blob: b7f77318ed08f64bb68e961d781c8d7deb8208b5 [file] [log] [blame]
/* linux/drivers/iommu/exynos_iommu.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
#define DEBUG
#endif
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/iommu.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/pm_domain.h>
#include <linux/notifier.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
/* We does not consider super section mapping (16MB) */
#define SECT_ORDER 20
#define LPAGE_ORDER 16
#define SPAGE_ORDER 12
#define SECT_SIZE (1 << SECT_ORDER)
#define LPAGE_SIZE (1 << LPAGE_ORDER)
#define SPAGE_SIZE (1 << SPAGE_ORDER)
#define SECT_MASK (~(SECT_SIZE - 1))
#define LPAGE_MASK (~(LPAGE_SIZE - 1))
#define SPAGE_MASK (~(SPAGE_SIZE - 1))
#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
((*(sent) & 3) == 1))
#define lv1ent_section(sent) ((*(sent) & 3) == 2)
#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
#define lv2ent_small(pent) ((*(pent) & 2) == 2)
#define lv2ent_large(pent) ((*(pent) & 3) == 1)
#define section_phys(sent) (*(sent) & SECT_MASK)
#define section_offs(iova) ((sysmmu_iova_t)(iova) & 0xFFFFF)
#define lpage_phys(pent) (*(pent) & LPAGE_MASK)
#define lpage_offs(iova) ((sysmmu_iova_t)(iova) & 0xFFFF)
#define spage_phys(pent) (*(pent) & SPAGE_MASK)
#define spage_offs(iova) ((sysmmu_iova_t)(iova) & 0xFFF)
#define lv1ent_offset(iova) ((sysmmu_iova_t)(iova) >> SECT_ORDER)
#define lv2ent_offset(iova) (((sysmmu_iova_t)(iova) & 0xFF000) >> SPAGE_ORDER)
#define NUM_LV1ENTRIES 4096
#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
#define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
#define mk_lv1ent_sect(pa) ((pa) | 2)
#define mk_lv1ent_page(pa) ((pa) | 1)
#define mk_lv2ent_lpage(pa) ((pa) | 1)
#define mk_lv2ent_spage(pa) ((pa) | 2)
#define CTRL_ENABLE 0x5
#define CTRL_BLOCK 0x7
#define CTRL_DISABLE 0x0
#define CFG_LRU 0x1
#define CFG_QOS(n) ((n & 0xF) << 7)
#define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
#define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
#define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
#define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
#define REG_MMU_CTRL 0x000
#define REG_MMU_CFG 0x004
#define REG_MMU_STATUS 0x008
#define REG_MMU_FLUSH 0x00C
#define REG_MMU_FLUSH_ENTRY 0x010
#define REG_PT_BASE_ADDR 0x014
#define REG_INT_STATUS 0x018
#define REG_INT_CLEAR 0x01C
#define REG_PAGE_FAULT_ADDR 0x024
#define REG_AW_FAULT_ADDR 0x028
#define REG_AR_FAULT_ADDR 0x02C
#define REG_DEFAULT_SLAVE_ADDR 0x030
#define REG_MMU_VERSION 0x034
#define MMU_MAJ_VER(val) ((val) >> 7)
#define MMU_MIN_VER(val) ((val) & 0x7F)
#define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
#define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
#define REG_PB0_SADDR 0x04C
#define REG_PB0_EADDR 0x050
#define REG_PB1_SADDR 0x054
#define REG_PB1_EADDR 0x058
#define __clk_gate_ctrl(data, clk, en) do { \
if (data->clk) \
clk_##en##able(data->clk); \
} while (0)
#define __sysmmu_clk_enable(data) __clk_gate_ctrl(data, clk, en)
#define __sysmmu_clk_disable(data) __clk_gate_ctrl(data, clk, dis)
#define __master_clk_enable(data) __clk_gate_ctrl(data, clk_master, en)
#define __master_clk_disable(data) __clk_gate_ctrl(data, clk_master, dis)
#define has_sysmmu(dev) (dev->archdata.iommu != NULL)
#define for_each_sysmmu_list(dev, list_data) \
list_for_each_entry(list_data, \
&((struct exynos_iommu_owner *)dev->archdata.iommu)->mmu_list, \
entry)
typedef u32 sysmmu_iova_t;
typedef u32 sysmmu_pte_t;
static struct kmem_cache *lv2table_kmem_cache;
static sysmmu_pte_t *zero_lv2_table;
#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
{
return pgtable + lv1ent_offset(iova);
}
static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
{
return (sysmmu_pte_t *)phys_to_virt(
lv2table_base(sent)) + lv2ent_offset(iova);
}
enum exynos_sysmmu_inttype {
SYSMMU_PAGEFAULT,
SYSMMU_AR_MULTIHIT,
SYSMMU_AW_MULTIHIT,
SYSMMU_BUSERROR,
SYSMMU_AR_SECURITY,
SYSMMU_AR_ACCESS,
SYSMMU_AW_SECURITY,
SYSMMU_AW_PROTECTION, /* 7 */
SYSMMU_FAULT_UNKNOWN,
SYSMMU_FAULTS_NUM
};
static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
REG_PAGE_FAULT_ADDR,
REG_AR_FAULT_ADDR,
REG_AW_FAULT_ADDR,
REG_DEFAULT_SLAVE_ADDR,
REG_AR_FAULT_ADDR,
REG_AR_FAULT_ADDR,
REG_AW_FAULT_ADDR,
REG_AW_FAULT_ADDR
};
static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
"PAGE FAULT",
"AR MULTI-HIT FAULT",
"AW MULTI-HIT FAULT",
"BUS ERROR",
"AR SECURITY PROTECTION FAULT",
"AR ACCESS PROTECTION FAULT",
"AW SECURITY PROTECTION FAULT",
"AW ACCESS PROTECTION FAULT",
"UNKNOWN FAULT"
