *sched_group_cpus(struct sched_group *sg) | 
|  | { | 
|  | return to_cpumask(sg->cpumask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpumask masking which cpus in the group are allowed to iterate up the domain | 
|  | * tree. | 
|  | */ | 
|  | static inline struct cpumask *sched_group_mask(struct sched_group *sg) | 
|  | { | 
|  | return to_cpumask(sg->sgp->cpumask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | 
|  | * @group: The group whose first cpu is to be returned. | 
|  | */ | 
|  | static inline unsigned int group_first_cpu(struct sched_group *group) | 
|  | { | 
|  | return cpumask_first(sched_group_cpus(group)); | 
|  | } | 
|  |  | 
|  | extern int group_balance_cpu(struct sched_group *sg); | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #include "stats.h" | 
|  | #include "auto_group.h" | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  |  | 
|  | /* | 
|  | * Return the group to which this tasks belongs. | 
|  | * | 
|  | * We cannot use task_css() and friends because the cgroup subsystem | 
|  | * changes that value before the cgroup_subsys::attach() method is called, | 
|  | * therefore we cannot pin it and might observe the wrong value. | 
|  | * | 
|  | * The same is true for autogroup's p->signal->autogroup->tg, the autogroup | 
|  | * core changes this before calling sched_move_task(). | 
|  | * | 
|  | * Instead we use a 'copy' which is updated from sched_move_task() while | 
|  | * holding both task_struct::pi_lock and rq::lock. | 
|  | */ | 
|  | static inline struct task_group *task_group(struct task_struct *p) | 
|  | { | 
|  | return p->sched_task_group; | 
|  | } | 
|  |  | 
|  | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 
|  | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | 
|  | struct task_group *tg = task_group(p); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | p->se.cfs_rq = tg->cfs_rq[cpu]; | 
|  | p->se.parent = tg->se[cpu]; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | p->rt.rt_rq  = tg->rt_rq[cpu]; | 
|  | p->rt.parent = tg->rt_se[cpu]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
|  | static inline struct task_group *task_group(struct task_struct *p) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | set_task_rq(p, cpu); | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 
|  | * successfuly executed on another CPU. We must ensure that updates of | 
|  | * per-task data have been completed by this moment. | 
|  | */ | 
|  | smp_wmb(); | 
|  | task_thread_info(p)->cpu = cpu; | 
|  | p->wake_cpu = cpu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | # include <linux/static_key.h> | 
|  | # define const_debug __read_mostly | 
|  | #else | 
|  | # define const_debug const | 
|  | #endif | 
|  |  | 
|  | extern const_debug unsigned int sysctl_sched_features; | 
|  |  | 
|  | #define SCHED_FEAT(name, enabled)	\ | 
|  | __SCHED_FEAT_##name , | 
|  |  | 
|  | enum { | 
|  | #include "features.h" | 
|  | __SCHED_FEAT_NR, | 
|  | }; | 
|  |  | 
|  | #undef SCHED_FEAT | 
|  |  | 
|  | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) | 
|  | static __always_inline bool static_branch__true(struct static_key *key) | 
|  | { | 
|  | return static_key_true(key); /* Not out of line branch. */ | 
|  | } | 
|  |  | 
|  | static __always_inline bool static_branch__false(struct static_key *key) | 
|  | { | 
|  | return static_key_false(key); /* Out of line branch. */ | 
|  | } | 
|  |  | 
|  | #define SCHED_FEAT(name, enabled)					\ | 
|  | static __always_inline bool static_branch_##name(struct static_key *key) \ | 
|  | {									\ | 
|  | return static_branch__##enabled(key);				\ | 
|  | } | 
|  |  | 
|  | #include "features.h" | 
|  |  | 
|  | #undef SCHED_FEAT | 
|  |  | 
|  | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; | 
|  | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) | 
|  | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ | 
|  | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
|  | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | #define sched_feat_numa(x) sched_feat(x) | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | #define numabalancing_enabled sched_feat_numa(NUMA) | 
|  | #else | 
|  | extern bool numabalancing_enabled; | 
|  | #endif /* CONFIG_SCHED_DEBUG */ | 
|  | #else | 
|  | #define sched_feat_numa(x) (0) | 
|  | #define numabalancing_enabled (0) | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | static inline u64 global_rt_period(void) | 
|  | { | 
|  | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | static inline u64 global_rt_runtime(void) | 
|  | { | 
