|  | /* | 
|  | *  linux/mm/swapfile.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/frontswap.h> | 
|  | #include <linux/swapfile.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/page_cgroup.h> | 
|  |  | 
|  | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
|  | unsigned char); | 
|  | static void free_swap_count_continuations(struct swap_info_struct *); | 
|  | static sector_t map_swap_entry(swp_entry_t, struct block_device**); | 
|  |  | 
|  | DEFINE_SPINLOCK(swap_lock); | 
|  | static unsigned int nr_swapfiles; | 
|  | atomic_long_t nr_swap_pages; | 
|  | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ | 
|  | long total_swap_pages; | 
|  | static int least_priority; | 
|  | static atomic_t highest_priority_index = ATOMIC_INIT(-1); | 
|  |  | 
|  | static const char Bad_file[] = "Bad swap file entry "; | 
|  | static const char Unused_file[] = "Unused swap file entry "; | 
|  | static const char Bad_offset[] = "Bad swap offset entry "; | 
|  | static const char Unused_offset[] = "Unused swap offset entry "; | 
|  |  | 
|  | struct swap_list_t swap_list = {-1, -1}; | 
|  |  | 
|  | struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
|  |  | 
|  | static DEFINE_MUTEX(swapon_mutex); | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | 
|  | /* Activity counter to indicate that a swapon or swapoff has occurred */ | 
|  | static atomic_t proc_poll_event = ATOMIC_INIT(0); | 
|  |  | 
|  | static inline unsigned char swap_count(unsigned char ent) | 
|  | { | 
|  | return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */ | 
|  | } | 
|  |  | 
|  | /* returns 1 if swap entry is freed */ | 
|  | static int | 
|  | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) | 
|  | { | 
|  | swp_entry_t entry = swp_entry(si->type, offset); | 
|  | struct page *page; | 
|  | int ret = 0; | 
|  |  | 
|  | page = find_get_page(swap_address_space(entry), entry.val); | 
|  | if (!page) | 
|  | return 0; | 
|  | /* | 
|  | * This function is called from scan_swap_map() and it's called | 
|  | * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. | 
|  | * We have to use trylock for avoiding deadlock. This is a special | 
|  | * case and you should use try_to_free_swap() with explicit lock_page() | 
|  | * in usual operations. | 
|  | */ | 
|  | if (trylock_page(page)) { | 
|  | ret = try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * swapon tell device that all the old swap contents can be discarded, | 
|  | * to allow the swap device to optimize its wear-levelling. | 
|  | */ | 
|  | static int discard_swap(struct swap_info_struct *si) | 
|  | { | 
|  | struct swap_extent *se; | 
|  | sector_t start_block; | 
|  | sector_t nr_blocks; | 
|  | int err = 0; | 
|  |  | 
|  | /* Do not discard the swap header page! */ | 
|  | se = &si->first_swap_extent; | 
|  | start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
|  | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
|  | if (nr_blocks) { | 
|  | err = blkdev_issue_discard(si->bdev, start_block, | 
|  | nr_blocks, GFP_KERNEL, 0); | 
|  | if (err) | 
|  | return err; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(se, &si->first_swap_extent.list, list) { | 
|  | start_block = se->start_block << (PAGE_SHIFT - 9); | 
|  | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
|  |  | 
|  | err = blkdev_issue_discard(si->bdev, start_block, | 
|  | nr_blocks, GFP_KERNEL, 0); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | return err;		/* That will often be -EOPNOTSUPP */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * swap allocation tell device that a cluster of swap can now be discarded, | 
|  | * to allow the swap device to optimize its wear-levelling. | 
|  | */ | 
|  | static void discard_swap_cluster(struct swap_info_struct *si, | 
|  | pgoff_t start_page, pgoff_t nr_pages) | 
|  | { | 
|  | struct swap_extent *se = si->curr_swap_extent; | 
|  | int found_extent = 0; | 
|  |  | 
|  | while (nr_pages) { | 
|  | struct list_head *lh; | 
|  |  | 
|  | if (se->start_page <= start_page && | 
|  | start_page < se->start_page + se->nr_pages) { | 
|  | pgoff_t offset = start_page - se->start_page; | 
|  | sector_t start_block = se->start_block + offset; | 
|  | sector_t nr_blocks = se->nr_pages - offset; | 
|  |  | 
|  | if (nr_blocks > nr_pages) | 
|  | nr_blocks = nr_pages; | 
|  | start_page += nr_blocks; | 
|  | nr_pages -= nr_blocks; | 
|  |  | 
|  | if (!found_extent++) | 
|  | si->curr_swap_extent = se; | 
|  |  | 
|  | start_block <<= PAGE_SHIFT - 9; | 
|  | nr_blocks <<= PAGE_SHIFT - 9; | 
|  | if (blkdev_issue_discard(si->bdev, start_block, | 
|  | nr_blocks, GFP_NOIO, 0)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | lh = se->list.next; | 
|  | se = list_entry(lh, struct swap_extent, list); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SWAPFILE_CLUSTER	256 | 
|  | #define LATENCY_LIMIT		256 | 
|  |  | 
|  | static inline void cluster_set_flag(struct swap_cluster_info *info, | 
|  | unsigned int flag) | 
|  | { | 
|  | info->flags = flag; | 
|  | } | 
|  |  | 
|  | static inline unsigned int cluster_count(struct swap_cluster_info *info) | 
|  | { | 
|  | return info->data; | 
|  | } | 
|  |  | 
|  | static inline void cluster_set_count(struct swap_cluster_info *info, | 
|  | unsigned int c) | 
|  | { | 
|  | info->data = c; | 
|  | } | 
|  |  | 
|  | static inline void cluster_set_count_flag(struct swap_cluster_info *info, | 
|  | unsigned int c, unsigned int f) | 
|  | { | 
|  | info->flags = f; | 
|  | info->data = c; | 
|  | } | 
|  |  | 
|  | static inline unsigned int cluster_next(struct swap_cluster_info *info) | 
|  | { | 
|  | return info->data; | 
|  | } | 
|  |  | 
|  | static inline void cluster_set_next(struct swap_cluster_info *info, | 
|  | unsigned int n) | 
|  | { | 
|  | info->data = n; | 
|  | } | 
|  |  | 
|  | static inline void cluster_set_next_flag(struct swap_cluster_info *info, | 
|  | unsigned int n, unsigned int f) | 
|  | { | 
|  | info->flags = f; | 
|  | info->data = n; | 
|  | } | 
|  |  | 
|  | static inline bool cluster_is_free(struct swap_cluster_info *info) | 
|  | { | 
|  | return info->flags & CLUSTER_FLAG_FREE; | 
|  | } | 
|  |  | 
|  | static inline bool cluster_is_null(struct swap_cluster_info *info) | 
|  | { | 
|  | return info->flags & CLUSTER_FLAG_NEXT_NULL; | 
|  | } | 
|  |  | 
|  | static inline void cluster_set_null(struct swap_cluster_info *info) | 
|  | { | 
|  | info->flags = CLUSTER_FLAG_NEXT_NULL; | 
|  | info->data = 0; | 
|  | } | 
|  |  | 
|  | /* Add a cluster to discard list and schedule it to do discard */ | 
|  | static void swap_cluster_schedule_discard(struct swap_info_struct *si, | 
|  | unsigned int idx) | 
|  | { | 
|  | /* | 
|  | * If scan_swap_map() can't find a free cluster, it will check | 
|  | * si->swap_map directly. To make sure the discarding cluster isn't | 
|  | * taken by scan_swap_map(), mark the swap entries bad (occupied). It | 
|  | * will be cleared after discard | 
|  | */ | 
|  | memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
|  | SWAP_MAP_BAD, SWAPFILE_CLUSTER); | 
|  |  | 
|  | if (cluster_is_null(&si->discard_cluster_head)) { | 
|  | cluster_set_next_flag(&si->discard_cluster_head, | 
|  | idx, 0); | 
|  | cluster_set_next_flag(&si->discard_cluster_tail, | 
|  | idx, 0); | 
|  | } else { | 
|  | unsigned int tail = cluster_next(&si->discard_cluster_tail); | 
|  | cluster_set_next(&si->cluster_info[tail], idx); | 
|  | cluster_set_next_flag(&si->discard_cluster_tail, | 
|  | idx, 0); | 
|  | } | 
|  |  | 
|  | schedule_work(&si->discard_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Doing discard actually. After a cluster discard is finished, the cluster | 
|  | * will be added to free cluster list. caller should hold si->lock. | 
|  | */ | 
|  | static void swap_do_scheduled_discard(struct swap_info_struct *si) | 
|  | { | 
|  | struct swap_cluster_info *info; | 
|  | unsigned int idx; | 
|  |  | 
|  | info = si->cluster_info; | 
|  |  | 
|  | while (!cluster_is_null(&si->discard_cluster_head)) { | 
|  | idx = cluster_next(&si->discard_cluster_head); | 
|  |  | 
|  | cluster_set_next_flag(&si->discard_cluster_head, | 
|  | cluster_next(&info[idx]), 0); | 
|  | if (cluster_next(&si->discard_cluster_tail) == idx) { | 
|  | cluster_set_null(&si->discard_cluster_head); | 
|  | cluster_set_null(&si->discard_cluster_tail); | 
|  | } | 
|  | spin_unlock(&si->lock); | 
|  |  | 
|  | discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, | 
|  | SWAPFILE_CLUSTER); | 
|  |  | 
|  | spin_lock(&si->lock); | 
|  | cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); | 
|  | if (cluster_is_null(&si->free_cluster_head)) { | 
|  | cluster_set_next_flag(&si->free_cluster_head, | 
|  | idx, 0); | 
|  | cluster_set_next_flag(&si->free_cluster_tail, | 
|  | idx, 0); | 
|  | } else { | 
|  | unsigned int tail; | 
|  |  | 
|  | tail = cluster_next(&si->free_cluster_tail); | 
|  | cluster_set_next(&info[tail], idx); | 
|  | cluster_set_next_flag(&si->free_cluster_tail, | 
|  | idx, 0); | 
|  | } | 
|  | memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
|  | 0, SWAPFILE_CLUSTER); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void swap_discard_work(struct work_struct *work) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  |  | 
|  | si = container_of(work, struct swap_info_struct, discard_work); | 
|  |  | 
|  | spin_lock(&si->lock); | 
|  | swap_do_scheduled_discard(si); | 
|  | spin_unlock(&si->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cluster corresponding to page_nr will be used. The cluster will be | 
|  | * removed from free cluster list and its usage counter will be increased. | 
|  | */ | 
|  | static void inc_cluster_info_page(struct swap_info_struct *p, | 
|  | struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
|  | { | 
|  | unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
|  |  | 
|  | if (!cluster_info) | 
|  | return; | 
|  | if (cluster_is_free(&cluster_info[idx])) { | 
|  | VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); | 
|  | cluster_set_next_flag(&p->free_cluster_head, | 
|  | cluster_next(&cluster_info[idx]), 0); | 
|  | if (cluster_next(&p->free_cluster_tail) == idx) { | 
|  | cluster_set_null(&p->free_cluster_tail); | 
|  | cluster_set_null(&p->free_cluster_head); | 
|  | } | 
|  | cluster_set_count_flag(&cluster_info[idx], 0, 0); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); | 
|  | cluster_set_count(&cluster_info[idx], | 
|  | cluster_count(&cluster_info[idx]) + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cluster corresponding to page_nr decreases one usage. If the usage | 
|  | * counter becomes 0, which means no page in the cluster is in using, we can | 
|  | * optionally discard the cluster and add it to free cluster list. | 
|  | */ | 
|  | static void dec_cluster_info_page(struct swap_info_struct *p, | 
|  | struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
|  | { | 
|  | unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
|  |  | 
|  | if (!cluster_info) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); | 
|  | cluster_set_count(&cluster_info[idx], | 
|  | cluster_count(&cluster_info[idx]) - 1); | 
|  |  | 
|  | if (cluster_count(&cluster_info[idx]) == 0) { | 
|  | /* | 
|  | * If the swap is discardable, prepare discard the cluster | 