};
/* attached to dev.archdata.iommu of the master device */
struct exynos_iommu_owner {
struct list_head client; /* entry of exynos_iommu_domain.clients */
struct device *dev;
struct list_head mmu_list; /* list of sysmmu_list_data.entry */
struct iommu_domain *domain;
void *vmm_data; /* IO virtual memory manager's data */
spinlock_t lock; /* Lock to preserve consistency of System MMU */
};
struct exynos_iommu_domain {
struct list_head clients; /* list of sysmmu_drvdata.node */
sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
short *lv2entcnt; /* free lv2 entry counter for each section */
spinlock_t lock; /* lock for this structure */
spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
};
struct sysmmu_list_data {
struct list_head entry; /* entry of exynos_iommu_owner.mmu_list */
struct device *sysmmu;
};
struct sysmmu_drvdata {
struct device *sysmmu; /* System MMU's device descriptor */
struct device *master; /* Owner of system MMU */
void __iomem *sfrbase;
struct clk *clk;
struct clk *clk_master;
int activations;
spinlock_t lock;
struct iommu_domain *domain;
bool runtime_active;
bool suspended;
phys_addr_t pgtable;
};
static bool set_sysmmu_active(struct sysmmu_drvdata *data)
{
/* return true if the System MMU was not active previously
and it needs to be initialized */
return ++data->activations == 1;
}
static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
{
/* return true if the System MMU is needed to be disabled */
BUG_ON(data->activations < 1);
return --data->activations == 0;
}
static bool is_sysmmu_active(struct sysmmu_drvdata *data)
{
return data->activations > 0;
}
static void sysmmu_unblock(void __iomem *sfrbase)
{
__raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
}
static unsigned int __raw_sysmmu_version(struct sysmmu_drvdata *data)
{
return MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
}
static bool sysmmu_block(void __iomem *sfrbase)
{
int i = 120;
__raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
--i;
if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
sysmmu_unblock(sfrbase);
return false;
}
return true;
}
static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
{
__raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
}
static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
sysmmu_iova_t iova, unsigned int num_inv)
{
unsigned int i;
for (i = 0; i < num_inv; i++) {
__raw_writel((iova & SPAGE_MASK) | 1,
sfrbase + REG_MMU_FLUSH_ENTRY);
iova += SPAGE_SIZE;
}
}
static void __sysmmu_set_ptbase(void __iomem *sfrbase,
phys_addr_t pgd)
{
__raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
__sysmmu_tlb_invalidate(sfrbase);
}
static void show_fault_information(const char *name,
enum exynos_sysmmu_inttype itype,
phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
{
sysmmu_pte_t *ent;
if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
itype = SYSMMU_FAULT_UNKNOWN;
pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);
ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
pr_err("\tLv1 entry: %#x\n", *ent);
if (lv1ent_page(ent)) {
ent = page_entry(ent, fault_addr);
pr_err("\t Lv2 entry: %#x\n", *ent);
}
}
static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
{
/* SYSMMU is in blocked when interrupt occurred. */
struct sysmmu_drvdata *data = dev_id;
enum exynos_sysmmu_inttype itype;
sysmmu_iova_t addr = -1;
int ret = -ENOSYS;
WARN_ON(!is_sysmmu_active(data));
spin_lock(&data->lock);
__master_clk_enable(data);
itype = (enum exynos_sysmmu_inttype)
__ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
itype = SYSMMU_FAULT_UNKNOWN;
else
addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);
if (itype == SYSMMU_FAULT_UNKNOWN) {
pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
__func__, dev_name(data->sysmmu));
pr_err("%s: Please check if IRQ is correctly configured.\n",
__func__);
BUG();
} else {
unsigned int base =
__raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
show_fault_information(dev_name(data->sysmmu),
itype, base, addr);
if (data->domain)
ret = report_iommu_fault(data->domain,
data->master, addr, itype);
}
/* fault is not recovered by fault handler */
BUG_ON(ret != 0);
__raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
sysmmu_unblock(data->sfrbase);
__master_clk_disable(data);
spin_unlock(&data->lock);
return IRQ_HANDLED;
}
static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
{
clk_enable(data->clk_master);
__raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
__raw_writel(0, data->sfrbase + REG_MMU_CFG);
__sysmmu_clk_disable(data);
__master_clk_disable(data);
}
