blob: 71018a4fdf15150b30bcbaa91fde96aa5da2011a [file] [log] [blame]
/* $Date: 2005/10/24 23:18:13 $ $RCSfile: mv88e1xxx.c,v $ $Revision: 1.49 $ */
#include "common.h"
#include "mv88e1xxx.h"
#include "cphy.h"
#include "elmer0.h"
/* MV88E1XXX MDI crossover register values */
#define CROSSOVER_MDI 0
#define CROSSOVER_MDIX 1
#define CROSSOVER_AUTO 3
#define INTR_ENABLE_MASK 0x6CA0
/*
* Set the bits given by 'bitval' in PHY register 'reg'.
*/
static void mdio_set_bit(struct cphy *cphy, int reg, u32 bitval)
{
u32 val;
(void) simple_mdio_read(cphy, reg, &val);
(void) simple_mdio_write(cphy, reg, val | bitval);
}
/*
* Clear the bits given by 'bitval' in PHY register 'reg'.
*/
static void mdio_clear_bit(struct cphy *cphy, int reg, u32 bitval)
{
u32 val;
(void) simple_mdio_read(cphy, reg, &val);
(void) simple_mdio_write(cphy, reg, val & ~bitval);
}
/*
* NAME: phy_reset
*
* DESC: Reset the given PHY's port. NOTE: This is not a global
* chip reset.
*
* PARAMS: cphy - Pointer to PHY instance data.
*
* RETURN: 0 - Successful reset.
* -1 - Timeout.
*/
static int mv88e1xxx_reset(struct cphy *cphy, int wait)
{
u32 ctl;
int time_out = 1000;
mdio_set_bit(cphy, MII_BMCR, BMCR_RESET);
do {
(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
ctl &= BMCR_RESET;
if (ctl)
udelay(1);
} while (ctl && --time_out);
return ctl ? -1 : 0;
}
static int mv88e1xxx_interrupt_enable(struct cphy *cphy)
{
/* Enable PHY interrupts. */
(void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER,
INTR_ENABLE_MASK);
/* Enable Marvell interrupts through Elmer0. */
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter))
elmer |= ELMER0_GP_BIT2 | ELMER0_GP_BIT3 | ELMER0_GP_BIT4;
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int mv88e1xxx_interrupt_disable(struct cphy *cphy)
{
/* Disable all phy interrupts. */
(void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER, 0);
/* Disable Marvell interrupts through Elmer0. */
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer &= ~ELMER0_GP_BIT1;
if (is_T2(cphy->adapter))
elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int mv88e1xxx_interrupt_clear(struct cphy *cphy)
{
u32 elmer;
/* Clear PHY interrupts by reading the register. */
(void) simple_mdio_read(cphy,
MV88E1XXX_INTERRUPT_STATUS_REGISTER, &elmer);
/* Clear Marvell interrupts through Elmer0. */
if (t1_is_asic(cphy->adapter)) {
t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter))
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
}
return 0;
}
/*
* Set the PHY speed and duplex. This also disables auto-negotiation, except
* for 1Gb/s, where auto-negotiation is mandatory.
*/
static int mv88e1xxx_set_speed_duplex(struct cphy *phy, int speed, int duplex)
{
u32 ctl;
(void) simple_mdio_read(phy, MII_BMCR, &ctl);
if (speed >= 0) {
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
if (speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (speed == SPEED_1000)
ctl |= BMCR_SPEED1000;
}
if (duplex >= 0) {
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
if (duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
}
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */
ctl |= BMCR_ANENABLE;
(void) simple_mdio_write(phy, MII_BMCR, ctl);
return 0;
}
static int mv88e1xxx_crossover_set(struct cphy *cphy, int crossover)
{
u32 data32;
(void) simple_mdio_read(cphy,
MV88E1XXX_SPECIFIC_CNTRL_REGISTER, &data32);
data32 &= ~V_PSCR_MDI_XOVER_MODE(M_PSCR_MDI_XOVER_MODE);
data32 |= V_PSCR_MDI_XOVER_MODE(crossover);
(void) simple_mdio_write(cphy,
MV88E1XXX_SPECIFIC_CNTRL_REGISTER, data32);
return 0;
}
static int mv88e1xxx_autoneg_enable(struct cphy *cphy)
{
u32 ctl;
(void) mv88e1xxx_crossover_set(cphy, CROSSOVER_AUTO);
(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
/* restart autoneg for change to take effect */
ctl |= BMCR_ANENABLE | BMCR_ANRESTART;
(void) simple_mdio_write(cphy, MII_BMCR, ctl);
return 0;
}
static int mv88e1xxx_autoneg_disable(struct cphy *cphy)
{
u32 ctl;
/*
* Crossover *must* be set to manual in order to disable auto-neg.