|  | * instead of free it immediately. The cluster will be freed | 
|  | * after discard. | 
|  | */ | 
|  | if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == | 
|  | (SWP_WRITEOK | SWP_PAGE_DISCARD)) { | 
|  | swap_cluster_schedule_discard(p, idx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); | 
|  | if (cluster_is_null(&p->free_cluster_head)) { | 
|  | cluster_set_next_flag(&p->free_cluster_head, idx, 0); | 
|  | cluster_set_next_flag(&p->free_cluster_tail, idx, 0); | 
|  | } else { | 
|  | unsigned int tail = cluster_next(&p->free_cluster_tail); | 
|  | cluster_set_next(&cluster_info[tail], idx); | 
|  | cluster_set_next_flag(&p->free_cluster_tail, idx, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible scan_swap_map() uses a free cluster in the middle of free | 
|  | * cluster list. Avoiding such abuse to avoid list corruption. | 
|  | */ | 
|  | static bool | 
|  | scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, | 
|  | unsigned long offset) | 
|  | { | 
|  | struct percpu_cluster *percpu_cluster; | 
|  | bool conflict; | 
|  |  | 
|  | offset /= SWAPFILE_CLUSTER; | 
|  | conflict = !cluster_is_null(&si->free_cluster_head) && | 
|  | offset != cluster_next(&si->free_cluster_head) && | 
|  | cluster_is_free(&si->cluster_info[offset]); | 
|  |  | 
|  | if (!conflict) | 
|  | return false; | 
|  |  | 
|  | percpu_cluster = this_cpu_ptr(si->percpu_cluster); | 
|  | cluster_set_null(&percpu_cluster->index); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to get a swap entry from current cpu's swap entry pool (a cluster). This | 
|  | * might involve allocating a new cluster for current CPU too. | 
|  | */ | 
|  | static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, | 
|  | unsigned long *offset, unsigned long *scan_base) | 
|  | { | 
|  | struct percpu_cluster *cluster; | 
|  | bool found_free; | 
|  | unsigned long tmp; | 
|  |  | 
|  | new_cluster: | 
|  | cluster = this_cpu_ptr(si->percpu_cluster); | 
|  | if (cluster_is_null(&cluster->index)) { | 
|  | if (!cluster_is_null(&si->free_cluster_head)) { | 
|  | cluster->index = si->free_cluster_head; | 
|  | cluster->next = cluster_next(&cluster->index) * | 
|  | SWAPFILE_CLUSTER; | 
|  | } else if (!cluster_is_null(&si->discard_cluster_head)) { | 
|  | /* | 
|  | * we don't have free cluster but have some clusters in | 
|  | * discarding, do discard now and reclaim them | 
|  | */ | 
|  | swap_do_scheduled_discard(si); | 
|  | *scan_base = *offset = si->cluster_next; | 
|  | goto new_cluster; | 
|  | } else | 
|  | return; | 
|  | } | 
|  |  | 
|  | found_free = false; | 
|  |  | 
|  | /* | 
|  | * Other CPUs can use our cluster if they can't find a free cluster, | 
|  | * check if there is still free entry in the cluster | 
|  | */ | 
|  | tmp = cluster->next; | 
|  | while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * | 
|  | SWAPFILE_CLUSTER) { | 
|  | if (!si->swap_map[tmp]) { | 
|  | found_free = true; | 
|  | break; | 
|  | } | 
|  | tmp++; | 
|  | } | 
|  | if (!found_free) { | 
|  | cluster_set_null(&cluster->index); | 
|  | goto new_cluster; | 
|  | } | 
|  | cluster->next = tmp + 1; | 
|  | *offset = tmp; | 
|  | *scan_base = tmp; | 
|  | } | 
|  |  | 
|  | static unsigned long scan_swap_map(struct swap_info_struct *si, | 
|  | unsigned char usage) | 
|  | { | 
|  | unsigned long offset; | 
|  | unsigned long scan_base; | 
|  | unsigned long last_in_cluster = 0; | 
|  | int latency_ration = LATENCY_LIMIT; | 
|  |  | 
|  | /* | 
|  | * We try to cluster swap pages by allocating them sequentially | 
|  | * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
|  | * way, however, we resort to first-free allocation, starting | 
|  | * a new cluster.  This prevents us from scattering swap pages | 
|  | * all over the entire swap partition, so that we reduce | 
|  | * overall disk seek times between swap pages.  -- sct | 
|  | * But we do now try to find an empty cluster.  -Andrea | 
|  | * And we let swap pages go all over an SSD partition.  Hugh | 
|  | */ | 
|  |  | 
|  | si->flags += SWP_SCANNING; | 
|  | scan_base = offset = si->cluster_next; | 
|  |  | 
|  | /* SSD algorithm */ | 
|  | if (si->cluster_info) { | 
|  | scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); | 
|  | goto checks; | 
|  | } | 
|  |  | 
|  | if (unlikely(!si->cluster_nr--)) { | 
|  | if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { | 
|  | si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
|  | goto checks; | 
|  | } | 
|  |  | 
|  | spin_unlock(&si->lock); | 
|  |  | 
|  | /* | 
|  | * If seek is expensive, start searching for new cluster from | 
|  | * start of partition, to minimize the span of allocated swap. | 
|  | * But if seek is cheap, search from our current position, so | 
|  | * that swap is allocated from all over the partition: if the | 
|  | * Flash Translation Layer only remaps within limited zones, | 
|  | * we don't want to wear out the first zone too quickly. | 
|  | */ | 
|  | if (!(si->flags & SWP_SOLIDSTATE)) | 
|  | scan_base = offset = si->lowest_bit; | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
|  |  | 
|  | /* Locate the first empty (unaligned) cluster */ | 
|  | for (; last_in_cluster <= si->highest_bit; offset++) { | 
|  | if (si->swap_map[offset]) | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER; | 
|  | else if (offset == last_in_cluster) { | 
|  | spin_lock(&si->lock); | 
|  | offset -= SWAPFILE_CLUSTER - 1; | 
|  | si->cluster_next = offset; | 
|  | si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
|  | goto checks; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = si->lowest_bit; | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
|  |  | 
|  | /* Locate the first empty (unaligned) cluster */ | 
|  | for (; last_in_cluster < scan_base; offset++) { | 
|  | if (si->swap_map[offset]) | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER; | 
|  | else if (offset == last_in_cluster) { | 
|  | spin_lock(&si->lock); | 
|  | offset -= SWAPFILE_CLUSTER - 1; | 
|  | si->cluster_next = offset; | 
|  | si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
|  | goto checks; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = scan_base; | 
|  | spin_lock(&si->lock); | 
|  | si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
|  | } | 
|  |  | 
|  | checks: | 
|  | if (si->cluster_info) { | 
|  | while (scan_swap_map_ssd_cluster_conflict(si, offset)) | 
|  | scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); | 
|  | } | 
|  | if (!(si->flags & SWP_WRITEOK)) | 
|  | goto no_page; | 
|  | if (!si->highest_bit) | 
|  | goto no_page; | 
|  | if (offset > si->highest_bit) | 
|  | scan_base = offset = si->lowest_bit; | 
|  |  | 
|  | /* reuse swap entry of cache-only swap if not busy. */ | 
|  | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
|  | int swap_was_freed; | 
|  | spin_unlock(&si->lock); | 
|  | swap_was_freed = __try_to_reclaim_swap(si, offset); | 
|  | spin_lock(&si->lock); | 
|  | /* entry was freed successfully, try to use this again */ | 
|  | if (swap_was_freed) | 
|  | goto checks; | 
|  | goto scan; /* check next one */ | 
|  | } | 
|  |  | 
|  | if (si->swap_map[offset]) | 
|  | goto scan; | 
|  |  | 
|  | if (offset == si->lowest_bit) | 
|  | si->lowest_bit++; | 
|  | if (offset == si->highest_bit) | 
|  | si->highest_bit--; | 
|  | si->inuse_pages++; | 
|  | if (si->inuse_pages == si->pages) { | 
|  | si->lowest_bit = si->max; | 
|  | si->highest_bit = 0; | 
|  | } | 
|  | si->swap_map[offset] = usage; | 
|  | inc_cluster_info_page(si, si->cluster_info, offset); | 
|  | si->cluster_next = offset + 1; | 
|  | si->flags -= SWP_SCANNING; | 
|  |  | 
|  | return offset; | 
|  |  | 
|  | scan: | 
|  | spin_unlock(&si->lock); | 
|  | while (++offset <= si->highest_bit) { | 
|  | if (!si->swap_map[offset]) { | 
|  | spin_lock(&si->lock); | 
|  | goto checks; | 
|  | } | 
|  | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
|  | spin_lock(&si->lock); | 
|  | goto checks; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | } | 
|  | offset = si->lowest_bit; | 
|  | while (offset < scan_base) { | 
|  | if (!si->swap_map[offset]) { | 
|  | spin_lock(&si->lock); | 
|  | goto checks; | 
|  | } | 
|  | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
|  | spin_lock(&si->lock); | 
|  | goto checks; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | offset++; | 
|  | } | 
|  | spin_lock(&si->lock); | 
|  |  | 
|  | no_page: | 
|  | si->flags -= SWP_SCANNING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | swp_entry_t get_swap_page(void) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | pgoff_t offset; | 
|  | int type, next; | 
|  | int wrapped = 0; | 
|  | int hp_index; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | if (atomic_long_read(&nr_swap_pages) <= 0) | 
|  | goto noswap; | 
|  | atomic_long_dec(&nr_swap_pages); | 
|  |  | 
|  | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 
|  | hp_index = atomic_xchg(&highest_priority_index, -1); | 
|  | /* | 
|  | * highest_priority_index records current highest priority swap | 
|  | * type which just frees swap entries. If its priority is | 
|  | * higher than that of swap_list.next swap type, we use it.  It | 
|  | * isn't protected by swap_lock, so it can be an invalid value | 
|  | * if the corresponding swap type is swapoff. We double check | 
|  | * the flags here. It's even possible the swap type is swapoff | 
|  | * and swapon again and its priority is changed. In such rare | 
|  | * case, low prority swap type might be used, but eventually | 
|  | * high priority swap will be used after several rounds of | 
|  | * swap. | 
|  | */ | 
|  | if (hp_index != -1 && hp_index != type && | 
|  | swap_info[type]->prio < swap_info[hp_index]->prio && | 
|  | (swap_info[hp_index]->flags & SWP_WRITEOK)) { | 
|  | type = hp_index; | 
|  | swap_list.next = type; | 
|  | } | 
|  |  | 
|  | si = swap_info[type]; | 
|  | next = si->next; | 
|  | if (next < 0 || | 
|  | (!wrapped && si->prio != swap_info[next]->prio)) { | 
|  | next = swap_list.head; | 
|  | wrapped++; | 
|  | } | 
|  |  | 
|  | spin_lock(&si->lock); | 
|  | if (!si->highest_bit) { | 
|  | spin_unlock(&si->lock); | 
|  | continue; | 
|  | } | 
|  | if (!(si->flags & SWP_WRITEOK)) { | 
|  | spin_unlock(&si->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | swap_list.next = next; | 
|  |  | 
|  | spin_unlock(&swap_lock); | 
|  | /* This is called for allocating swap entry for cache */ | 
|  | offset = scan_swap_map(si, SWAP_HAS_CACHE); | 
|  | spin_unlock(&si->lock); | 
|  | if (offset) | 
|  | return swp_entry(type, offset); | 
|  | spin_lock(&swap_lock); | 
|  | next = swap_list.next; | 
|  | } | 
|  |  | 
|  | atomic_long_inc(&nr_swap_pages); | 
|  | noswap: | 
|  | spin_unlock(&swap_lock); | 
|  | return (swp_entry_t) {0}; | 
|  | } | 
|  |  | 
|  | /* The only caller of this function is now suspend routine */ | 
|  | swp_entry_t get_swap_page_of_type(int type) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | pgoff_t offset; | 
|  |  | 
|  | si = swap_info[type]; | 
|  | spin_lock(&si->lock); | 
|  | if (si && (si->flags & SWP_WRITEOK)) { | 
|  | atomic_long_dec(&nr_swap_pages); | 
|  | /* This is called for allocating swap entry, not cache */ | 
|  | offset = scan_swap_map(si, 1); | 
|  | if (offset) { | 
|  | spin_unlock(&si->lock); | 
|  | return swp_entry(type, offset); | 