static bool __sysmmu_disable(struct sysmmu_drvdata *data)
{
bool disabled;
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
disabled = set_sysmmu_inactive(data);
if (disabled) {
data->pgtable = 0;
data->domain = NULL;
if (data->runtime_active)
__sysmmu_disable_nocount(data);
dev_dbg(data->sysmmu, "Disabled\n");
} else {
dev_dbg(data->sysmmu, "%d times left to disable\n",
data->activations);
}
spin_unlock_irqrestore(&data->lock, flags);
return disabled;
}
static void __sysmmu_init_config(struct sysmmu_drvdata *data)
{
unsigned int cfg = CFG_LRU | CFG_QOS(15);
unsigned int ver;
ver = __raw_sysmmu_version(data);
if (MMU_MAJ_VER(ver) == 3) {
if (MMU_MIN_VER(ver) >= 2) {
cfg |= CFG_FLPDCACHE;
if (MMU_MIN_VER(ver) == 3) {
cfg |= CFG_ACGEN;
cfg &= ~CFG_LRU;
} else {
cfg |= CFG_SYSSEL;
}
}
}
__raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
}
static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
{
__master_clk_enable(data);
__sysmmu_clk_enable(data);
__raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
__sysmmu_init_config(data);
__sysmmu_set_ptbase(data->sfrbase, data->pgtable);
__raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
__master_clk_disable(data);
}
static int __sysmmu_enable(struct sysmmu_drvdata *data,
phys_addr_t pgtable, struct iommu_domain *domain)
{
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (set_sysmmu_active(data)) {
data->pgtable = pgtable;
data->domain = domain;
if (data->runtime_active)
__sysmmu_enable_nocount(data);
dev_dbg(data->sysmmu, "Enabled\n");
} else {
ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
dev_dbg(data->sysmmu, "already enabled\n");
}
if (WARN_ON(ret < 0))
set_sysmmu_inactive(data); /* decrement count */
spin_unlock_irqrestore(&data->lock, flags);
return ret;
}
/* __exynos_sysmmu_enable: Enables System MMU
*
* returns -error if an error occurred and System MMU is not enabled,
* 0 if the System MMU has been just enabled and 1 if System MMU was already
* enabled before.
*/
static int __exynos_sysmmu_enable(struct device *dev, phys_addr_t pgtable,
struct iommu_domain *domain)
{
int ret = 0;
unsigned long flags;
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
BUG_ON(!has_sysmmu(dev));
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
data->master = dev;
ret = __sysmmu_enable(data, pgtable, domain);
if (ret < 0) {
struct sysmmu_list_data *iter;
for_each_sysmmu_list(dev, iter) {
if (iter->sysmmu == list->sysmmu)
break;
data = dev_get_drvdata(iter->sysmmu);
__sysmmu_disable(data);
data->master = NULL;
}
break;
}
}
spin_unlock_irqrestore(&owner->lock, flags);
return ret;
}
int exynos_sysmmu_enable(struct device *dev, phys_addr_t pgtable)
{
BUG_ON(!memblock_is_memory(pgtable));
return __exynos_sysmmu_enable(dev, pgtable, NULL);
}
static bool exynos_sysmmu_disable(struct device *dev)
{
unsigned long flags;
bool disabled = true;
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
BUG_ON(!has_sysmmu(dev));
spin_lock_irqsave(&owner->lock, flags);
/* Every call to __sysmmu_disable() must return same result */
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
disabled = __sysmmu_disable(data);
if (disabled)
data->master = NULL;
}
spin_unlock_irqrestore(&owner->lock, flags);
return disabled;
}
static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
sysmmu_iova_t iova)
{
if (__raw_sysmmu_version(data) == MAKE_MMU_VER(3, 3))
__raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
}
static void sysmmu_tlb_invalidate_flpdcache(struct device *dev,
sysmmu_iova_t iova)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
unsigned long flags;
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
__master_clk_enable(data);
spin_lock_irqsave(&data->lock, flags);
if (is_sysmmu_active(data) && data->runtime_active)
__sysmmu_tlb_invalidate_flpdcache(data, iova);
spin_unlock_irqrestore(&data->lock, flags);
__master_clk_disable(data);
}
}
static void sysmmu_tlb_invalidate_entry(struct device *dev, sysmmu_iova_t iova,
size_t size)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
unsigned long flags;
struct sysmmu_list_data *list;
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
spin_lock(&data->lock);
if (is_sysmmu_active(data) && data->runtime_active) {
unsigned int num_inv = 1;
__master_clk_enable(data);
/*
* L2TLB invalidation required
* 4KB page: 1 invalidation
* 64KB page: 16 invalidation
* 1MB page: 64 invalidation
* because it is set-associative TLB
* with 8-way and 64 sets.
* 1MB page can be cached in one of all sets.
* 64KB page can be one of 16 consecutive sets.
