| /* |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * vineetg: Jan 1011 |
| * -sched_clock( ) no longer jiffies based. Uses the same clocksource |
| * as gtod |
| * |
| * Rajeshwarr/Vineetg: Mar 2008 |
| * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code) |
| * for arch independent gettimeofday() |
| * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers |
| * |
| * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c |
| */ |
| |
| /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1 |
| * Each can programmed to go from @count to @limit and optionally |
| * interrupt when that happens. |
| * A write to Control Register clears the Interrupt |
| * |
| * We've designated TIMER0 for events (clockevents) |
| * while TIMER1 for free running (clocksource) |
| * |
| * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1 |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/timex.h> |
| #include <linux/profile.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <asm/irq.h> |
| #include <asm/arcregs.h> |
| #include <asm/clk.h> |
| #include <asm/mach_desc.h> |
| |
| /* Timer related Aux registers */ |
| #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */ |
| #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */ |
| #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */ |
| #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */ |
| #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */ |
| #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */ |
| |
| #define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */ |
| #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */ |
| |
| #define ARC_TIMER_MAX 0xFFFFFFFF |
| |
| /********** Clock Source Device *********/ |
| |
| #ifdef CONFIG_ARC_HAS_RTSC |
| |
| int arc_counter_setup(void) |
| { |
| /* |
| * For SMP this needs to be 0. However Kconfig glue doesn't |
| * enable this option for SMP configs |
| */ |
| return 1; |
| } |
| |
| static cycle_t arc_counter_read(struct clocksource *cs) |
| { |
| unsigned long flags; |
| union { |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| struct { u32 high, low; }; |
| #else |
| struct { u32 low, high; }; |
| #endif |
| cycle_t full; |
| } stamp; |
| |
| flags = arch_local_irq_save(); |
| |
| __asm__ __volatile( |
| " .extCoreRegister tsch, 58, r, cannot_shortcut \n" |
| " rtsc %0, 0 \n" |
| " mov %1, 0 \n" |
| : "=r" (stamp.low), "=r" (stamp.high)); |
| |
| arch_local_irq_restore(flags); |
| |
| return stamp.full; |
| } |
| |
| static struct clocksource arc_counter = { |
| .name = "ARC RTSC", |
| .rating = 300, |
| .read = arc_counter_read, |
| .mask = CLOCKSOURCE_MASK(32), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| #else /* !CONFIG_ARC_HAS_RTSC */ |
| |
| static bool is_usable_as_clocksource(void) |
| { |
| #ifdef CONFIG_SMP |
| return 0; |
| #else |
| return 1; |
| #endif |
| } |
| |
| /* |
| * set 32bit TIMER1 to keep counting monotonically and wraparound |
| */ |
| int arc_counter_setup(void) |
| { |
| write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX); |
| write_aux_reg(ARC_REG_TIMER1_CNT, 0); |
| write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH); |
| |
| return is_usable_as_clocksource(); |
| } |
| |
| static cycle_t arc_counter_read(struct clocksource *cs) |
| { |
| return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT); |
| } |
| |
| static struct clocksource arc_counter = { |
| .name = "ARC Timer1", |
| .rating = 300, |
| .read = arc_counter_read, |
| .mask = CLOCKSOURCE_MASK(32), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| #endif |
| |
| /********** Clock Event Device *********/ |
| |
| /* |
| * Arm the timer to interrupt after @limit cycles |
| * The distinction for oneshot/periodic is done in arc_event_timer_ack() below |
| */ |
| static void arc_timer_event_setup(unsigned int limit) |
| { |
| write_aux_reg(ARC_REG_TIMER0_LIMIT, limit); |
| write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ |
| |
| write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH); |
| } |
| |
| /* |
| * Acknowledge the interrupt (oneshot) and optionally re-arm it (periodic) |
| * -Any write to CTRL Reg will ack the intr (NH bit: Count when not halted) |
| * -Rearming is done by setting the IE bit |
| * |
| * Small optimisation: Normal code would have been |
| * if (irq_reenable) |
| * CTRL_REG = (IE | NH); |
| * else |
| * CTRL_REG = NH; |
| * However since IE is BIT0 we can fold the branch |
| */ |
| static void arc_timer_event_ack(unsigned int irq_reenable) |
| { |
| write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH); |
| } |
| |
| static int arc_clkevent_set_next_event(unsigned long delta, |
| struct clock_event_device *dev) |
| { |
| arc_timer_event_setup(delta); |
| return 0; |
| } |
| |
| static void arc_clkevent_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *dev) |
| { |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| arc_timer_event_setup(arc_get_core_freq() / HZ); |
| break; |
| case CLOCK_EVT_MODE_ONESHOT: |
| break; |
| default: |
| break; |
| } |
| |
| return; |
| } |
| |
| static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { |
| .name = "ARC Timer0", |
| .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, |
| .mode = CLOCK_EVT_MODE_UNUSED, |
| .rating = 300, |
| .irq = TIMER0_IRQ, /* hardwired, no need for resources */ |
| .set_next_event = arc_clkevent_set_next_event, |
| .set_mode = arc_clkevent_set_mode, |
| }; |
| |
| static irqreturn_t timer_irq_handler(int irq, void *dev_id) |
| { |
| struct clock_event_device *clk = this_cpu_ptr(&arc_clockevent_device); |
| |
| arc_timer_event_ack(clk->mode == CLOCK_EVT_MODE_PERIODIC); |
| clk->event_handler(clk); |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction arc_timer_irq = { |
| .name = "Timer0 (clock-evt-dev)", |
| .flags = IRQF_TIMER | IRQF_PERCPU, |
| .handler = timer_irq_handler, |
| }; |
| |
| /* |
| * Setup the local event timer for @cpu |
| * N.B. weak so that some exotic ARC SoCs can completely override it |
| */ |
| void __weak arc_local_timer_setup(unsigned int cpu) |
| { |
| struct clock_event_device *clk = &per_cpu(arc_clockevent_device, cpu); |
| |
| clk->cpumask = cpumask_of(cpu); |
| clockevents_config_and_register(clk, arc_get_core_freq(), |
| 0, ARC_TIMER_MAX); |
| |
| /* |
| * setup the per-cpu timer IRQ handler - for all cpus |
| * For non boot CPU explicitly unmask at intc |
| * setup_irq() -> .. -> irq_startup() already does this on boot-cpu |
| */ |
| if (!cpu) |
| setup_irq(TIMER0_IRQ, &arc_timer_irq); |
| else |
| arch_unmask_irq(TIMER0_IRQ); |
| } |
| |
| /* |
| * Called from start_kernel() - boot CPU only |
| * |
| * -Sets up h/w timers as applicable on boot cpu |
| * -Also sets up any global state needed for timer subsystem: |
| * - for "counting" timer, registers a clocksource, usable across CPUs |
| * (provided that underlying counter h/w is synchronized across cores) |
| * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic) |
| */ |
| void __init time_init(void) |
| { |
| /* |
| * sets up the timekeeping free-flowing counter which also returns |
| * whether the counter is usable as clocksource |
| */ |
| if (arc_counter_setup()) |
| /* |
| * CLK upto 4.29 GHz can be safely represented in 32 bits |
| * because Max 32 bit number is 4,294,967,295 |
| */ |
| clocksource_register_hz(&arc_counter, arc_get_core_freq()); |
| |
| /* sets up the periodic event timer */ |
| arc_local_timer_setup(smp_processor_id()); |
| |
| if (machine_desc->init_time) |
| machine_desc->init_time(); |
| } |