|  | } | 
|  | atomic_long_inc(&nr_swap_pages); | 
|  | } | 
|  | spin_unlock(&si->lock); | 
|  | return (swp_entry_t) {0}; | 
|  | } | 
|  |  | 
|  | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | unsigned long offset, type; | 
|  |  | 
|  | if (!entry.val) | 
|  | goto out; | 
|  | type = swp_type(entry); | 
|  | if (type >= nr_swapfiles) | 
|  | goto bad_nofile; | 
|  | p = swap_info[type]; | 
|  | if (!(p->flags & SWP_USED)) | 
|  | goto bad_device; | 
|  | offset = swp_offset(entry); | 
|  | if (offset >= p->max) | 
|  | goto bad_offset; | 
|  | if (!p->swap_map[offset]) | 
|  | goto bad_free; | 
|  | spin_lock(&p->lock); | 
|  | return p; | 
|  |  | 
|  | bad_free: | 
|  | pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); | 
|  | goto out; | 
|  | bad_offset: | 
|  | pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); | 
|  | goto out; | 
|  | bad_device: | 
|  | pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); | 
|  | goto out; | 
|  | bad_nofile: | 
|  | pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This swap type frees swap entry, check if it is the highest priority swap | 
|  | * type which just frees swap entry. get_swap_page() uses | 
|  | * highest_priority_index to search highest priority swap type. The | 
|  | * swap_info_struct.lock can't protect us if there are multiple swap types | 
|  | * active, so we use atomic_cmpxchg. | 
|  | */ | 
|  | static void set_highest_priority_index(int type) | 
|  | { | 
|  | int old_hp_index, new_hp_index; | 
|  |  | 
|  | do { | 
|  | old_hp_index = atomic_read(&highest_priority_index); | 
|  | if (old_hp_index != -1 && | 
|  | swap_info[old_hp_index]->prio >= swap_info[type]->prio) | 
|  | break; | 
|  | new_hp_index = type; | 
|  | } while (atomic_cmpxchg(&highest_priority_index, | 
|  | old_hp_index, new_hp_index) != old_hp_index); | 
|  | } | 
|  |  | 
|  | static unsigned char swap_entry_free(struct swap_info_struct *p, | 
|  | swp_entry_t entry, unsigned char usage) | 
|  | { | 
|  | unsigned long offset = swp_offset(entry); | 
|  | unsigned char count; | 
|  | unsigned char has_cache; | 
|  |  | 
|  | count = p->swap_map[offset]; | 
|  | has_cache = count & SWAP_HAS_CACHE; | 
|  | count &= ~SWAP_HAS_CACHE; | 
|  |  | 
|  | if (usage == SWAP_HAS_CACHE) { | 
|  | VM_BUG_ON(!has_cache); | 
|  | has_cache = 0; | 
|  | } else if (count == SWAP_MAP_SHMEM) { | 
|  | /* | 
|  | * Or we could insist on shmem.c using a special | 
|  | * swap_shmem_free() and free_shmem_swap_and_cache()... | 
|  | */ | 
|  | count = 0; | 
|  | } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
|  | if (count == COUNT_CONTINUED) { | 
|  | if (swap_count_continued(p, offset, count)) | 
|  | count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
|  | else | 
|  | count = SWAP_MAP_MAX; | 
|  | } else | 
|  | count--; | 
|  | } | 
|  |  | 
|  | if (!count) | 
|  | mem_cgroup_uncharge_swap(entry); | 
|  |  | 
|  | usage = count | has_cache; | 
|  | p->swap_map[offset] = usage; | 
|  |  | 
|  | /* free if no reference */ | 
|  | if (!usage) { | 
|  | dec_cluster_info_page(p, p->cluster_info, offset); | 
|  | if (offset < p->lowest_bit) | 
|  | p->lowest_bit = offset; | 
|  | if (offset > p->highest_bit) | 
|  | p->highest_bit = offset; | 
|  | set_highest_priority_index(p->type); | 
|  | atomic_long_inc(&nr_swap_pages); | 
|  | p->inuse_pages--; | 
|  | frontswap_invalidate_page(p->type, offset); | 
|  | if (p->flags & SWP_BLKDEV) { | 
|  | struct gendisk *disk = p->bdev->bd_disk; | 
|  | if (disk->fops->swap_slot_free_notify) | 
|  | disk->fops->swap_slot_free_notify(p->bdev, | 
|  | offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | return usage; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller has made sure that the swap device corresponding to entry | 
|  | * is still around or has not been recycled. | 
|  | */ | 
|  | void swap_free(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  |  | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | swap_entry_free(p, entry, 1); | 
|  | spin_unlock(&p->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after dropping swapcache to decrease refcnt to swap entries. | 
|  | */ | 
|  | void swapcache_free(swp_entry_t entry, struct page *page) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | unsigned char count; | 
|  |  | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | count = swap_entry_free(p, entry, SWAP_HAS_CACHE); | 
|  | if (page) | 
|  | mem_cgroup_uncharge_swapcache(page, entry, count != 0); | 
|  | spin_unlock(&p->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many references to page are currently swapped out? | 
|  | * This does not give an exact answer when swap count is continued, | 
|  | * but does include the high COUNT_CONTINUED flag to allow for that. | 
|  | */ | 
|  | int page_swapcount(struct page *page) | 
|  | { | 
|  | int count = 0; | 
|  | struct swap_info_struct *p; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | count = swap_count(p->swap_map[swp_offset(entry)]); | 
|  | spin_unlock(&p->lock); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can write to an anon page without COW if there are no other references | 
|  | * to it.  And as a side-effect, free up its swap: because the old content | 
|  | * on disk will never be read, and seeking back there to write new content | 
|  | * later would only waste time away from clustering. | 
|  | */ | 
|  | int reuse_swap_page(struct page *page) | 
|  | { | 
|  | int count; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | if (unlikely(PageKsm(page))) | 
|  | return 0; | 
|  | count = page_mapcount(page); | 
|  | if (count <= 1 && PageSwapCache(page)) { | 
|  | count += page_swapcount(page); | 
|  | if (count == 1 && !PageWriteback(page)) { | 
|  | delete_from_swap_cache(page); | 
|  | SetPageDirty(page); | 
|  | } | 
|  | } | 
|  | return count <= 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If swap is getting full, or if there are no more mappings of this page, | 
|  | * then try_to_free_swap is called to free its swap space. | 
|  | */ | 
|  | int try_to_free_swap(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (!PageSwapCache(page)) | 
|  | return 0; | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  | if (page_swapcount(page)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Once hibernation has begun to create its image of memory, | 
|  | * there's a danger that one of the calls to try_to_free_swap() | 
|  | * - most probably a call from __try_to_reclaim_swap() while | 
|  | * hibernation is allocating its own swap pages for the image, | 
|  | * but conceivably even a call from memory reclaim - will free | 
|  | * the swap from a page which has already been recorded in the | 
|  | * image as a clean swapcache page, and then reuse its swap for | 
|  | * another page of the image.  On waking from hibernation, the | 
|  | * original page might be freed under memory pressure, then | 
|  | * later read back in from swap, now with the wrong data. | 
|  | * | 
|  | * Hibernation suspends storage while it is writing the image | 
|  | * to disk so check that here. | 
|  | */ | 
|  | if (pm_suspended_storage()) | 
|  | return 0; | 
|  |  | 
|  | delete_from_swap_cache(page); | 
|  | SetPageDirty(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the swap entry like above, but also try to | 
|  | * free the page cache entry if it is the last user. | 
|  | */ | 
|  | int free_swap_and_cache(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (non_swap_entry(entry)) | 
|  | return 1; | 
|  |  | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { | 
|  | page = find_get_page(swap_address_space(entry), | 
|  | entry.val); | 
|  | if (page && !trylock_page(page)) { | 
|  | page_cache_release(page); | 
|  | page = NULL; | 
|  | } | 
|  | } | 
|  | spin_unlock(&p->lock); | 
|  | } | 
|  | if (page) { | 
|  | /* | 
|  | * Not mapped elsewhere, or swap space full? Free it! | 
|  | * Also recheck PageSwapCache now page is locked (above). | 
|  | */ | 
|  | if (PageSwapCache(page) && !PageWriteback(page) && | 
|  | (!page_mapped(page) || vm_swap_full())) { | 
|  | delete_from_swap_cache(page); | 
|  | SetPageDirty(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | return p != NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | /* | 
|  | * Find the swap type that corresponds to given device (if any). | 
|  | * | 
|  | * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
|  | * from 0, in which the swap header is expected to be located. | 
|  | * | 
|  | * This is needed for the suspend to disk (aka swsusp). | 
|  | */ | 
|  | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) | 
|  | { | 
|  | struct block_device *bdev = NULL; | 
|  | int type; | 
|  |  | 
|  | if (device) | 
|  | bdev = bdget(device); | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | for (type = 0; type < nr_swapfiles; type++) { | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  |  | 
|  | if (!(sis->flags & SWP_WRITEOK)) | 
|  | continue; | 
|  |  | 
|  | if (!bdev) { | 
|  | if (bdev_p) | 
|  | *bdev_p = bdgrab(sis->bdev); | 
|  |  | 
|  | spin_unlock(&swap_lock); | 
|  | return type; | 
|  | } | 
|  | if (bdev == sis->bdev) { | 
|  | struct swap_extent *se = &sis->first_swap_extent; | 
|  |  | 
|  | if (se->start_block == offset) { | 
|  | if (bdev_p) | 
|  | *bdev_p = bdgrab(sis->bdev); | 
|  |  | 
|  | spin_unlock(&swap_lock); | 
|  | bdput(bdev); | 
|  | return type; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | if (bdev) | 
|  | bdput(bdev); | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
|  | * corresponding to given index in swap_info (swap type). | 
|  | */ | 
|  | sector_t swapdev_block(int type, pgoff_t offset) | 
|  | { | 
|  | struct block_device *bdev; | 
|  |  | 
|  | if ((unsigned int)type >= nr_swapfiles) | 
|  | return 0; | 
|  | if (!(swap_info[type]->flags & SWP_WRITEOK)) | 
|  | return 0; | 
|  | return map_swap_entry(swp_entry(type, offset), &bdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return either the total number of swap pages of given type, or the number | 
|  | * of free pages of that type (depending on @free) | 
|  | * | 
|  | * This is needed for software suspend | 
|  | */ | 
|  | unsigned int count_swap_pages(int type, int free) | 
|  | { | 
|  | unsigned int n = 0; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | if ((unsigned int)type < nr_swapfiles) { | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  |  | 
|  | spin_lock(&sis->lock); | 
|  | if (sis->flags & SWP_WRITEOK) { | 
|  | n = sis->pages; | 
|  | if (free) | 
|  | n -= sis->inuse_pages; | 
|  | } | 
|  | spin_unlock(&sis->lock); | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | return n; | 
|  | } | 
|  | #endif /* CONFIG_HIBERNATION */ | 
|  |  | 
|  | static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) | 
|  | { | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | /* | 
|  | * When pte keeps soft dirty bit the pte generated | 
|  | * from swap entry does not has it, still it's same | 
|  | * pte from logical point of view. | 
|  | */ | 
|  | pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); | 
|  | return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); | 
|  | #else | 
|  | return pte_same(pte, swp_pte); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to decide whether this PTE shares the swap entry with others, | 