*/
if (MMU_MAJ_VER(__raw_sysmmu_version(data)) == 2)
num_inv = min_t(unsigned int,
size / PAGE_SIZE, 64);
if (sysmmu_block(data->sfrbase)) {
__sysmmu_tlb_invalidate_entry(data->sfrbase,
iova, num_inv);
sysmmu_unblock(data->sfrbase);
}
__master_clk_disable(data);
} else {
dev_dbg(dev,
"disabled. Skipping TLB invalidation @ %#x\n",
iova);
}
spin_unlock(&data->lock);
}
spin_unlock_irqrestore(&owner->lock, flags);
}
void exynos_sysmmu_tlb_invalidate(struct device *dev)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
unsigned long flags;
struct sysmmu_list_data *list;
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
spin_lock(&data->lock);
if (is_sysmmu_active(data) && data->runtime_active) {
__master_clk_enable(data);
if (sysmmu_block(data->sfrbase)) {
__sysmmu_tlb_invalidate(data->sfrbase);
sysmmu_unblock(data->sfrbase);
}
__master_clk_disable(data);
} else {
dev_dbg(dev, "disabled. Skipping TLB invalidation\n");
}
spin_unlock(&data->lock);
}
spin_unlock_irqrestore(&owner->lock, flags);
}
static int __init __sysmmu_init_clock(struct device *sysmmu,
struct sysmmu_drvdata *data)
{
int ret;
data->clk = devm_clk_get(sysmmu, "sysmmu");
if (IS_ERR(data->clk)) {
if (PTR_ERR(data->clk) == -ENOENT) {
dev_info(sysmmu, "No gating clock found.\n");
data->clk = NULL;
return 0;
}
dev_err(sysmmu, "Failed get sysmmu clock\n");
return PTR_ERR(data->clk);
}
ret = clk_prepare(data->clk);
if (ret) {
dev_err(sysmmu, "Failed to prepare sysmmu clock\n");
return ret;
}
data->clk_master = devm_clk_get(sysmmu, "master");
if (PTR_ERR(data->clk_master) == -ENOENT) {
data->clk_master = NULL;
return 0;
} else if (IS_ERR(data->clk_master)) {
dev_err(sysmmu, "Failed to get master clock\n");
clk_unprepare(data->clk);
return PTR_ERR(data->clk_master);
}
ret = clk_prepare(data->clk_master);
if (ret) {
clk_unprepare(data->clk);
dev_err(sysmmu, "Failed to prepare master clock\n");
return ret;
}
return 0;
}
static int __init __sysmmu_init_master(struct device *dev)
{
int ret;
int i = 0;
struct device_node *node;
while ((node = of_parse_phandle(dev->of_node, "mmu-masters", i++))) {
struct platform_device *master = of_find_device_by_node(node);
struct exynos_iommu_owner *owner;
struct sysmmu_list_data *list_data;
if (!master) {
dev_err(dev, "%s: mmu-master '%s' not found\n",
__func__, node->name);
ret = -EINVAL;
goto err;
}
owner = master->dev.archdata.iommu;
if (!owner) {
owner = devm_kzalloc(dev, sizeof(*owner), GFP_KERNEL);
if (!owner) {
dev_err(dev,
"%s: Failed to allocate owner structure\n",
__func__);
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&owner->mmu_list);
INIT_LIST_HEAD(&owner->client);
owner->dev = &master->dev;
spin_lock_init(&owner->lock);
master->dev.archdata.iommu = owner;
}
list_data = devm_kzalloc(dev, sizeof(*list_data), GFP_KERNEL);
if (!list_data) {
dev_err(dev,
"%s: Failed to allocate sysmmu_list_data\n",
__func__);
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&list_data->entry);
list_data->sysmmu = dev;
/*
* System MMUs are attached in the order of the presence
* in device tree
*/
list_add_tail(&list_data->entry, &owner->mmu_list);
}
return 0;
err:
while ((node = of_parse_phandle(dev->of_node, "mmu-masters", i++))) {
struct platform_device *master = of_find_device_by_node(node);
struct exynos_iommu_owner *owner;
struct sysmmu_list_data *list_data;
if (!master)
continue;
owner = master->dev.archdata.iommu;
if (!owner)
continue;
for_each_sysmmu_list(owner->dev, list_data) {
if (list_data->sysmmu == dev) {
list_del(&list_data->entry);
kfree(list_data);
break;
}
}
}
return ret;
}
static int __init __sysmmu_setup(struct device *sysmmu,
struct sysmmu_drvdata *data)
{
int ret;
ret = __sysmmu_init_clock(sysmmu, data);
if (ret) {
dev_err(sysmmu, "Failed to initialize gating clocks\n");
return ret;
}
ret = __sysmmu_init_master(sysmmu);
if (ret) {
if (data->clk)
clk_unprepare(data->clk);
if (data->clk_master)
clk_unprepare(data->clk_master);
dev_err(sysmmu, "Failed to initialize master device.\n");
}
return ret;
}
static int __init exynos_sysmmu_probe(struct platform_device *pdev)
{
int irq, ret;
struct device *dev = &pdev->dev;
struct sysmmu_drvdata *data;
struct resource *res;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data) {
dev_err(dev, "Not enough memory for driver data\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "Unable to find IOMEM region\n");
return -ENOENT;
}
data->sfrbase = devm_request_and_ioremap(dev, res);
if (!data->sfrbase) {
dev_err(dev, "Unable to map IOMEM @ PA: %pa\n", &res->start);
return -EBUSY;
}
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(dev, "Unable to find IRQ resource\n");
return irq;
}
ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
dev_name(dev), data);
if (ret) {
dev_err(dev, "Unabled to register handler of irq %d\n", irq);