|  | if (sysctl_sched_rt_runtime < 0) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | static inline int task_current(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | return rq->curr == p; | 
|  | } | 
|  |  | 
|  | static inline int task_running(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return p->on_cpu; | 
|  | #else | 
|  | return task_current(rq, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifndef prepare_arch_switch | 
|  | # define prepare_arch_switch(next)	do { } while (0) | 
|  | #endif | 
|  | #ifndef finish_arch_switch | 
|  | # define finish_arch_switch(prev)	do { } while (0) | 
|  | #endif | 
|  | #ifndef finish_arch_post_lock_switch | 
|  | # define finish_arch_post_lock_switch()	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We can optimise this out completely for !SMP, because the | 
|  | * SMP rebalancing from interrupt is the only thing that cares | 
|  | * here. | 
|  | */ | 
|  | next->on_cpu = 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->on_cpu is cleared, the task can be moved to a different CPU. | 
|  | * We must ensure this doesn't happen until the switch is completely | 
|  | * finished. | 
|  | */ | 
|  | smp_wmb(); | 
|  | prev->on_cpu = 0; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK | 
|  | /* this is a valid case when another task releases the spinlock */ | 
|  | rq->lock.owner = current; | 
|  | #endif | 
|  | /* | 
|  | * If we are tracking spinlock dependencies then we have to | 
|  | * fix up the runqueue lock - which gets 'carried over' from | 
|  | * prev into current: | 
|  | */ | 
|  | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
|  |  | 
|  | raw_spin_unlock_irq(&rq->lock); | 
|  | } | 
|  |  | 
|  | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We can optimise this out completely for !SMP, because the | 
|  | * SMP rebalancing from interrupt is the only thing that cares | 
|  | * here. | 
|  | */ | 
|  | next->on_cpu = 1; | 
|  | #endif | 
|  | raw_spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->on_cpu is cleared, the task can be moved to a different CPU. | 
|  | * We must ensure this doesn't happen until the switch is completely | 
|  | * finished. | 
|  | */ | 
|  | smp_wmb(); | 
|  | prev->on_cpu = 0; | 
|  | #endif | 
|  | local_irq_enable(); | 
|  | } | 
|  | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  |  | 
|  | /* | 
|  | * wake flags | 
|  | */ | 
|  | #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */ | 
|  | #define WF_FORK		0x02		/* child wakeup after fork */ | 
|  | #define WF_MIGRATED	0x4		/* internal use, task got migrated */ | 
|  |  | 
|  | /* | 
|  | * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
|  | * of tasks with abnormal "nice" values across CPUs the contribution that | 
|  | * each task makes to its run queue's load is weighted according to its | 
|  | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 
|  | * scaled version of the new time slice allocation that they receive on time | 
|  | * slice expiry etc. | 
|  | */ | 
|  |  | 
|  | #define WEIGHT_IDLEPRIO                3 | 
|  | #define WMULT_IDLEPRIO         1431655765 | 
|  |  | 
|  | /* | 
|  | * Nice levels are multiplicative, with a gentle 10% change for every | 
|  | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
|  | * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
|  | * that remained on nice 0. | 
|  | * | 
|  | * The "10% effect" is relative and cumulative: from _any_ nice level, | 
|  | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
|  | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
|  | * If a task goes up by ~10% and another task goes down by ~10% then | 
|  | * the relative distance between them is ~25%.) | 
|  | */ | 
|  | static const int prio_to_weight[40] = { | 
|  | /* -20 */     88761,     71755,     56483,     46273,     36291, | 
|  | /* -15 */     29154,     23254,     18705,     14949,     11916, | 
|  | /* -10 */      9548,      7620,      6100,      4904,      3906, | 
|  | /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
|  | /*   0 */      1024,       820,       655,       526,       423, | 
|  | /*   5 */       335,       272,       215,       172,       137, | 
|  | /*  10 */       110,        87,        70,        56,        45, | 
|  | /*  15 */        36,        29,        23,        18,        15, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 
|  | * | 
|  | * In cases where the weight does not change often, we can use the | 
|  | * precalculated inverse to speed up arithmetics by turning divisions | 
|  | * into multiplications: | 
|  | */ | 
|  | static const u32 prio_to_wmult[40] = { | 
|  | /* -20 */     48388,     59856,     76040,     92818,    118348, | 
|  | /* -15 */    147320,    184698,    229616,    287308,    360437, | 