|  | * just let do_wp_page work it out if a write is requested later - to | 
|  | * force COW, vm_page_prot omits write permission from any private vma. | 
|  | */ | 
|  | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, swp_entry_t entry, struct page *page) | 
|  | { | 
|  | struct page *swapcache; | 
|  | struct mem_cgroup *memcg; | 
|  | spinlock_t *ptl; | 
|  | pte_t *pte; | 
|  | int ret = 1; | 
|  |  | 
|  | swapcache = page; | 
|  | page = ksm_might_need_to_copy(page, vma, addr); | 
|  | if (unlikely(!page)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, | 
|  | GFP_KERNEL, &memcg)) { | 
|  | ret = -ENOMEM; | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { | 
|  | mem_cgroup_cancel_charge_swapin(memcg); | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
|  | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
|  | get_page(page); | 
|  | set_pte_at(vma->vm_mm, addr, pte, | 
|  | pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
|  | if (page == swapcache) | 
|  | page_add_anon_rmap(page, vma, addr); | 
|  | else /* ksm created a completely new copy */ | 
|  | page_add_new_anon_rmap(page, vma, addr); | 
|  | mem_cgroup_commit_charge_swapin(page, memcg); | 
|  | swap_free(entry); | 
|  | /* | 
|  | * Move the page to the active list so it is not | 
|  | * immediately swapped out again after swapon. | 
|  | */ | 
|  | activate_page(page); | 
|  | out: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out_nolock: | 
|  | if (page != swapcache) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pte_t swp_pte = swp_entry_to_pte(entry); | 
|  | pte_t *pte; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We don't actually need pte lock while scanning for swp_pte: since | 
|  | * we hold page lock and mmap_sem, swp_pte cannot be inserted into the | 
|  | * page table while we're scanning; though it could get zapped, and on | 
|  | * some architectures (e.g. x86_32 with PAE) we might catch a glimpse | 
|  | * of unmatched parts which look like swp_pte, so unuse_pte must | 
|  | * recheck under pte lock.  Scanning without pte lock lets it be | 
|  | * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. | 
|  | */ | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | do { | 
|  | /* | 
|  | * swapoff spends a _lot_ of time in this loop! | 
|  | * Test inline before going to call unuse_pte. | 
|  | */ | 
|  | if (unlikely(maybe_same_pte(*pte, swp_pte))) { | 
|  | pte_unmap(pte); | 
|  | ret = unuse_pte(vma, pmd, addr, entry, page); | 
|  | if (ret) | 
|  | goto out; | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | } | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | pte_unmap(pte - 1); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int ret; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
|  | continue; | 
|  | ret = unuse_pte_range(vma, pmd, addr, next, entry, page); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int ret; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | ret = unuse_pmd_range(vma, pud, addr, next, entry, page); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unuse_vma(struct vm_area_struct *vma, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long addr, end, next; | 
|  | int ret; | 
|  |  | 
|  | if (page_anon_vma(page)) { | 
|  | addr = page_address_in_vma(page, vma); | 
|  | if (addr == -EFAULT) | 
|  | return 0; | 
|  | else | 
|  | end = addr + PAGE_SIZE; | 
|  | } else { | 
|  | addr = vma->vm_start; | 
|  | end = vma->vm_end; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | ret = unuse_pud_range(vma, pgd, addr, next, entry, page); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unuse_mm(struct mm_struct *mm, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | /* | 
|  | * Activate page so shrink_inactive_list is unlikely to unmap | 
|  | * its ptes while lock is dropped, so swapoff can make progress. | 
|  | */ | 
|  | activate_page(page); | 
|  | unlock_page(page); | 
|  | down_read(&mm->mmap_sem); | 
|  | lock_page(page); | 
|  | } | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) | 
|  | break; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | return (ret < 0)? ret: 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan swap_map (or frontswap_map if frontswap parameter is true) | 
|  | * from current position to next entry still in use. | 
|  | * Recycle to start on reaching the end, returning 0 when empty. | 
|  | */ | 
|  | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
|  | unsigned int prev, bool frontswap) | 
|  | { | 
|  | unsigned int max = si->max; | 
|  | unsigned int i = prev; | 
|  | unsigned char count; | 
|  |  | 
|  | /* | 
|  | * No need for swap_lock here: we're just looking | 
|  | * for whether an entry is in use, not modifying it; false | 
|  | * hits are okay, and sys_swapoff() has already prevented new | 
|  | * allocations from this area (while holding swap_lock). | 
|  | */ | 
|  | for (;;) { | 
|  | if (++i >= max) { | 
|  | if (!prev) { | 
|  | i = 0; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * No entries in use at top of swap_map, | 
|  | * loop back to start and recheck there. | 
|  | */ | 
|  | max = prev + 1; | 
|  | prev = 0; | 
|  | i = 1; | 
|  | } | 
|  | if (frontswap) { | 
|  | if (frontswap_test(si, i)) | 
|  | break; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | count = ACCESS_ONCE(si->swap_map[i]); | 
|  | if (count && swap_count(count) != SWAP_MAP_BAD) | 
|  | break; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We completely avoid races by reading each swap page in advance, | 
|  | * and then search for the process using it.  All the necessary | 
|  | * page table adjustments can then be made atomically. | 
|  | * | 
|  | * if the boolean frontswap is true, only unuse pages_to_unuse pages; | 
|  | * pages_to_unuse==0 means all pages; ignored if frontswap is false | 
|  | */ | 
|  | int try_to_unuse(unsigned int type, bool frontswap, | 
|  | unsigned long pages_to_unuse) | 
|  | { | 
|  | struct swap_info_struct *si = swap_info[type]; | 
|  | struct mm_struct *start_mm; | 
|  | volatile unsigned char *swap_map; /* swap_map is accessed without | 
|  | * locking. Mark it as volatile | 
|  | * to prevent compiler doing | 
|  | * something odd. | 
|  | */ | 
|  | unsigned char swcount; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | unsigned int i = 0; | 
|  | int retval = 0; | 
|  |  | 
|  | /* | 
|  | * When searching mms for an entry, a good strategy is to | 
|  | * start at the first mm we freed the previous entry from | 
|  | * (though actually we don't notice whether we or coincidence | 
|  | * freed the entry).  Initialize this start_mm with a hold. | 
|  | * | 
|  | * A simpler strategy would be to start at the last mm we | 
|  | * freed the previous entry from; but that would take less | 
|  | * advantage of mmlist ordering, which clusters forked mms | 
|  | * together, child after parent.  If we race with dup_mmap(), we | 
|  | * prefer to resolve parent before child, lest we miss entries | 
|  | * duplicated after we scanned child: using last mm would invert | 
|  | * that. | 
|  | */ | 
|  | start_mm = &init_mm; | 
|  | atomic_inc(&init_mm.mm_users); | 
|  |  | 
|  | /* | 
|  | * Keep on scanning until all entries have gone.  Usually, | 
|  | * one pass through swap_map is enough, but not necessarily: | 
|  | * there are races when an instance of an entry might be missed. | 
|  | */ | 
|  | while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { | 
|  | if (signal_pending(current)) { | 
|  | retval = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page for the entry, using the existing swap | 
|  | * cache page if there is one.  Otherwise, get a clean | 
|  | * page and read the swap into it. | 
|  | */ | 
|  | swap_map = &si->swap_map[i]; | 
|  | entry = swp_entry(type, i); | 
|  | page = read_swap_cache_async(entry, | 
|  | GFP_HIGHUSER_MOVABLE, NULL, 0); | 
|  | if (!page) { | 
|  | /* | 
|  | * Either swap_duplicate() failed because entry | 
|  | * has been freed independently, and will not be | 
|  | * reused since sys_swapoff() already disabled | 
|  | * allocation from here, or alloc_page() failed. | 
|  | */ | 
|  | swcount = *swap_map; | 
|  | /* | 
|  | * We don't hold lock here, so the swap entry could be | 
|  | * SWAP_MAP_BAD (when the cluster is discarding). | 
|  | * Instead of fail out, We can just skip the swap | 
|  | * entry because swapoff will wait for discarding | 
|  | * finish anyway. | 
|  | */ | 
|  | if (!swcount || swcount == SWAP_MAP_BAD) | 
|  | continue; | 
|  | retval = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't hold on to start_mm if it looks like exiting. | 
|  | */ | 
|  | if (atomic_read(&start_mm->mm_users) == 1) { | 
|  | mmput(start_mm); | 
|  | start_mm = &init_mm; | 
|  | atomic_inc(&init_mm.mm_users); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for and lock page.  When do_swap_page races with | 
|  | * try_to_unuse, do_swap_page can handle the fault much | 
|  | * faster than try_to_unuse can locate the entry.  This | 
|  | * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
|  | * defer to do_swap_page in such a case - in some tests, | 
|  | * do_swap_page and try_to_unuse repeatedly compete. | 
|  | */ | 
|  | wait_on_page_locked(page); | 
|  | wait_on_page_writeback(page); | 
|  | lock_page(page); | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | /* | 
|  | * Remove all references to entry. | 
|  | */ | 
|  | swcount = *swap_map; | 
|  | if (swap_count(swcount) == SWAP_MAP_SHMEM) { | 
|  | retval = shmem_unuse(entry, page); | 
|  | /* page has already been unlocked and released */ | 
|  | if (retval < 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | if (swap_count(swcount) && start_mm != &init_mm) | 
|  | retval = unuse_mm(start_mm, entry, page); | 
|  |  | 
|  | if (swap_count(*swap_map)) { | 
|  | int set_start_mm = (*swap_map >= swcount); | 
|  | struct list_head *p = &start_mm->mmlist; | 
|  | struct mm_struct *new_start_mm = start_mm; | 
|  | struct mm_struct *prev_mm = start_mm; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | atomic_inc(&new_start_mm->mm_users); | 
|  | atomic_inc(&prev_mm->mm_users); | 
|  | spin_lock(&mmlist_lock); | 
|  | while (swap_count(*swap_map) && !retval && | 
|  | (p = p->next) != &start_mm->mmlist) { | 
|  | mm = list_entry(p, struct mm_struct, mmlist); | 
|  | if (!atomic_inc_not_zero(&mm->mm_users)) | 
|  | continue; | 
|  | spin_unlock(&mmlist_lock); | 
|  | mmput(prev_mm); | 
|  | prev_mm = mm; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | swcount = *swap_map; | 
|  | if (!swap_count(swcount)) /* any usage ? */ | 
|  | ; | 
|  | else if (mm == &init_mm) | 
|  | set_start_mm = 1; | 
|  | else | 
|  | retval = unuse_mm(mm, entry, page); | 
|  |  | 
|  | if (set_start_mm && *swap_map < swcount) { | 
|  | mmput(new_start_mm); | 
|  | atomic_inc(&mm->mm_users); | 
|  | new_start_mm = mm; | 
|  | set_start_mm = 0; | 
|  | } | 
|  | spin_lock(&mmlist_lock); | 
|  | } | 
|  | spin_unlock(&mmlist_lock); | 
|  | mmput(prev_mm); | 
|  | mmput(start_mm); | 
|  | start_mm = new_start_mm; | 
|  | } | 
|  | if (retval) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a reference remains (rare), we would like to leave | 
|  | * the page in the swap cache; but try_to_unmap could | 
|  | * then re-duplicate the entry once we drop page lock, | 