return ret;
}
pm_runtime_enable(dev);
ret = __sysmmu_setup(dev, data);
if (!ret) {
data->runtime_active = !pm_runtime_enabled(dev);
data->sysmmu = dev;
spin_lock_init(&data->lock);
platform_set_drvdata(pdev, data);
}
return ret;
}
#ifdef CONFIG_OF
static struct of_device_id sysmmu_of_match[] __initconst = {
{ .compatible = "samsung,sysmmu-v1", },
{ .compatible = "samsung,sysmmu-v2", },
{ .compatible = "samsung,sysmmu-v3.1", },
{ .compatible = "samsung,sysmmu-v3.2", },
{ .compatible = "samsung,sysmmu-v3.3", },
{ },
};
#endif
static struct platform_driver exynos_sysmmu_driver __refdata = {
.probe = exynos_sysmmu_probe,
.driver = {
.owner = THIS_MODULE,
.name = "exynos-sysmmu",
.of_match_table = of_match_ptr(sysmmu_of_match),
}
};
static inline void pgtable_flush(void *vastart, void *vaend)
{
dmac_flush_range(vastart, vaend);
outer_flush_range(virt_to_phys(vastart),
virt_to_phys(vaend));
}
static int exynos_iommu_domain_init(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv;
int i;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
if (!priv->pgtable)
goto err_pgtable;
priv->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
if (!priv->lv2entcnt)
goto err_counter;
/* w/a of System MMU v3.3 to prevent caching 1MiB mapping */
for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
priv->pgtable[i + 0] = ZERO_LV2LINK;
priv->pgtable[i + 1] = ZERO_LV2LINK;
priv->pgtable[i + 2] = ZERO_LV2LINK;
priv->pgtable[i + 3] = ZERO_LV2LINK;
priv->pgtable[i + 4] = ZERO_LV2LINK;
priv->pgtable[i + 5] = ZERO_LV2LINK;
priv->pgtable[i + 6] = ZERO_LV2LINK;
priv->pgtable[i + 7] = ZERO_LV2LINK;
}
pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES);
spin_lock_init(&priv->lock);
spin_lock_init(&priv->pgtablelock);
INIT_LIST_HEAD(&priv->clients);
domain->geometry.aperture_start = 0;
domain->geometry.aperture_end = ~0UL;
domain->geometry.force_aperture = true;
domain->priv = priv;
return 0;
err_counter:
free_pages((unsigned long)priv->pgtable, 2);
err_pgtable:
kfree(priv);
return -ENOMEM;
}
static void exynos_iommu_domain_destroy(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv = domain->priv;
struct exynos_iommu_owner *owner;
unsigned long flags;
int i;
WARN_ON(!list_empty(&priv->clients));
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client) {
while (!exynos_sysmmu_disable(owner->dev))
; /* until System MMU is actually disabled */
}
while (!list_empty(&priv->clients))
list_del_init(priv->clients.next);
spin_unlock_irqrestore(&priv->lock, flags);
for (i = 0; i < NUM_LV1ENTRIES; i++)
if (lv1ent_page(priv->pgtable + i))
kmem_cache_free(lv2table_kmem_cache,
phys_to_virt(lv2table_base(priv->pgtable + i)));
free_pages((unsigned long)priv->pgtable, 2);
free_pages((unsigned long)priv->lv2entcnt, 1);
kfree(domain->priv);
domain->priv = NULL;
}
static int exynos_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct exynos_iommu_domain *priv = domain->priv;
unsigned long flags;
phys_addr_t pgtable = virt_to_phys(priv->pgtable);
int ret;
spin_lock_irqsave(&priv->lock, flags);
ret = __exynos_sysmmu_enable(dev, pgtable, domain);
if (ret == 0) {
list_add_tail(&owner->client, &priv->clients);
owner->domain = domain;
}
spin_unlock_irqrestore(&priv->lock, flags);
if (ret < 0) {
dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
__func__, &pgtable);
return ret;
}
dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
__func__, &pgtable, (ret == 0) ? "" : ", again");
return ret;
}
static void exynos_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct exynos_iommu_owner *owner;
struct exynos_iommu_domain *priv = domain->priv;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client) {
if (owner == dev->archdata.iommu) {
if (exynos_sysmmu_disable(dev)) {
list_del_init(&owner->client);
owner->domain = NULL;
}
break;
}
}
spin_unlock_irqrestore(&priv->lock, flags);
if (owner == dev->archdata.iommu) {
phys_addr_t pgtable = virt_to_phys(priv->pgtable);
dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
__func__, &pgtable);
} else {
dev_err(dev, "%s: No IOMMU is attached\n", __func__);
}
}
static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
{
if (lv1ent_section(sent)) {
WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
return ERR_PTR(-EADDRINUSE);
}
if (lv1ent_fault(sent)) {
sysmmu_pte_t *pent;
bool need_flush_flpd_cache = lv1ent_zero(sent);
pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
if (!pent)
return ERR_PTR(-ENOMEM);
*sent = mk_lv1ent_page(virt_to_phys(pent));
*pgcounter = NUM_LV2ENTRIES;
pgtable_flush(pent, pent + NUM_LV2ENTRIES);
pgtable_flush(sent, sent + 1);
/*
* If pretched SLPD is a fault SLPD in zero_l2_table, FLPD cache
* may caches the address of zero_l2_table. This function
* replaces the zero_l2_table with new L2 page table to write
* valid mappings.