|  | /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
|  | /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
|  | /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
|  | /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
|  | /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
|  | /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
|  | }; | 
|  |  | 
|  | #define ENQUEUE_WAKEUP		1 | 
|  | #define ENQUEUE_HEAD		2 | 
|  | #ifdef CONFIG_SMP | 
|  | #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */ | 
|  | #else | 
|  | #define ENQUEUE_WAKING		0 | 
|  | #endif | 
|  | #define ENQUEUE_REPLENISH	8 | 
|  |  | 
|  | #define DEQUEUE_SLEEP		1 | 
|  |  | 
|  | struct sched_class { | 
|  | const struct sched_class *next; | 
|  |  | 
|  | void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); | 
|  | void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); | 
|  | void (*yield_task) (struct rq *rq); | 
|  | bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); | 
|  |  | 
|  | void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); | 
|  |  | 
|  | struct task_struct * (*pick_next_task) (struct rq *rq); | 
|  | void (*put_prev_task) (struct rq *rq, struct task_struct *p); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); | 
|  | void (*migrate_task_rq)(struct task_struct *p, int next_cpu); | 
|  |  | 
|  | void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); | 
|  | void (*post_schedule) (struct rq *this_rq); | 
|  | void (*task_waking) (struct task_struct *task); | 
|  | void (*task_woken) (struct rq *this_rq, struct task_struct *task); | 
|  |  | 
|  | void (*set_cpus_allowed)(struct task_struct *p, | 
|  | const struct cpumask *newmask); | 
|  |  | 
|  | void (*rq_online)(struct rq *rq); | 
|  | void (*rq_offline)(struct rq *rq); | 
|  | #endif | 
|  |  | 
|  | void (*set_curr_task) (struct rq *rq); | 
|  | void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); | 
|  | void (*task_fork) (struct task_struct *p); | 
|  | void (*task_dead) (struct task_struct *p); | 
|  |  | 
|  | void (*switched_from) (struct rq *this_rq, struct task_struct *task); | 
|  | void (*switched_to) (struct rq *this_rq, struct task_struct *task); | 
|  | void (*prio_changed) (struct rq *this_rq, struct task_struct *task, | 
|  | int oldprio); | 
|  |  | 
|  | unsigned int (*get_rr_interval) (struct rq *rq, | 
|  | struct task_struct *task); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | void (*task_move_group) (struct task_struct *p, int on_rq); | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #define sched_class_highest (&stop_sched_class) | 
|  | #define for_each_class(class) \ | 
|  | for (class = sched_class_highest; class; class = class->next) | 
|  |  | 
|  | extern const struct sched_class stop_sched_class; | 
|  | extern const struct sched_class dl_sched_class; | 
|  | extern const struct sched_class rt_sched_class; | 
|  | extern const struct sched_class fair_sched_class; | 
|  | extern const struct sched_class idle_sched_class; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | extern void update_group_power(struct sched_domain *sd, int cpu); | 
|  |  | 
|  | extern void trigger_load_balance(struct rq *rq); | 
|  | extern void idle_balance(int this_cpu, struct rq *this_rq); | 
|  |  | 
|  | extern void idle_enter_fair(struct rq *this_rq); | 
|  | extern void idle_exit_fair(struct rq *this_rq); | 
|  |  | 
|  | #else	/* CONFIG_SMP */ | 
|  |  | 
|  | static inline void idle_balance(int cpu, struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | extern void sysrq_sched_debug_show(void); | 
|  | extern void sched_init_granularity(void); | 
|  | extern void update_max_interval(void); | 
|  |  | 
|  | extern void init_sched_dl_class(void); | 
|  | extern void init_sched_rt_class(void); | 
|  | extern void init_sched_fair_class(void); | 
|  | extern void init_sched_dl_class(void); | 
|  |  | 
|  | extern void resched_task(struct task_struct *p); | 
|  | extern void resched_cpu(int cpu); | 
|  |  | 
|  | extern struct rt_bandwidth def_rt_bandwidth; | 
|  | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | 
|  |  | 
|  | extern struct dl_bandwidth def_dl_bandwidth; | 
|  | extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); | 
|  | extern void init_dl_task_timer(struct sched_dl_entity *dl_se); | 
|  |  | 
|  | unsigned long to_ratio(u64 period, u64 runtime); | 
|  |  | 
|  | extern void update_idle_cpu_load(struct rq *this_rq); | 
|  |  | 
|  | extern void init_task_runnable_average(struct task_struct *p); | 
|  |  | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | static inline u64 steal_ticks(u64 steal) | 
|  | { | 