|  | * so we might loop indefinitely; also, that page could | 
|  | * not be swapped out to other storage meanwhile.  So: | 
|  | * delete from cache even if there's another reference, | 
|  | * after ensuring that the data has been saved to disk - | 
|  | * since if the reference remains (rarer), it will be | 
|  | * read from disk into another page.  Splitting into two | 
|  | * pages would be incorrect if swap supported "shared | 
|  | * private" pages, but they are handled by tmpfs files. | 
|  | * | 
|  | * Given how unuse_vma() targets one particular offset | 
|  | * in an anon_vma, once the anon_vma has been determined, | 
|  | * this splitting happens to be just what is needed to | 
|  | * handle where KSM pages have been swapped out: re-reading | 
|  | * is unnecessarily slow, but we can fix that later on. | 
|  | */ | 
|  | if (swap_count(*swap_map) && | 
|  | PageDirty(page) && PageSwapCache(page)) { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | }; | 
|  |  | 
|  | swap_writepage(page, &wbc); | 
|  | lock_page(page); | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is conceivable that a racing task removed this page from | 
|  | * swap cache just before we acquired the page lock at the top, | 
|  | * or while we dropped it in unuse_mm().  The page might even | 
|  | * be back in swap cache on another swap area: that we must not | 
|  | * delete, since it may not have been written out to swap yet. | 
|  | */ | 
|  | if (PageSwapCache(page) && | 
|  | likely(page_private(page) == entry.val)) | 
|  | delete_from_swap_cache(page); | 
|  |  | 
|  | /* | 
|  | * So we could skip searching mms once swap count went | 
|  | * to 1, we did not mark any present ptes as dirty: must | 
|  | * mark page dirty so shrink_page_list will preserve it. | 
|  | */ | 
|  | SetPageDirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | /* | 
|  | * Make sure that we aren't completely killing | 
|  | * interactive performance. | 
|  | */ | 
|  | cond_resched(); | 
|  | if (frontswap && pages_to_unuse > 0) { | 
|  | if (!--pages_to_unuse) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mmput(start_mm); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a successful try_to_unuse, if no swap is now in use, we know | 
|  | * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
|  | * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
|  | * added to the mmlist just after page_duplicate - before would be racy. | 
|  | */ | 
|  | static void drain_mmlist(void) | 
|  | { | 
|  | struct list_head *p, *next; | 
|  | unsigned int type; | 
|  |  | 
|  | for (type = 0; type < nr_swapfiles; type++) | 
|  | if (swap_info[type]->inuse_pages) | 
|  | return; | 
|  | spin_lock(&mmlist_lock); | 
|  | list_for_each_safe(p, next, &init_mm.mmlist) | 
|  | list_del_init(p); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
|  | * corresponds to page offset for the specified swap entry. | 
|  | * Note that the type of this function is sector_t, but it returns page offset | 
|  | * into the bdev, not sector offset. | 
|  | */ | 
|  | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) | 
|  | { | 
|  | struct swap_info_struct *sis; | 
|  | struct swap_extent *start_se; | 
|  | struct swap_extent *se; | 
|  | pgoff_t offset; | 
|  |  | 
|  | sis = swap_info[swp_type(entry)]; | 
|  | *bdev = sis->bdev; | 
|  |  | 
|  | offset = swp_offset(entry); | 
|  | start_se = sis->curr_swap_extent; | 
|  | se = start_se; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | struct list_head *lh; | 
|  |  | 
|  | if (se->start_page <= offset && | 
|  | offset < (se->start_page + se->nr_pages)) { | 
|  | return se->start_block + (offset - se->start_page); | 
|  | } | 
|  | lh = se->list.next; | 
|  | se = list_entry(lh, struct swap_extent, list); | 
|  | sis->curr_swap_extent = se; | 
|  | BUG_ON(se == start_se);		/* It *must* be present */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the page offset into bdev for the specified page's swap entry. | 
|  | */ | 
|  | sector_t map_swap_page(struct page *page, struct block_device **bdev) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | entry.val = page_private(page); | 
|  | return map_swap_entry(entry, bdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all of a swapdev's extent information | 
|  | */ | 
|  | static void destroy_swap_extents(struct swap_info_struct *sis) | 
|  | { | 
|  | while (!list_empty(&sis->first_swap_extent.list)) { | 
|  | struct swap_extent *se; | 
|  |  | 
|  | se = list_entry(sis->first_swap_extent.list.next, | 
|  | struct swap_extent, list); | 
|  | list_del(&se->list); | 
|  | kfree(se); | 
|  | } | 
|  |  | 
|  | if (sis->flags & SWP_FILE) { | 
|  | struct file *swap_file = sis->swap_file; | 
|  | struct address_space *mapping = swap_file->f_mapping; | 
|  |  | 
|  | sis->flags &= ~SWP_FILE; | 
|  | mapping->a_ops->swap_deactivate(swap_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a block range (and the corresponding page range) into this swapdev's | 
|  | * extent list.  The extent list is kept sorted in page order. | 
|  | * | 
|  | * This function rather assumes that it is called in ascending page order. | 
|  | */ | 
|  | int | 
|  | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
|  | unsigned long nr_pages, sector_t start_block) | 
|  | { | 
|  | struct swap_extent *se; | 
|  | struct swap_extent *new_se; | 
|  | struct list_head *lh; | 
|  |  | 
|  | if (start_page == 0) { | 
|  | se = &sis->first_swap_extent; | 
|  | sis->curr_swap_extent = se; | 
|  | se->start_page = 0; | 
|  | se->nr_pages = nr_pages; | 
|  | se->start_block = start_block; | 
|  | return 1; | 
|  | } else { | 
|  | lh = sis->first_swap_extent.list.prev;	/* Highest extent */ | 
|  | se = list_entry(lh, struct swap_extent, list); | 
|  | BUG_ON(se->start_page + se->nr_pages != start_page); | 
|  | if (se->start_block + se->nr_pages == start_block) { | 
|  | /* Merge it */ | 
|  | se->nr_pages += nr_pages; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No merge.  Insert a new extent, preserving ordering. | 
|  | */ | 
|  | new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
|  | if (new_se == NULL) | 
|  | return -ENOMEM; | 
|  | new_se->start_page = start_page; | 
|  | new_se->nr_pages = nr_pages; | 
|  | new_se->start_block = start_block; | 
|  |  | 
|  | list_add_tail(&new_se->list, &sis->first_swap_extent.list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A `swap extent' is a simple thing which maps a contiguous range of pages | 
|  | * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
|  | * is built at swapon time and is then used at swap_writepage/swap_readpage | 
|  | * time for locating where on disk a page belongs. | 
|  | * | 
|  | * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
|  | * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
|  | * swap files identically. | 
|  | * | 
|  | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
|  | * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
|  | * swapfiles are handled *identically* after swapon time. | 
|  | * | 
|  | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
|  | * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
|  | * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
|  | * requirements, they are simply tossed out - we will never use those blocks | 
|  | * for swapping. | 
|  | * | 
|  | * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This | 
|  | * prevents root from shooting her foot off by ftruncating an in-use swapfile, | 
|  | * which will scribble on the fs. | 
|  | * | 
|  | * The amount of disk space which a single swap extent represents varies. | 
|  | * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
|  | * extents in the list.  To avoid much list walking, we cache the previous | 
|  | * search location in `curr_swap_extent', and start new searches from there. | 
|  | * This is extremely effective.  The average number of iterations in | 
|  | * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
|  | */ | 
|  | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
|  | { | 
|  | struct file *swap_file = sis->swap_file; | 
|  | struct address_space *mapping = swap_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | int ret; | 
|  |  | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | ret = add_swap_extent(sis, 0, sis->max, 0); | 
|  | *span = sis->pages; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (mapping->a_ops->swap_activate) { | 
|  | ret = mapping->a_ops->swap_activate(sis, swap_file, span); | 
|  | if (!ret) { | 
|  | sis->flags |= SWP_FILE; | 
|  | ret = add_swap_extent(sis, 0, sis->max, 0); | 
|  | *span = sis->pages; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return generic_swapfile_activate(sis, swap_file, span); | 
|  | } | 
|  |  | 
|  | static void _enable_swap_info(struct swap_info_struct *p, int prio, | 
|  | unsigned char *swap_map, | 
|  | struct swap_cluster_info *cluster_info) | 
|  | { | 
|  | int i, prev; | 
|  |  | 
|  | if (prio >= 0) | 
|  | p->prio = prio; | 
|  | else | 
|  | p->prio = --least_priority; | 
|  | p->swap_map = swap_map; | 
|  | p->cluster_info = cluster_info; | 
|  | p->flags |= SWP_WRITEOK; | 
|  | atomic_long_add(p->pages, &nr_swap_pages); | 
|  | total_swap_pages += p->pages; | 
|  |  | 
|  | /* insert swap space into swap_list: */ | 
|  | prev = -1; | 
|  | for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { | 
|  | if (p->prio >= swap_info[i]->prio) | 
|  | break; | 
|  | prev = i; | 
|  | } | 
|  | p->next = i; | 
|  | if (prev < 0) | 
|  | swap_list.head = swap_list.next = p->type; | 
|  | else | 
|  | swap_info[prev]->next = p->type; | 
|  | } | 
|  |  | 
|  | static void enable_swap_info(struct swap_info_struct *p, int prio, | 
|  | unsigned char *swap_map, | 
|  | struct swap_cluster_info *cluster_info, | 
|  | unsigned long *frontswap_map) | 
|  | { | 
|  | frontswap_init(p->type, frontswap_map); | 
|  | spin_lock(&swap_lock); | 
|  | spin_lock(&p->lock); | 
|  | _enable_swap_info(p, prio, swap_map, cluster_info); | 
|  | spin_unlock(&p->lock); | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  |  | 
|  | static void reinsert_swap_info(struct swap_info_struct *p) | 
|  | { | 
|  | spin_lock(&swap_lock); | 
|  | spin_lock(&p->lock); | 
|  | _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); | 
|  | spin_unlock(&p->lock); | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
|  | { | 
|  | struct swap_info_struct *p = NULL; | 
|  | unsigned char *swap_map; | 
|  | struct swap_cluster_info *cluster_info; | 
|  | unsigned long *frontswap_map; | 
|  | struct file *swap_file, *victim; | 
|  | struct address_space *mapping; | 
|  | struct inode *inode; | 
|  | struct filename *pathname; | 
|  | int i, type, prev; | 
|  | int err; | 
|  | unsigned int old_block_size; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | BUG_ON(!current->mm); | 
|  |  | 
|  | pathname = getname(specialfile); | 
|  | if (IS_ERR(pathname)) | 
|  | return PTR_ERR(pathname); | 
|  |  | 
|  | victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); | 
|  | err = PTR_ERR(victim); | 
|  | if (IS_ERR(victim)) | 
|  | goto out; | 
|  |  | 
|  | mapping = victim->f_mapping; | 
|  | prev = -1; | 
|  | spin_lock(&swap_lock); | 
|  | for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { | 