* Accessing the valid area may cause page fault since FLPD
* cache may still caches zero_l2_table for the valid area
* instead of new L2 page table that have the mapping
* information of the valid area
* Thus any replacement of zero_l2_table with other valid L2
* page table must involve FLPD cache invalidation for System
* MMU v3.3.
* FLPD cache invalidation is performed with TLB invalidation
* by VPN without blocking. It is safe to invalidate TLB without
* blocking because the target address of TLB invalidation is
* not currently mapped.
*/
if (need_flush_flpd_cache) {
struct exynos_iommu_owner *owner;
spin_lock(&priv->lock);
list_for_each_entry(owner, &priv->clients, client)
sysmmu_tlb_invalidate_flpdcache(
owner->dev, iova);
spin_unlock(&priv->lock);
}
}
return page_entry(sent, iova);
}
static int lv1set_section(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, sysmmu_iova_t iova,
phys_addr_t paddr, short *pgcnt)
{
if (lv1ent_section(sent)) {
WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
iova);
return -EADDRINUSE;
}
if (lv1ent_page(sent)) {
if (*pgcnt != NUM_LV2ENTRIES) {
WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
iova);
return -EADDRINUSE;
}
kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
*pgcnt = 0;
}
spin_lock(&priv->lock);
if (lv1ent_page_zero(sent)) {
struct exynos_iommu_owner *owner;
/*
* Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
* entry by speculative prefetch of SLPD which has no mapping.
*/
list_for_each_entry(owner, &priv->clients, client)
sysmmu_tlb_invalidate_flpdcache(owner->dev, iova);
}
spin_unlock(&priv->lock);
*sent = mk_lv1ent_sect(paddr);
pgtable_flush(sent, sent + 1);
return 0;
}
static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
short *pgcnt)
{
if (size == SPAGE_SIZE) {
if (WARN_ON(!lv2ent_fault(pent)))
return -EADDRINUSE;
*pent = mk_lv2ent_spage(paddr);
pgtable_flush(pent, pent + 1);
*pgcnt -= 1;
} else { /* size == LPAGE_SIZE */
int i;
for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
if (WARN_ON(!lv2ent_fault(pent))) {
if (i > 0)
memset(pent - i, 0, sizeof(*pent) * i);
return -EADDRINUSE;
}
*pent = mk_lv2ent_lpage(paddr);
}
pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
*pgcnt -= SPAGES_PER_LPAGE;
}
return 0;
}
/*
* *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
*
* System MMU v3.x have an advanced logic to improve address translation
* performance with caching more page table entries by a page table walk.
* However, the logic has a bug that caching fault page table entries and System
* MMU reports page fault if the cached fault entry is hit even though the fault
* entry is updated to a valid entry after the entry is cached.
* To prevent caching fault page table entries which may be updated to valid
* entries later, the virtual memory manager should care about the w/a about the
* problem. The followings describe w/a.
*
* Any two consecutive I/O virtual address regions must have a hole of 128KiB
* in maximum to prevent misbehavior of System MMU 3.x. (w/a of h/w bug)
*
* Precisely, any start address of I/O virtual region must be aligned by
* the following sizes for System MMU v3.1 and v3.2.
* System MMU v3.1: 128KiB
* System MMU v3.2: 256KiB
*
* Because System MMU v3.3 caches page table entries more aggressively, it needs
* more w/a.
* - Any two consecutive I/O virtual regions must be have a hole of larger size
* than or equal size to 128KiB.
* - Start address of an I/O virtual region must be aligned by 128KiB.