* The Alaska FAQs document highlights this point.
*/
(void) mv88e1xxx_crossover_set(cphy, CROSSOVER_MDI);
/*
* Must include autoneg reset when disabling auto-neg. This
* is described in the Alaska FAQ document.
*/
(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
ctl &= ~BMCR_ANENABLE;
(void) simple_mdio_write(cphy, MII_BMCR, ctl | BMCR_ANRESTART);
return 0;
}
static int mv88e1xxx_autoneg_restart(struct cphy *cphy)
{
mdio_set_bit(cphy, MII_BMCR, BMCR_ANRESTART);
return 0;
}
static int mv88e1xxx_advertise(struct cphy *phy, unsigned int advertise_map)
{
u32 val = 0;
if (advertise_map &
(ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) {
(void) simple_mdio_read(phy, MII_GBCR, &val);
val &= ~(GBCR_ADV_1000HALF | GBCR_ADV_1000FULL);
if (advertise_map & ADVERTISED_1000baseT_Half)
val |= GBCR_ADV_1000HALF;
if (advertise_map & ADVERTISED_1000baseT_Full)
val |= GBCR_ADV_1000FULL;
}
(void) simple_mdio_write(phy, MII_GBCR, val);
val = 1;
if (advertise_map & ADVERTISED_10baseT_Half)
val |= ADVERTISE_10HALF;
if (advertise_map & ADVERTISED_10baseT_Full)
val |= ADVERTISE_10FULL;
if (advertise_map & ADVERTISED_100baseT_Half)
val |= ADVERTISE_100HALF;
if (advertise_map & ADVERTISED_100baseT_Full)
val |= ADVERTISE_100FULL;
if (advertise_map & ADVERTISED_PAUSE)
val |= ADVERTISE_PAUSE;
if (advertise_map & ADVERTISED_ASYM_PAUSE)
val |= ADVERTISE_PAUSE_ASYM;
(void) simple_mdio_write(phy, MII_ADVERTISE, val);
return 0;
}
static int mv88e1xxx_set_loopback(struct cphy *cphy, int on)
{
if (on)
mdio_set_bit(cphy, MII_BMCR, BMCR_LOOPBACK);
else
mdio_clear_bit(cphy, MII_BMCR, BMCR_LOOPBACK);
return 0;
}
static int mv88e1xxx_get_link_status(struct cphy *cphy, int *link_ok,
int *speed, int *duplex, int *fc)
{
u32 status;
int sp = -1, dplx = -1, pause = 0;
(void) simple_mdio_read(cphy,
MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status);
if ((status & V_PSSR_STATUS_RESOLVED) != 0) {
if (status & V_PSSR_RX_PAUSE)
pause |= PAUSE_RX;
if (status & V_PSSR_TX_PAUSE)
pause |= PAUSE_TX;
dplx = (status & V_PSSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
sp = G_PSSR_SPEED(status);
if (sp == 0)
sp = SPEED_10;
else if (sp == 1)
sp = SPEED_100;
else
sp = SPEED_1000;
}
if (link_ok)
*link_ok = (status & V_PSSR_LINK) != 0;
if (speed)
*speed = sp;
if (duplex)
*duplex = dplx;
if (fc)
*fc = pause;
return 0;
}
static int mv88e1xxx_downshift_set(struct cphy *cphy, int downshift_enable)
{
u32 val;
(void) simple_mdio_read(cphy,
MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, &val);
/*
* Set the downshift counter to 2 so we try to establish Gb link
* twice before downshifting.