|  | p = swap_info[type]; | 
|  | if (p->flags & SWP_WRITEOK) { | 
|  | if (p->swap_file->f_mapping == mapping) | 
|  | break; | 
|  | } | 
|  | prev = type; | 
|  | } | 
|  | if (type < 0) { | 
|  | err = -EINVAL; | 
|  | spin_unlock(&swap_lock); | 
|  | goto out_dput; | 
|  | } | 
|  | if (!security_vm_enough_memory_mm(current->mm, p->pages)) | 
|  | vm_unacct_memory(p->pages); | 
|  | else { | 
|  | err = -ENOMEM; | 
|  | spin_unlock(&swap_lock); | 
|  | goto out_dput; | 
|  | } | 
|  | if (prev < 0) | 
|  | swap_list.head = p->next; | 
|  | else | 
|  | swap_info[prev]->next = p->next; | 
|  | if (type == swap_list.next) { | 
|  | /* just pick something that's safe... */ | 
|  | swap_list.next = swap_list.head; | 
|  | } | 
|  | spin_lock(&p->lock); | 
|  | if (p->prio < 0) { | 
|  | for (i = p->next; i >= 0; i = swap_info[i]->next) | 
|  | swap_info[i]->prio = p->prio--; | 
|  | least_priority++; | 
|  | } | 
|  | atomic_long_sub(p->pages, &nr_swap_pages); | 
|  | total_swap_pages -= p->pages; | 
|  | p->flags &= ~SWP_WRITEOK; | 
|  | spin_unlock(&p->lock); | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | set_current_oom_origin(); | 
|  | err = try_to_unuse(type, false, 0); /* force all pages to be unused */ | 
|  | clear_current_oom_origin(); | 
|  |  | 
|  | if (err) { | 
|  | /* re-insert swap space back into swap_list */ | 
|  | reinsert_swap_info(p); | 
|  | goto out_dput; | 
|  | } | 
|  |  | 
|  | flush_work(&p->discard_work); | 
|  |  | 
|  | destroy_swap_extents(p); | 
|  | if (p->flags & SWP_CONTINUED) | 
|  | free_swap_count_continuations(p); | 
|  |  | 
|  | mutex_lock(&swapon_mutex); | 
|  | spin_lock(&swap_lock); | 
|  | spin_lock(&p->lock); | 
|  | drain_mmlist(); | 
|  |  | 
|  | /* wait for anyone still in scan_swap_map */ | 
|  | p->highest_bit = 0;		/* cuts scans short */ | 
|  | while (p->flags >= SWP_SCANNING) { | 
|  | spin_unlock(&p->lock); | 
|  | spin_unlock(&swap_lock); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | spin_lock(&swap_lock); | 
|  | spin_lock(&p->lock); | 
|  | } | 
|  |  | 
|  | swap_file = p->swap_file; | 
|  | old_block_size = p->old_block_size; | 
|  | p->swap_file = NULL; | 
|  | p->max = 0; | 
|  | swap_map = p->swap_map; | 
|  | p->swap_map = NULL; | 
|  | cluster_info = p->cluster_info; | 
|  | p->cluster_info = NULL; | 
|  | frontswap_map = frontswap_map_get(p); | 
|  | spin_unlock(&p->lock); | 
|  | spin_unlock(&swap_lock); | 
|  | frontswap_invalidate_area(type); | 
|  | frontswap_map_set(p, NULL); | 
|  | mutex_unlock(&swapon_mutex); | 
|  | free_percpu(p->percpu_cluster); | 
|  | p->percpu_cluster = NULL; | 
|  | vfree(swap_map); | 
|  | vfree(cluster_info); | 
|  | vfree(frontswap_map); | 
|  | /* Destroy swap account information */ | 
|  | swap_cgroup_swapoff(type); | 
|  |  | 
|  | inode = mapping->host; | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | struct block_device *bdev = I_BDEV(inode); | 
|  | set_blocksize(bdev, old_block_size); | 
|  | blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
|  | } else { | 
|  | mutex_lock(&inode->i_mutex); | 
|  | inode->i_flags &= ~S_SWAPFILE; | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } | 
|  | filp_close(swap_file, NULL); | 
|  |  | 
|  | /* | 
|  | * Clear the SWP_USED flag after all resources are freed so that swapon | 
|  | * can reuse this swap_info in alloc_swap_info() safely.  It is ok to | 
|  | * not hold p->lock after we cleared its SWP_WRITEOK. | 
|  | */ | 
|  | spin_lock(&swap_lock); | 
|  | p->flags = 0; | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | err = 0; | 
|  | atomic_inc(&proc_poll_event); | 
|  | wake_up_interruptible(&proc_poll_wait); | 
|  |  | 
|  | out_dput: | 
|  | filp_close(victim, NULL); | 
|  | out: | 
|  | putname(pathname); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static unsigned swaps_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | struct seq_file *seq = file->private_data; | 
|  |  | 
|  | poll_wait(file, &proc_poll_wait, wait); | 
|  |  | 
|  | if (seq->poll_event != atomic_read(&proc_poll_event)) { | 
|  | seq->poll_event = atomic_read(&proc_poll_event); | 
|  | return POLLIN | POLLRDNORM | POLLERR | POLLPRI; | 
|  | } | 
|  |  | 
|  | return POLLIN | POLLRDNORM; | 
|  | } | 
|  |  | 
|  | /* iterator */ | 
|  | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | int type; | 
|  | loff_t l = *pos; | 
|  |  | 
|  | mutex_lock(&swapon_mutex); | 
|  |  | 
|  | if (!l) | 
|  | return SEQ_START_TOKEN; | 
|  |  | 
|  | for (type = 0; type < nr_swapfiles; type++) { | 
|  | smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
|  | si = swap_info[type]; | 
|  | if (!(si->flags & SWP_USED) || !si->swap_map) | 
|  | continue; | 
|  | if (!--l) | 
|  | return si; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
|  | { | 
|  | struct swap_info_struct *si = v; | 
|  | int type; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) | 
|  | type = 0; | 
|  | else | 
|  | type = si->type + 1; | 
|  |  | 
|  | for (; type < nr_swapfiles; type++) { | 
|  | smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
|  | si = swap_info[type]; | 
|  | if (!(si->flags & SWP_USED) || !si->swap_map) | 
|  | continue; | 
|  | ++*pos; | 
|  | return si; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void swap_stop(struct seq_file *swap, void *v) | 
|  | { | 
|  | mutex_unlock(&swapon_mutex); | 
|  | } | 
|  |  | 
|  | static int swap_show(struct seq_file *swap, void *v) | 
|  | { | 
|  | struct swap_info_struct *si = v; | 
|  | struct file *file; | 
|  | int len; | 
|  |  | 
|  | if (si == SEQ_START_TOKEN) { | 
|  | seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | file = si->swap_file; | 
|  | len = seq_path(swap, &file->f_path, " \t\n\\"); | 
|  | seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
|  | len < 40 ? 40 - len : 1, " ", | 
|  | S_ISBLK(file_inode(file)->i_mode) ? | 
|  | "partition" : "file\t", | 
|  | si->pages << (PAGE_SHIFT - 10), | 
|  | si->inuse_pages << (PAGE_SHIFT - 10), | 
|  | si->prio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations swaps_op = { | 
|  | .start =	swap_start, | 
|  | .next =		swap_next, | 
|  | .stop =		swap_stop, | 
|  | .show =		swap_show | 
|  | }; | 
|  |  | 
|  | static int swaps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct seq_file *seq; | 
|  | int ret; | 
|  |  | 
|  | ret = seq_open(file, &swaps_op); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | seq = file->private_data; | 
|  | seq->poll_event = atomic_read(&proc_poll_event); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_swaps_operations = { | 
|  | .open		= swaps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | .poll		= swaps_poll, | 
|  | }; | 
|  |  | 
|  | static int __init procswaps_init(void) | 
|  | { | 
|  | proc_create("swaps", 0, NULL, &proc_swaps_operations); | 
|  | return 0; | 
|  | } | 
|  | __initcall(procswaps_init); | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | #ifdef MAX_SWAPFILES_CHECK | 
|  | static int __init max_swapfiles_check(void) | 
|  | { | 
|  | MAX_SWAPFILES_CHECK(); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(max_swapfiles_check); | 
|  | #endif | 
|  |  | 
|  | static struct swap_info_struct *alloc_swap_info(void) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | unsigned int type; | 
|  |  | 
|  | p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | for (type = 0; type < nr_swapfiles; type++) { | 
|  | if (!(swap_info[type]->flags & SWP_USED)) | 
|  | break; | 
|  | } | 
|  | if (type >= MAX_SWAPFILES) { | 
|  | spin_unlock(&swap_lock); | 
|  | kfree(p); | 
|  | return ERR_PTR(-EPERM); | 
|  | } | 
|  | if (type >= nr_swapfiles) { | 
|  | p->type = type; | 
|  | swap_info[type] = p; | 
|  | /* | 
|  | * Write swap_info[type] before nr_swapfiles, in case a | 
|  | * racing procfs swap_start() or swap_next() is reading them. | 
|  | * (We never shrink nr_swapfiles, we never free this entry.) | 
|  | */ | 
|  | smp_wmb(); | 
|  | nr_swapfiles++; | 
|  | } else { | 
|  | kfree(p); | 
|  | p = swap_info[type]; | 
|  | /* | 
|  | * Do not memset this entry: a racing procfs swap_next() | 
|  | * would be relying on p->type to remain valid. | 
|  | */ | 
|  | } | 
|  | INIT_LIST_HEAD(&p->first_swap_extent.list); | 
|  | p->flags = SWP_USED; | 
|  | p->next = -1; | 
|  | spin_unlock(&swap_lock); | 
|  | spin_lock_init(&p->lock); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | p->bdev = bdgrab(I_BDEV(inode)); | 
|  | error = blkdev_get(p->bdev, | 
|  | FMODE_READ | FMODE_WRITE | FMODE_EXCL, | 
|  | sys_swapon); | 
|  | if (error < 0) { | 
|  | p->bdev = NULL; | 
|  | return -EINVAL; | 
|  | } | 
|  | p->old_block_size = block_size(p->bdev); | 
|  | error = set_blocksize(p->bdev, PAGE_SIZE); | 
|  | if (error < 0) | 
|  | return error; | 
|  | p->flags |= SWP_BLKDEV; | 
|  | } else if (S_ISREG(inode->i_mode)) { | 
|  | p->bdev = inode->i_sb->s_bdev; | 
|  | mutex_lock(&inode->i_mutex); | 
|  | if (IS_SWAPFILE(inode)) | 
|  | return -EBUSY; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long read_swap_header(struct swap_info_struct *p, | 
|  | union swap_header *swap_header, | 
|  | struct inode *inode) | 
|  | { | 
|  | int i; | 
|  | unsigned long maxpages; | 
|  | unsigned long swapfilepages; | 
|  | unsigned long last_page; | 
|  |  | 
|  | if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
|  | pr_err("Unable to find swap-space signature\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* swap partition endianess hack... */ | 
|  | if (swab32(swap_header->info.version) == 1) { | 
|  | swab32s(&swap_header->info.version); | 
|  | swab32s(&swap_header->info.last_page); | 
|  | swab32s(&swap_header->info.nr_badpages); | 
|  | for (i = 0; i < swap_header->info.nr_badpages; i++) | 
|  | swab32s(&swap_header->info.badpages[i]); | 
|  | } | 
|  | /* Check the swap header's sub-version */ | 
|  | if (swap_header->info.version != 1) { | 
|  | pr_warn("Unable to handle swap header version %d\n", | 
|  | swap_header->info.version); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p->lowest_bit  = 1; | 
|  | p->cluster_next = 1; | 
|  | p->cluster_nr = 0; | 
|  |  | 
|  | /* | 
|  | * Find out how many pages are allowed for a single swap | 
|  | * device. There are two limiting factors: 1) the number | 
|  | * of bits for the swap offset in the swp_entry_t type, and | 
|  | * 2) the number of bits in the swap pte as defined by the | 
|  | * different architectures. In order to find the | 
|  | * largest possible bit mask, a swap entry with swap type 0 | 
|  | * and swap offset ~0UL is created, encoded to a swap pte, | 
|  | * decoded to a swp_entry_t again, and finally the swap | 
|  | * offset is extracted. This will mask all the bits from | 
|  | * the initial ~0UL mask that can't be encoded in either | 
|  | * the swp_entry_t or the architecture definition of a | 
|  | * swap pte. | 
|  | */ | 
|  | maxpages = swp_offset(pte_to_swp_entry( | 
|  | swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
|  | last_page = swap_header->info.last_page; | 
|  | if (last_page > maxpages) { | 
|  | pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", | 
|  | maxpages << (PAGE_SHIFT - 10), | 
|  | last_page << (PAGE_SHIFT - 10)); | 
|  | } | 
|  | if (maxpages > last_page) { | 
|  | maxpages = last_page + 1; | 
|  | /* p->max is an unsigned int: don't overflow it */ | 