*/
static int exynos_iommu_map(struct iommu_domain *domain, unsigned long l_iova,
phys_addr_t paddr, size_t size, int prot)
{
struct exynos_iommu_domain *priv = domain->priv;
sysmmu_pte_t *entry;
sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
unsigned long flags;
int ret = -ENOMEM;
BUG_ON(priv->pgtable == NULL);
spin_lock_irqsave(&priv->pgtablelock, flags);
entry = section_entry(priv->pgtable, iova);
if (size == SECT_SIZE) {
ret = lv1set_section(priv, entry, iova, paddr,
&priv->lv2entcnt[lv1ent_offset(iova)]);
} else {
sysmmu_pte_t *pent;
pent = alloc_lv2entry(priv, entry, iova,
&priv->lv2entcnt[lv1ent_offset(iova)]);
if (IS_ERR(pent))
ret = PTR_ERR(pent);
else
ret = lv2set_page(pent, paddr, size,
&priv->lv2entcnt[lv1ent_offset(iova)]);
}
if (ret)
pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
__func__, ret, size, iova);
spin_unlock_irqrestore(&priv->pgtablelock, flags);
return ret;
}
static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *priv,
sysmmu_iova_t iova, size_t size)
{
struct exynos_iommu_owner *owner;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client)
sysmmu_tlb_invalidate_entry(owner->dev, iova, size);
spin_unlock_irqrestore(&priv->lock, flags);
}
static size_t exynos_iommu_unmap(struct iommu_domain *domain,
unsigned long l_iova, size_t size)
{
struct exynos_iommu_domain *priv = domain->priv;
sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
sysmmu_pte_t *ent;
size_t err_pgsize;
unsigned long flags;
BUG_ON(priv->pgtable == NULL);
spin_lock_irqsave(&priv->pgtablelock, flags);
ent = section_entry(priv->pgtable, iova);
if (lv1ent_section(ent)) {
if (WARN_ON(size < SECT_SIZE)) {
err_pgsize = SECT_SIZE;
goto err;
}
*ent = ZERO_LV2LINK; /* w/a for h/w bug in Sysmem MMU v3.3 */
pgtable_flush(ent, ent + 1);
size = SECT_SIZE;
goto done;
}
if (unlikely(lv1ent_fault(ent))) {
if (size > SECT_SIZE)
size = SECT_SIZE;
goto done;
}
/* lv1ent_page(sent) == true here */
ent = page_entry(ent, iova);
if (unlikely(lv2ent_fault(ent))) {
size = SPAGE_SIZE;
goto done;
}
if (lv2ent_small(ent)) {
*ent = 0;
size = SPAGE_SIZE;
pgtable_flush(ent, ent + 1);
priv->lv2entcnt[lv1ent_offset(iova)] += 1;
goto done;
}
/* lv1ent_large(ent) == true here */
if (WARN_ON(size < LPAGE_SIZE)) {
err_pgsize = LPAGE_SIZE;
goto err;
}
memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
pgtable_flush(ent, ent + SPAGES_PER_LPAGE);
size = LPAGE_SIZE;
priv->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
done:
spin_unlock_irqrestore(&priv->pgtablelock, flags);
exynos_iommu_tlb_invalidate_entry(priv, iova, size);
return size;
err:
spin_unlock_irqrestore(&priv->pgtablelock, flags);
pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
__func__, size, iova, err_pgsize);
return 0;
}
static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct exynos_iommu_domain *priv = domain->priv;
sysmmu_pte_t *entry;
unsigned long flags;
phys_addr_t phys = 0;
spin_lock_irqsave(&priv->pgtablelock, flags);
entry = section_entry(priv->pgtable, iova);
if (lv1ent_section(entry)) {
phys = section_phys(entry) + section_offs(iova);
} else if (lv1ent_page(entry)) {
entry = page_entry(entry, iova);
if (lv2ent_large(entry))
phys = lpage_phys(entry) + lpage_offs(iova);
else if (lv2ent_small(entry))
phys = spage_phys(entry) + spage_offs(iova);
}
spin_unlock_irqrestore(&priv->pgtablelock, flags);
return phys;
}
static int exynos_iommu_add_device(struct device *dev)
{
struct iommu_group *group;
int ret;
group = iommu_group_get(dev);
if (!group) {
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
return PTR_ERR(group);
}
}
ret = iommu_group_add_device(group, dev);
iommu_group_put(group);
return ret;
}
static void exynos_iommu_remove_device(struct device *dev)
{
iommu_group_remove_device(dev);
}
static struct iommu_ops exynos_iommu_ops = {
.domain_init = &exynos_iommu_domain_init,
.domain_destroy = &exynos_iommu_domain_destroy,
.attach_dev = &exynos_iommu_attach_device,
.detach_dev = &exynos_iommu_detach_device,
.map = &exynos_iommu_map,
.unmap = &exynos_iommu_unmap,
.iova_to_phys = &exynos_iommu_iova_to_phys,
.add_device = &exynos_iommu_add_device,
.remove_device = &exynos_iommu_remove_device,
.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
};
static int __init exynos_iommu_init(void)
{
int ret;
lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
if (!lv2table_kmem_cache) {
pr_err("%s: Failed to create kmem cache\n", __func__);
return -ENOMEM;
}
ret = platform_driver_register(&exynos_sysmmu_driver);
if (ret) {
pr_err("%s: Failed to register driver\n", __func__);
goto err_reg_driver;
}
zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
if (zero_lv2_table == NULL) {
pr_err("%s: Failed to allocate zero level2 page table\n",
__func__);
ret = -ENOMEM;
goto err_zero_lv2;
}
ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