*/
val &= ~(V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(M_DOWNSHIFT_CNT));
if (downshift_enable)
val |= V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(2);
(void) simple_mdio_write(cphy,
MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, val);
return 0;
}
static int mv88e1xxx_interrupt_handler(struct cphy *cphy)
{
int cphy_cause = 0;
u32 status;
/*
* Loop until cause reads zero. Need to handle bouncing interrupts.
*/
while (1) {
u32 cause;
(void) simple_mdio_read(cphy,
MV88E1XXX_INTERRUPT_STATUS_REGISTER,
&cause);
cause &= INTR_ENABLE_MASK;
if (!cause)
break;
if (cause & MV88E1XXX_INTR_LINK_CHNG) {
(void) simple_mdio_read(cphy,
MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status);
if (status & MV88E1XXX_INTR_LINK_CHNG)
cphy->state |= PHY_LINK_UP;
else {
cphy->state &= ~PHY_LINK_UP;
if (cphy->state & PHY_AUTONEG_EN)
cphy->state &= ~PHY_AUTONEG_RDY;
cphy_cause |= cphy_cause_link_change;
}
}
if (cause & MV88E1XXX_INTR_AUTONEG_DONE)
cphy->state |= PHY_AUTONEG_RDY;
if ((cphy->state & (PHY_LINK_UP | PHY_AUTONEG_RDY)) ==
(PHY_LINK_UP | PHY_AUTONEG_RDY))
cphy_cause |= cphy_cause_link_change;
}
return cphy_cause;
}
static void mv88e1xxx_destroy(struct cphy *cphy)
{
kfree(cphy);
}
static struct cphy_ops mv88e1xxx_ops = {
.destroy = mv88e1xxx_destroy,
.reset = mv88e1xxx_reset,
.interrupt_enable = mv88e1xxx_interrupt_enable,
.interrupt_disable = mv88e1xxx_interrupt_disable,
.interrupt_clear = mv88e1xxx_interrupt_clear,
.interrupt_handler = mv88e1xxx_interrupt_handler,
.autoneg_enable = mv88e1xxx_autoneg_enable,
.autoneg_disable = mv88e1xxx_autoneg_disable,
.autoneg_restart = mv88e1xxx_autoneg_restart,
.advertise = mv88e1xxx_advertise,
.set_loopback = mv88e1xxx_set_loopback,
.set_speed_duplex = mv88e1xxx_set_speed_duplex,
.get_link_status = mv88e1xxx_get_link_status,
};
static struct cphy *mv88e1xxx_phy_create(struct net_device *dev, int phy_addr,
const struct mdio_ops *mdio_ops)
{
struct adapter *adapter = netdev_priv(dev);
struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
if (!cphy)
return NULL;
cphy_init(cphy, dev, phy_addr, &mv88e1xxx_ops, mdio_ops);
/* Configure particular PHY's to run in a different mode. */
if ((board_info(adapter)->caps & SUPPORTED_TP) &&
board_info(adapter)->chip_phy == CHBT_PHY_88E1111) {
/*
* Configure the PHY transmitter as class A to reduce EMI.
*/
(void) simple_mdio_write(cphy,
MV88E1XXX_EXTENDED_ADDR_REGISTER, 0xB);
(void) simple_mdio_write(cphy,
MV88E1XXX_EXTENDED_REGISTER, 0x8004);
}
(void) mv88e1xxx_downshift_set(cphy, 1); /* Enable downshift */
/* LED */
if (is_T2(adapter)) {
(void) simple_mdio_write(cphy,
MV88E1XXX_LED_CONTROL_REGISTER, 0x1);
}
return cphy;
}
static int mv88e1xxx_phy_reset(adapter_t* adapter)
{
return 0;
}
const struct gphy t1_mv88e1xxx_ops = {
.create = mv88e1xxx_phy_create,
.reset = mv88e1xxx_phy_reset
};