|  | if ((unsigned int)maxpages == 0) | 
|  | maxpages = UINT_MAX; | 
|  | } | 
|  | p->highest_bit = maxpages - 1; | 
|  |  | 
|  | if (!maxpages) | 
|  | return 0; | 
|  | swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
|  | if (swapfilepages && maxpages > swapfilepages) { | 
|  | pr_warn("Swap area shorter than signature indicates\n"); | 
|  | return 0; | 
|  | } | 
|  | if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
|  | return 0; | 
|  | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
|  | return 0; | 
|  |  | 
|  | return maxpages; | 
|  | } | 
|  |  | 
|  | static int setup_swap_map_and_extents(struct swap_info_struct *p, | 
|  | union swap_header *swap_header, | 
|  | unsigned char *swap_map, | 
|  | struct swap_cluster_info *cluster_info, | 
|  | unsigned long maxpages, | 
|  | sector_t *span) | 
|  | { | 
|  | int i; | 
|  | unsigned int nr_good_pages; | 
|  | int nr_extents; | 
|  | unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
|  | unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; | 
|  |  | 
|  | nr_good_pages = maxpages - 1;	/* omit header page */ | 
|  |  | 
|  | cluster_set_null(&p->free_cluster_head); | 
|  | cluster_set_null(&p->free_cluster_tail); | 
|  | cluster_set_null(&p->discard_cluster_head); | 
|  | cluster_set_null(&p->discard_cluster_tail); | 
|  |  | 
|  | for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
|  | unsigned int page_nr = swap_header->info.badpages[i]; | 
|  | if (page_nr == 0 || page_nr > swap_header->info.last_page) | 
|  | return -EINVAL; | 
|  | if (page_nr < maxpages) { | 
|  | swap_map[page_nr] = SWAP_MAP_BAD; | 
|  | nr_good_pages--; | 
|  | /* | 
|  | * Haven't marked the cluster free yet, no list | 
|  | * operation involved | 
|  | */ | 
|  | inc_cluster_info_page(p, cluster_info, page_nr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Haven't marked the cluster free yet, no list operation involved */ | 
|  | for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) | 
|  | inc_cluster_info_page(p, cluster_info, i); | 
|  |  | 
|  | if (nr_good_pages) { | 
|  | swap_map[0] = SWAP_MAP_BAD; | 
|  | /* | 
|  | * Not mark the cluster free yet, no list | 
|  | * operation involved | 
|  | */ | 
|  | inc_cluster_info_page(p, cluster_info, 0); | 
|  | p->max = maxpages; | 
|  | p->pages = nr_good_pages; | 
|  | nr_extents = setup_swap_extents(p, span); | 
|  | if (nr_extents < 0) | 
|  | return nr_extents; | 
|  | nr_good_pages = p->pages; | 
|  | } | 
|  | if (!nr_good_pages) { | 
|  | pr_warn("Empty swap-file\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!cluster_info) | 
|  | return nr_extents; | 
|  |  | 
|  | for (i = 0; i < nr_clusters; i++) { | 
|  | if (!cluster_count(&cluster_info[idx])) { | 
|  | cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); | 
|  | if (cluster_is_null(&p->free_cluster_head)) { | 
|  | cluster_set_next_flag(&p->free_cluster_head, | 
|  | idx, 0); | 
|  | cluster_set_next_flag(&p->free_cluster_tail, | 
|  | idx, 0); | 
|  | } else { | 
|  | unsigned int tail; | 
|  |  | 
|  | tail = cluster_next(&p->free_cluster_tail); | 
|  | cluster_set_next(&cluster_info[tail], idx); | 
|  | cluster_set_next_flag(&p->free_cluster_tail, | 
|  | idx, 0); | 
|  | } | 
|  | } | 
|  | idx++; | 
|  | if (idx == nr_clusters) | 
|  | idx = 0; | 
|  | } | 
|  | return nr_extents; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper to sys_swapon determining if a given swap | 
|  | * backing device queue supports DISCARD operations. | 
|  | */ | 
|  | static bool swap_discardable(struct swap_info_struct *si) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(si->bdev); | 
|  |  | 
|  | if (!q || !blk_queue_discard(q)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | struct filename *name; | 
|  | struct file *swap_file = NULL; | 
|  | struct address_space *mapping; | 
|  | int i; | 
|  | int prio; | 
|  | int error; | 
|  | union swap_header *swap_header; | 
|  | int nr_extents; | 
|  | sector_t span; | 
|  | unsigned long maxpages; | 
|  | unsigned char *swap_map = NULL; | 
|  | struct swap_cluster_info *cluster_info = NULL; | 
|  | unsigned long *frontswap_map = NULL; | 
|  | struct page *page = NULL; | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | if (swap_flags & ~SWAP_FLAGS_VALID) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | p = alloc_swap_info(); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | INIT_WORK(&p->discard_work, swap_discard_work); | 
|  |  | 
|  | name = getname(specialfile); | 
|  | if (IS_ERR(name)) { | 
|  | error = PTR_ERR(name); | 
|  | name = NULL; | 
|  | goto bad_swap; | 
|  | } | 
|  | swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); | 
|  | if (IS_ERR(swap_file)) { | 
|  | error = PTR_ERR(swap_file); | 
|  | swap_file = NULL; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | p->swap_file = swap_file; | 
|  | mapping = swap_file->f_mapping; | 
|  |  | 
|  | for (i = 0; i < nr_swapfiles; i++) { | 
|  | struct swap_info_struct *q = swap_info[i]; | 
|  |  | 
|  | if (q == p || !q->swap_file) | 
|  | continue; | 
|  | if (mapping == q->swap_file->f_mapping) { | 
|  | error = -EBUSY; | 
|  | goto bad_swap; | 
|  | } | 
|  | } | 
|  |  | 
|  | inode = mapping->host; | 
|  | /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ | 
|  | error = claim_swapfile(p, inode); | 
|  | if (unlikely(error)) | 
|  | goto bad_swap; | 
|  |  | 
|  | /* | 
|  | * Read the swap header. | 
|  | */ | 
|  | if (!mapping->a_ops->readpage) { | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  | page = read_mapping_page(mapping, 0, swap_file); | 
|  | if (IS_ERR(page)) { | 
|  | error = PTR_ERR(page); | 
|  | goto bad_swap; | 
|  | } | 
|  | swap_header = kmap(page); | 
|  |  | 
|  | maxpages = read_swap_header(p, swap_header, inode); | 
|  | if (unlikely(!maxpages)) { | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | /* OK, set up the swap map and apply the bad block list */ | 
|  | swap_map = vzalloc(maxpages); | 
|  | if (!swap_map) { | 
|  | error = -ENOMEM; | 
|  | goto bad_swap; | 
|  | } | 
|  | if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { | 
|  | p->flags |= SWP_SOLIDSTATE; | 
|  | /* | 
|  | * select a random position to start with to help wear leveling | 
|  | * SSD | 
|  | */ | 
|  | p->cluster_next = 1 + (prandom_u32() % p->highest_bit); | 
|  |  | 
|  | cluster_info = vzalloc(DIV_ROUND_UP(maxpages, | 
|  | SWAPFILE_CLUSTER) * sizeof(*cluster_info)); | 
|  | if (!cluster_info) { | 
|  | error = -ENOMEM; | 
|  | goto bad_swap; | 
|  | } | 
|  | p->percpu_cluster = alloc_percpu(struct percpu_cluster); | 
|  | if (!p->percpu_cluster) { | 
|  | error = -ENOMEM; | 
|  | goto bad_swap; | 
|  | } | 
|  | for_each_possible_cpu(i) { | 
|  | struct percpu_cluster *cluster; | 
|  | cluster = per_cpu_ptr(p->percpu_cluster, i); | 
|  | cluster_set_null(&cluster->index); | 
|  | } | 
|  | } | 
|  |  | 
|  | error = swap_cgroup_swapon(p->type, maxpages); | 
|  | if (error) | 
|  | goto bad_swap; | 
|  |  | 
|  | nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, | 
|  | cluster_info, maxpages, &span); | 
|  | if (unlikely(nr_extents < 0)) { | 
|  | error = nr_extents; | 
|  | goto bad_swap; | 
|  | } | 
|  | /* frontswap enabled? set up bit-per-page map for frontswap */ | 
|  | if (frontswap_enabled) | 
|  | frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); | 
|  |  | 
|  | if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { | 
|  | /* | 
|  | * When discard is enabled for swap with no particular | 
|  | * policy flagged, we set all swap discard flags here in | 
|  | * order to sustain backward compatibility with older | 
|  | * swapon(8) releases. | 
|  | */ | 
|  | p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | | 
|  | SWP_PAGE_DISCARD); | 
|  |  | 
|  | /* | 
|  | * By flagging sys_swapon, a sysadmin can tell us to | 
|  | * either do single-time area discards only, or to just | 
|  | * perform discards for released swap page-clusters. | 
|  | * Now it's time to adjust the p->flags accordingly. | 
|  | */ | 
|  | if (swap_flags & SWAP_FLAG_DISCARD_ONCE) | 
|  | p->flags &= ~SWP_PAGE_DISCARD; | 
|  | else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) | 
|  | p->flags &= ~SWP_AREA_DISCARD; | 
|  |  | 
|  | /* issue a swapon-time discard if it's still required */ | 
|  | if (p->flags & SWP_AREA_DISCARD) { | 
|  | int err = discard_swap(p); | 
|  | if (unlikely(err)) | 
|  | pr_err("swapon: discard_swap(%p): %d\n", | 
|  | p, err); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(&swapon_mutex); | 
|  | prio = -1; | 
|  | if (swap_flags & SWAP_FLAG_PREFER) | 
|  | prio = | 
|  | (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | 
|  | enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); | 
|  |  | 
|  | pr_info("Adding %uk swap on %s.  " | 
|  | "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", | 
|  | p->pages<<(PAGE_SHIFT-10), name->name, p->prio, | 
|  | nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), | 
|  | (p->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
|  | (p->flags & SWP_DISCARDABLE) ? "D" : "", | 
|  | (p->flags & SWP_AREA_DISCARD) ? "s" : "", | 
|  | (p->flags & SWP_PAGE_DISCARD) ? "c" : "", | 
|  | (frontswap_map) ? "FS" : ""); | 
|  |  | 
|  | mutex_unlock(&swapon_mutex); | 
|  | atomic_inc(&proc_poll_event); | 
|  | wake_up_interruptible(&proc_poll_wait); | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | inode->i_flags |= S_SWAPFILE; | 
|  | error = 0; | 
|  | goto out; | 
|  | bad_swap: | 
|  | free_percpu(p->percpu_cluster); | 
|  | p->percpu_cluster = NULL; | 
|  | if (inode && S_ISBLK(inode->i_mode) && p->bdev) { | 
|  | set_blocksize(p->bdev, p->old_block_size); | 
|  | blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
|  | } | 
|  | destroy_swap_extents(p); | 
|  | swap_cgroup_swapoff(p->type); | 
|  | spin_lock(&swap_lock); | 
|  | p->swap_file = NULL; | 
|  | p->flags = 0; | 
|  | spin_unlock(&swap_lock); | 
|  | vfree(swap_map); | 
|  | vfree(cluster_info); | 
|  | if (swap_file) { | 
|  | if (inode && S_ISREG(inode->i_mode)) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | inode = NULL; | 
|  | } | 
|  | filp_close(swap_file, NULL); | 
|  | } | 
|  | out: | 
|  | if (page && !IS_ERR(page)) { | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | if (name) | 
|  | putname(name); | 
|  | if (inode && S_ISREG(inode->i_mode)) | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void si_swapinfo(struct sysinfo *val) | 
|  | { | 
|  | unsigned int type; | 
|  | unsigned long nr_to_be_unused = 0; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | for (type = 0; type < nr_swapfiles; type++) { | 
|  | struct swap_info_struct *si = swap_info[type]; | 
|  |  | 
|  | if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
|  | nr_to_be_unused += si->inuse_pages; | 
|  | } | 
|  | val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; | 
|  | val->totalswap = total_swap_pages + nr_to_be_unused; | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that a swap entry is valid and increment its swap map count. | 
|  | * | 
|  | * Returns error code in following case. | 
|  | * - success -> 0 | 
|  | * - swp_entry is invalid -> EINVAL | 
|  | * - swp_entry is migration entry -> EINVAL | 
|  | * - swap-cache reference is requested but there is already one. -> EEXIST | 
|  | * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