if (ret) {
pr_err("%s: Failed to register exynos-iommu driver.\n",
__func__);
goto err_set_iommu;
}
return 0;
err_set_iommu:
kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
err_zero_lv2:
platform_driver_unregister(&exynos_sysmmu_driver);
err_reg_driver:
kmem_cache_destroy(lv2table_kmem_cache);
return ret;
}
subsys_initcall(exynos_iommu_init);
#ifdef CONFIG_PM_SLEEP
static int sysmmu_pm_genpd_suspend(struct device *dev)
{
struct sysmmu_list_data *list;
int ret;
ret = pm_generic_suspend(dev);
if (ret)
return ret;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (!data->suspended && is_sysmmu_active(data) &&
(!pm_runtime_enabled(dev) || data->runtime_active))
__sysmmu_disable_nocount(data);
data->suspended = true;
spin_unlock_irqrestore(&data->lock, flags);
}
return 0;
}
static int sysmmu_pm_genpd_resume(struct device *dev)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (data->suspended && is_sysmmu_active(data) &&
(!pm_runtime_enabled(dev) || data->runtime_active))
__sysmmu_enable_nocount(data);
data->suspended = false;
spin_unlock_irqrestore(&data->lock, flags);
}
return pm_generic_resume(dev);
}
#endif
#ifdef CONFIG_PM_RUNTIME
static void sysmmu_restore_state(struct device *dev)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (!data->runtime_active && is_sysmmu_active(data))
__sysmmu_enable_nocount(data);
data->runtime_active = true;
spin_unlock_irqrestore(&data->lock, flags);
}
}
static void sysmmu_save_state(struct device *dev)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (data->runtime_active && is_sysmmu_active(data))
__sysmmu_disable_nocount(data);
data->runtime_active = false;
spin_unlock_irqrestore(&data->lock, flags);
}
}
static int sysmmu_pm_genpd_save_state(struct device *dev)
{
struct exynos_iommu_client *client = dev->archdata.iommu;
int (*cb)(struct device *__dev);
int ret = 0;
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_suspend;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_suspend;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_suspend;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_suspend;
if (cb)
ret = cb(dev);
if (ret == 0)
sysmmu_save_state(dev);
return ret;
}
static int sysmmu_pm_genpd_restore_state(struct device *dev)
{
struct exynos_iommu_client *client = dev->archdata.iommu;
int (*cb)(struct device *__dev);
int ret = 0;
if (dev->type && dev->type->pm)
cb = dev->type->pm->runtime_resume;
else if (dev->class && dev->class->pm)
cb = dev->class->pm->runtime_resume;
else if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_resume;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_resume;
sysmmu_restore_state(dev);
if (cb)
ret = cb(dev);
if (ret)
sysmmu_restore_state(dev);
return ret;
}
#endif
#ifdef CONFIG_PM_GENERIC_DOMAINS
struct gpd_dev_ops sysmmu_devpm_ops = {
#ifdef CONFIG_PM_RUNTIME
.save_state = &sysmmu_pm_genpd_save_state,
.restore_state = &sysmmu_pm_genpd_restore_state,
#endif
#ifdef CONFIG_PM_SLEEP
.suspend = &sysmmu_pm_genpd_suspend,
.resume = &sysmmu_pm_genpd_resume,
#endif
};
#endif /* CONFIG_PM_GENERIC_DOMAINS */
static int sysmmu_hook_driver_register(struct notifier_block *nb,
unsigned long val,
void *p)
{
struct device *dev = p;
/*
* No System MMU assigned even though in the initial state.
* See exynos_sysmmu_probe().
*/
if (dev->archdata.iommu == NULL)
return 0;
switch (val) {
case BUS_NOTIFY_BIND_DRIVER:
{
if (IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS) && dev->pm_domain) {
int ret = pm_genpd_add_callbacks(
dev, &sysmmu_devpm_ops, NULL);
if (ret && (ret != -ENOSYS)) {
dev_err(dev,
"Failed to register 'dev_pm_ops' for iommu\n");
return ret;
}
}
break;
}
case BUS_NOTIFY_BOUND_DRIVER:
{
struct sysmmu_list_data *list;
/* OK if runtime PM is enabled with genpd for dev */
if (pm_runtime_enabled(dev) && dev->pm_domain)
break;
/*
* System MMU will be permanently enabled if the master H/W is
* neither registered to a power domain nor runtime PM enabled.
*/
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data =
dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (is_sysmmu_active(data) && !data->runtime_active)
__sysmmu_enable_nocount(data);
data->runtime_active = true;
pm_runtime_disable(data->sysmmu);
spin_unlock_irqrestore(&data->lock, flags);
}
break;
}
case BUS_NOTIFY_UNBOUND_DRIVER:
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
if (WARN_ON(!list_empty(&owner->client)))
iommu_detach_device(owner->domain, dev);
__pm_genpd_remove_callbacks(dev, false);
break;
}
} /* switch (val) */
return 0;
}
static struct notifier_block sysmmu_notifier = {
.notifier_call = &sysmmu_hook_driver_register,
};
static int __init exynos_iommu_prepare(void)
{
return bus_register_notifier(&platform_bus_type, &sysmmu_notifier);
}
subsys_initcall_sync(exynos_iommu_prepare);