|  | if (unlikely(steal > NSEC_PER_SEC)) | 
|  | return div_u64(steal, TICK_NSEC); | 
|  |  | 
|  | return __iter_div_u64_rem(steal, TICK_NSEC, &steal); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void inc_nr_running(struct rq *rq) | 
|  | { | 
|  | rq->nr_running++; | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | if (rq->nr_running == 2) { | 
|  | if (tick_nohz_full_cpu(rq->cpu)) { | 
|  | /* Order rq->nr_running write against the IPI */ | 
|  | smp_wmb(); | 
|  | smp_send_reschedule(rq->cpu); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void dec_nr_running(struct rq *rq) | 
|  | { | 
|  | rq->nr_running--; | 
|  | } | 
|  |  | 
|  | static inline void rq_last_tick_reset(struct rq *rq) | 
|  | { | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | rq->last_sched_tick = jiffies; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | extern void update_rq_clock(struct rq *rq); | 
|  |  | 
|  | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | 
|  | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | 
|  |  | 
|  | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | 
|  |  | 
|  | extern const_debug unsigned int sysctl_sched_time_avg; | 
|  | extern const_debug unsigned int sysctl_sched_nr_migrate; | 
|  | extern const_debug unsigned int sysctl_sched_migration_cost; | 
|  |  | 
|  | static inline u64 sched_avg_period(void) | 
|  | { | 
|  | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  |  | 
|  | /* | 
|  | * Use hrtick when: | 
|  | *  - enabled by features | 
|  | *  - hrtimer is actually high res | 
|  | */ | 
|  | static inline int hrtick_enabled(struct rq *rq) | 
|  | { | 
|  | if (!sched_feat(HRTICK)) | 
|  | return 0; | 
|  | if (!cpu_active(cpu_of(rq))) | 
|  | return 0; | 
|  | return hrtimer_is_hres_active(&rq->hrtick_timer); | 
|  | } | 
|  |  | 
|  | void hrtick_start(struct rq *rq, u64 delay); | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int hrtick_enabled(struct rq *rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SCHED_HRTICK */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | extern void sched_avg_update(struct rq *rq); | 
|  | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | 
|  | { | 
|  | rq->rt_avg += rt_delta; | 
|  | sched_avg_update(rq); | 
|  | } | 
|  | #else | 
|  | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | 
|  | static inline void sched_avg_update(struct rq *rq) { } | 
|  | #endif | 
|  |  | 
|  | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #ifdef CONFIG_PREEMPT | 
|  |  | 
|  | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | 
|  |  | 
|  | /* | 
|  | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 
|  | * way at the expense of forcing extra atomic operations in all | 
|  | * invocations.  This assures that the double_lock is acquired using the | 
|  | * same underlying policy as the spinlock_t on this architecture, which | 
|  | * reduces latency compared to the unfair variant below.  However, it | 
|  | * also adds more overhead and therefore may reduce throughput. | 
|  | */ | 
|  | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(this_rq->lock) | 
|  | __acquires(busiest->lock) | 
|  | __acquires(this_rq->lock) | 
|  | { | 
|  | raw_spin_unlock(&this_rq->lock); | 
|  | double_rq_lock(this_rq, busiest); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else | 
|  | /* | 
|  | * Unfair double_lock_balance: Optimizes throughput at the expense of | 
|  | * latency by eliminating extra atomic operations when the locks are | 
|  | * already in proper order on entry.  This favors lower cpu-ids and will | 
|  | * grant the double lock to lower cpus over higher ids under contention, | 
|  | * regardless of entry order into the function. | 
|  | */ | 
|  | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(this_rq->lock) | 
|  | __acquires(busiest->lock) | 
|  | __acquires(this_rq->lock) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | 
|  | if (busiest < this_rq) { | 
|  | raw_spin_unlock(&this_rq->lock); | 
|  | raw_spin_lock(&busiest->lock); | 
|  | raw_spin_lock_nested(&this_rq->lock, | 
|  | SINGLE_DEPTH_NESTING); | 
|  | ret = 1; | 
|  | } else | 
|  | raw_spin_lock_nested(&busiest->lock, | 
|  | SINGLE_DEPTH_NESTING); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT */ | 
|  |  | 
|  | /* | 
|  | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | */ | 
|  | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | { | 
|  | if (unlikely(!irqs_disabled())) { | 
|  | /* printk() doesn't work good under rq->lock */ | 
|  | raw_spin_unlock(&this_rq->lock); | 
|  | BUG_ON(1); | 
|  | } | 
|  |  | 
|  | return _double_lock_balance(this_rq, busiest); | 
|  | } | 
|  |  | 