|  | * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
|  | */ | 
|  | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) | 
|  | { | 
|  | struct swap_info_struct *p; | 
|  | unsigned long offset, type; | 
|  | unsigned char count; | 
|  | unsigned char has_cache; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | if (non_swap_entry(entry)) | 
|  | goto out; | 
|  |  | 
|  | type = swp_type(entry); | 
|  | if (type >= nr_swapfiles) | 
|  | goto bad_file; | 
|  | p = swap_info[type]; | 
|  | offset = swp_offset(entry); | 
|  |  | 
|  | spin_lock(&p->lock); | 
|  | if (unlikely(offset >= p->max)) | 
|  | goto unlock_out; | 
|  |  | 
|  | count = p->swap_map[offset]; | 
|  |  | 
|  | /* | 
|  | * swapin_readahead() doesn't check if a swap entry is valid, so the | 
|  | * swap entry could be SWAP_MAP_BAD. Check here with lock held. | 
|  | */ | 
|  | if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { | 
|  | err = -ENOENT; | 
|  | goto unlock_out; | 
|  | } | 
|  |  | 
|  | has_cache = count & SWAP_HAS_CACHE; | 
|  | count &= ~SWAP_HAS_CACHE; | 
|  | err = 0; | 
|  |  | 
|  | if (usage == SWAP_HAS_CACHE) { | 
|  |  | 
|  | /* set SWAP_HAS_CACHE if there is no cache and entry is used */ | 
|  | if (!has_cache && count) | 
|  | has_cache = SWAP_HAS_CACHE; | 
|  | else if (has_cache)		/* someone else added cache */ | 
|  | err = -EEXIST; | 
|  | else				/* no users remaining */ | 
|  | err = -ENOENT; | 
|  |  | 
|  | } else if (count || has_cache) { | 
|  |  | 
|  | if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
|  | count += usage; | 
|  | else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) | 
|  | err = -EINVAL; | 
|  | else if (swap_count_continued(p, offset, count)) | 
|  | count = COUNT_CONTINUED; | 
|  | else | 
|  | err = -ENOMEM; | 
|  | } else | 
|  | err = -ENOENT;			/* unused swap entry */ | 
|  |  | 
|  | p->swap_map[offset] = count | has_cache; | 
|  |  | 
|  | unlock_out: | 
|  | spin_unlock(&p->lock); | 
|  | out: | 
|  | return err; | 
|  |  | 
|  | bad_file: | 
|  | pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
|  | * (in which case its reference count is never incremented). | 
|  | */ | 
|  | void swap_shmem_alloc(swp_entry_t entry) | 
|  | { | 
|  | __swap_duplicate(entry, SWAP_MAP_SHMEM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase reference count of swap entry by 1. | 
|  | * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
|  | * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
|  | * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
|  | * might occur if a page table entry has got corrupted. | 
|  | */ | 
|  | int swap_duplicate(swp_entry_t entry) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | while (!err && __swap_duplicate(entry, 1) == -ENOMEM) | 
|  | err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @entry: swap entry for which we allocate swap cache. | 
|  | * | 
|  | * Called when allocating swap cache for existing swap entry, | 
|  | * This can return error codes. Returns 0 at success. | 
|  | * -EBUSY means there is a swap cache. | 
|  | * Note: return code is different from swap_duplicate(). | 
|  | */ | 
|  | int swapcache_prepare(swp_entry_t entry) | 
|  | { | 
|  | return __swap_duplicate(entry, SWAP_HAS_CACHE); | 
|  | } | 
|  |  | 
|  | struct swap_info_struct *page_swap_info(struct page *page) | 
|  | { | 
|  | swp_entry_t swap = { .val = page_private(page) }; | 
|  | BUG_ON(!PageSwapCache(page)); | 
|  | return swap_info[swp_type(swap)]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * out-of-line __page_file_ methods to avoid include hell. | 
|  | */ | 
|  | struct address_space *__page_file_mapping(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | 
|  | return page_swap_info(page)->swap_file->f_mapping; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__page_file_mapping); | 
|  |  | 
|  | pgoff_t __page_file_index(struct page *page) | 
|  | { | 
|  | swp_entry_t swap = { .val = page_private(page) }; | 
|  | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | 
|  | return swp_offset(swap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__page_file_index); | 
|  |  | 
|  | /* | 
|  | * add_swap_count_continuation - called when a swap count is duplicated | 
|  | * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
|  | * page of the original vmalloc'ed swap_map, to hold the continuation count | 
|  | * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
|  | * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
|  | * | 
|  | * These continuation pages are seldom referenced: the common paths all work | 
|  | * on the original swap_map, only referring to a continuation page when the | 
|  | * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
|  | * | 
|  | * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
|  | * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
|  | * can be called after dropping locks. | 
|  | */ | 
|  | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | struct page *head; | 
|  | struct page *page; | 
|  | struct page *list_page; | 
|  | pgoff_t offset; | 
|  | unsigned char count; | 
|  |  | 
|  | /* | 
|  | * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
|  | * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
|  | */ | 
|  | page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
|  |  | 
|  | si = swap_info_get(entry); | 
|  | if (!si) { | 
|  | /* | 
|  | * An acceptable race has occurred since the failing | 
|  | * __swap_duplicate(): the swap entry has been freed, | 
|  | * perhaps even the whole swap_map cleared for swapoff. | 
|  | */ | 
|  | goto outer; | 
|  | } | 
|  |  | 
|  | offset = swp_offset(entry); | 
|  | count = si->swap_map[offset] & ~SWAP_HAS_CACHE; | 
|  |  | 
|  | if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
|  | /* | 
|  | * The higher the swap count, the more likely it is that tasks | 
|  | * will race to add swap count continuation: we need to avoid | 
|  | * over-provisioning. | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!page) { | 
|  | spin_unlock(&si->lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are fortunate that although vmalloc_to_page uses pte_offset_map, | 
|  | * no architecture is using highmem pages for kernel page tables: so it | 
|  | * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. | 
|  | */ | 
|  | head = vmalloc_to_page(si->swap_map + offset); | 
|  | offset &= ~PAGE_MASK; | 
|  |  | 
|  | /* | 
|  | * Page allocation does not initialize the page's lru field, | 
|  | * but it does always reset its private field. | 
|  | */ | 
|  | if (!page_private(head)) { | 
|  | BUG_ON(count & COUNT_CONTINUED); | 
|  | INIT_LIST_HEAD(&head->lru); | 
|  | set_page_private(head, SWP_CONTINUED); | 
|  | si->flags |= SWP_CONTINUED; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(list_page, &head->lru, lru) { | 
|  | unsigned char *map; | 
|  |  | 
|  | /* | 
|  | * If the previous map said no continuation, but we've found | 
|  | * a continuation page, free our allocation and use this one. | 
|  | */ | 
|  | if (!(count & COUNT_CONTINUED)) | 
|  | goto out; | 
|  |  | 
|  | map = kmap_atomic(list_page) + offset; | 
|  | count = *map; | 
|  | kunmap_atomic(map); | 
|  |  | 
|  | /* | 
|  | * If this continuation count now has some space in it, | 
|  | * free our allocation and use this one. | 
|  | */ | 
|  | if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | list_add_tail(&page->lru, &head->lru); | 
|  | page = NULL;			/* now it's attached, don't free it */ | 
|  | out: | 
|  | spin_unlock(&si->lock); | 
|  | outer: | 
|  | if (page) | 
|  | __free_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * swap_count_continued - when the original swap_map count is incremented | 
|  | * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
|  | * into, carry if so, or else fail until a new continuation page is allocated; | 
|  | * when the original swap_map count is decremented from 0 with continuation, | 
|  | * borrow from the continuation and report whether it still holds more. | 
|  | * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. | 
|  | */ | 
|  | static bool swap_count_continued(struct swap_info_struct *si, | 
|  | pgoff_t offset, unsigned char count) | 
|  | { | 
|  | struct page *head; | 
|  | struct page *page; | 
|  | unsigned char *map; | 
|  |  | 
|  | head = vmalloc_to_page(si->swap_map + offset); | 
|  | if (page_private(head) != SWP_CONTINUED) { | 
|  | BUG_ON(count & COUNT_CONTINUED); | 
|  | return false;		/* need to add count continuation */ | 
|  | } | 
|  |  | 
|  | offset &= ~PAGE_MASK; | 
|  | page = list_entry(head->lru.next, struct page, lru); | 
|  | map = kmap_atomic(page) + offset; | 
|  |  | 
|  | if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
|  | goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
|  |  | 
|  | if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
|  | /* | 
|  | * Think of how you add 1 to 999 | 
|  | */ | 
|  | while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.next, struct page, lru); | 
|  | BUG_ON(page == head); | 
|  | map = kmap_atomic(page) + offset; | 
|  | } | 
|  | if (*map == SWAP_CONT_MAX) { | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.next, struct page, lru); | 
|  | if (page == head) | 
|  | return false;	/* add count continuation */ | 
|  | map = kmap_atomic(page) + offset; | 
|  | init_map:		*map = 0;		/* we didn't zero the page */ | 
|  | } | 
|  | *map += 1; | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.prev, struct page, lru); | 
|  | while (page != head) { | 
|  | map = kmap_atomic(page) + offset; | 
|  | *map = COUNT_CONTINUED; | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.prev, struct page, lru); | 
|  | } | 
|  | return true;			/* incremented */ | 
|  |  | 
|  | } else {				/* decrementing */ | 
|  | /* | 
|  | * Think of how you subtract 1 from 1000 | 
|  | */ | 
|  | BUG_ON(count != COUNT_CONTINUED); | 
|  | while (*map == COUNT_CONTINUED) { | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.next, struct page, lru); | 
|  | BUG_ON(page == head); | 
|  | map = kmap_atomic(page) + offset; | 
|  | } | 
|  | BUG_ON(*map == 0); | 
|  | *map -= 1; | 
|  | if (*map == 0) | 
|  | count = 0; | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.prev, struct page, lru); | 
|  | while (page != head) { | 
|  | map = kmap_atomic(page) + offset; | 
|  | *map = SWAP_CONT_MAX | count; | 
|  | count = COUNT_CONTINUED; | 
|  | kunmap_atomic(map); | 
|  | page = list_entry(page->lru.prev, struct page, lru); | 
|  | } | 
|  | return count == COUNT_CONTINUED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free_swap_count_continuations - swapoff free all the continuation pages | 
|  | * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
|  | */ | 
|  | static void free_swap_count_continuations(struct swap_info_struct *si) | 
|  | { | 
|  | pgoff_t offset; | 
|  |  | 
|  | for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
|  | struct page *head; | 
|  | head = vmalloc_to_page(si->swap_map + offset); | 
|  | if (page_private(head)) { | 
|  | struct list_head *this, *next; | 
|  | list_for_each_safe(this, next, &head->lru) { | 
|  | struct page *page; | 
|  | page = list_entry(this, struct page, lru); | 
|  | list_del(this); | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  | } | 
|  | } |