|  | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(busiest->lock) | 
|  | { | 
|  | raw_spin_unlock(&busiest->lock); | 
|  | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 
|  | } | 
|  |  | 
|  | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) | 
|  | { | 
|  | if (l1 > l2) | 
|  | swap(l1, l2); | 
|  |  | 
|  | spin_lock(l1); | 
|  | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  |  | 
|  | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) | 
|  | { | 
|  | if (l1 > l2) | 
|  | swap(l1, l2); | 
|  |  | 
|  | raw_spin_lock(l1); | 
|  | raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_lock - safely lock two runqueues | 
|  | * | 
|  | * Note this does not disable interrupts like task_rq_lock, | 
|  | * you need to do so manually before calling. | 
|  | */ | 
|  | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
|  | __acquires(rq1->lock) | 
|  | __acquires(rq2->lock) | 
|  | { | 
|  | BUG_ON(!irqs_disabled()); | 
|  | if (rq1 == rq2) { | 
|  | raw_spin_lock(&rq1->lock); | 
|  | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | } else { | 
|  | if (rq1 < rq2) { | 
|  | raw_spin_lock(&rq1->lock); | 
|  | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 
|  | } else { | 
|  | raw_spin_lock(&rq2->lock); | 
|  | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_unlock - safely unlock two runqueues | 
|  | * | 
|  | * Note this does not restore interrupts like task_rq_unlock, | 
|  | * you need to do so manually after calling. | 
|  | */ | 
|  | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
|  | __releases(rq1->lock) | 
|  | __releases(rq2->lock) | 
|  | { | 
|  | raw_spin_unlock(&rq1->lock); | 
|  | if (rq1 != rq2) | 
|  | raw_spin_unlock(&rq2->lock); | 
|  | else | 
|  | __release(rq2->lock); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * double_rq_lock - safely lock two runqueues | 
|  | * | 
|  | * Note this does not disable interrupts like task_rq_lock, | 
|  | * you need to do so manually before calling. | 
|  | */ | 
|  | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
|  | __acquires(rq1->lock) | 
|  | __acquires(rq2->lock) | 
|  | { | 
|  | BUG_ON(!irqs_disabled()); | 
|  | BUG_ON(rq1 != rq2); | 
|  | raw_spin_lock(&rq1->lock); | 
|  | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_unlock - safely unlock two runqueues | 
|  | * | 
|  | * Note this does not restore interrupts like task_rq_unlock, | 
|  | * you need to do so manually after calling. | 
|  | */ | 
|  | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
|  | __releases(rq1->lock) | 
|  | __releases(rq2->lock) | 
|  | { | 
|  | BUG_ON(rq1 != rq2); | 
|  | raw_spin_unlock(&rq1->lock); | 
|  | __release(rq2->lock); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | 
|  | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | 
|  | extern void print_cfs_stats(struct seq_file *m, int cpu); | 
|  | extern void print_rt_stats(struct seq_file *m, int cpu); | 
|  |  | 
|  | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | 
|  | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | 
|  | extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); | 
|  |  | 
|  | extern void cfs_bandwidth_usage_inc(void); | 
|  | extern void cfs_bandwidth_usage_dec(void); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | enum rq_nohz_flag_bits { | 
|  | NOHZ_TICK_STOPPED, | 
|  | NOHZ_BALANCE_KICK, | 
|  | }; | 
|  |  | 
|  | #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|  |  | 
|  | DECLARE_PER_CPU(u64, cpu_hardirq_time); | 
|  | DECLARE_PER_CPU(u64, cpu_softirq_time); | 
|  |  | 
|  | #ifndef CONFIG_64BIT | 
|  | DECLARE_PER_CPU(seqcount_t, irq_time_seq); | 
|  |  | 
|  | static inline void irq_time_write_begin(void) | 
|  | { | 
|  | __this_cpu_inc(irq_time_seq.sequence); | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | static inline void irq_time_write_end(void) | 
|  | { | 
|  | smp_wmb(); | 
|  | __this_cpu_inc(irq_time_seq.sequence); | 
|  | } | 
|  |  | 
|  | static inline u64 irq_time_read(int cpu) | 
|  | { | 
|  | u64 irq_time; | 
|  | unsigned seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | 
|  | irq_time = per_cpu(cpu_softirq_time, cpu) + | 
|  | per_cpu(cpu_hardirq_time, cpu); | 
|  | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | 
|  |  | 
|  | return irq_time; | 
|  | } | 
|  | #else /* CONFIG_64BIT */ | 
|  | static inline void irq_time_write_begin(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void irq_time_write_end(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline u64 irq_time_read(int cpu) | 
|  | { | 
|  | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 
|  | } | 
|  | #endif /* CONFIG_64BIT */ | 
|  | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |