|  | /* | 
|  | *	Definitions for the 'struct sk_buff' memory handlers. | 
|  | * | 
|  | *	Authors: | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Florian La Roche, <rzsfl@rz.uni-sb.de> | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #ifndef _LINUX_SKBUFF_H | 
|  | #define _LINUX_SKBUFF_H | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/cache.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/types.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/textsearch.h> | 
|  | #include <net/checksum.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/netdev_features.h> | 
|  | #include <net/flow_keys.h> | 
|  |  | 
|  | /* A. Checksumming of received packets by device. | 
|  | * | 
|  | * CHECKSUM_NONE: | 
|  | * | 
|  | *   Device failed to checksum this packet e.g. due to lack of capabilities. | 
|  | *   The packet contains full (though not verified) checksum in packet but | 
|  | *   not in skb->csum. Thus, skb->csum is undefined in this case. | 
|  | * | 
|  | * CHECKSUM_UNNECESSARY: | 
|  | * | 
|  | *   The hardware you're dealing with doesn't calculate the full checksum | 
|  | *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums | 
|  | *   for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will | 
|  | *   set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still | 
|  | *   undefined in this case though. It is a bad option, but, unfortunately, | 
|  | *   nowadays most vendors do this. Apparently with the secret goal to sell | 
|  | *   you new devices, when you will add new protocol to your host, f.e. IPv6 8) | 
|  | * | 
|  | * CHECKSUM_COMPLETE: | 
|  | * | 
|  | *   This is the most generic way. The device supplied checksum of the _whole_ | 
|  | *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the | 
|  | *   hardware doesn't need to parse L3/L4 headers to implement this. | 
|  | * | 
|  | *   Note: Even if device supports only some protocols, but is able to produce | 
|  | *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. | 
|  | * | 
|  | * CHECKSUM_PARTIAL: | 
|  | * | 
|  | *   This is identical to the case for output below. This may occur on a packet | 
|  | *   received directly from another Linux OS, e.g., a virtualized Linux kernel | 
|  | *   on the same host. The packet can be treated in the same way as | 
|  | *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the | 
|  | *   checksum must be filled in by the OS or the hardware. | 
|  | * | 
|  | * B. Checksumming on output. | 
|  | * | 
|  | * CHECKSUM_NONE: | 
|  | * | 
|  | *   The skb was already checksummed by the protocol, or a checksum is not | 
|  | *   required. | 
|  | * | 
|  | * CHECKSUM_PARTIAL: | 
|  | * | 
|  | *   The device is required to checksum the packet as seen by hard_start_xmit() | 
|  | *   from skb->csum_start up to the end, and to record/write the checksum at | 
|  | *   offset skb->csum_start + skb->csum_offset. | 
|  | * | 
|  | *   The device must show its capabilities in dev->features, set up at device | 
|  | *   setup time, e.g. netdev_features.h: | 
|  | * | 
|  | *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything. | 
|  | *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over | 
|  | *			  IPv4. Sigh. Vendors like this way for an unknown reason. | 
|  | *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8) | 
|  | *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. | 
|  | *	NETIF_F_...     - Well, you get the picture. | 
|  | * | 
|  | * CHECKSUM_UNNECESSARY: | 
|  | * | 
|  | *   Normally, the device will do per protocol specific checksumming. Protocol | 
|  | *   implementations that do not want the NIC to perform the checksum | 
|  | *   calculation should use this flag in their outgoing skbs. | 
|  | * | 
|  | *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC | 
|  | *			   offload. Correspondingly, the FCoE protocol driver | 
|  | *			   stack should use CHECKSUM_UNNECESSARY. | 
|  | * | 
|  | * Any questions? No questions, good.		--ANK | 
|  | */ | 
|  |  | 
|  | /* Don't change this without changing skb_csum_unnecessary! */ | 
|  | #define CHECKSUM_NONE		0 | 
|  | #define CHECKSUM_UNNECESSARY	1 | 
|  | #define CHECKSUM_COMPLETE	2 | 
|  | #define CHECKSUM_PARTIAL	3 | 
|  |  | 
|  | #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \ | 
|  | ~(SMP_CACHE_BYTES - 1)) | 
|  | #define SKB_WITH_OVERHEAD(X)	\ | 
|  | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
|  | #define SKB_MAX_ORDER(X, ORDER) \ | 
|  | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) | 
|  | #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0)) | 
|  | #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2)) | 
|  |  | 
|  | /* return minimum truesize of one skb containing X bytes of data */ | 
|  | #define SKB_TRUESIZE(X) ((X) +						\ | 
|  | SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\ | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
|  |  | 
|  | struct net_device; | 
|  | struct scatterlist; | 
|  | struct pipe_inode_info; | 
|  |  | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | struct nf_conntrack { | 
|  | atomic_t use; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | struct nf_bridge_info { | 
|  | atomic_t		use; | 
|  | unsigned int		mask; | 
|  | struct net_device	*physindev; | 
|  | struct net_device	*physoutdev; | 
|  | unsigned long		data[32 / sizeof(unsigned long)]; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct sk_buff_head { | 
|  | /* These two members must be first. */ | 
|  | struct sk_buff	*next; | 
|  | struct sk_buff	*prev; | 
|  |  | 
|  | __u32		qlen; | 
|  | spinlock_t	lock; | 
|  | }; | 
|  |  | 
|  | struct sk_buff; | 
|  |  | 
|  | /* To allow 64K frame to be packed as single skb without frag_list we | 
|  | * require 64K/PAGE_SIZE pages plus 1 additional page to allow for | 
|  | * buffers which do not start on a page boundary. | 
|  | * | 
|  | * Since GRO uses frags we allocate at least 16 regardless of page | 
|  | * size. | 
|  | */ | 
|  | #if (65536/PAGE_SIZE + 1) < 16 | 
|  | #define MAX_SKB_FRAGS 16UL | 
|  | #else | 
|  | #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) | 
|  | #endif | 
|  |  | 
|  | typedef struct skb_frag_struct skb_frag_t; | 
|  |  | 
|  | struct skb_frag_struct { | 
|  | struct { | 
|  | struct page *p; | 
|  | } page; | 
|  | #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) | 
|  | __u32 page_offset; | 
|  | __u32 size; | 
|  | #else | 
|  | __u16 page_offset; | 
|  | __u16 size; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static inline unsigned int skb_frag_size(const skb_frag_t *frag) | 
|  | { | 
|  | return frag->size; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) | 
|  | { | 
|  | frag->size = size; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) | 
|  | { | 
|  | frag->size += delta; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) | 
|  | { | 
|  | frag->size -= delta; | 
|  | } | 
|  |  | 
|  | #define HAVE_HW_TIME_STAMP | 
|  |  | 
|  | /** | 
|  | * struct skb_shared_hwtstamps - hardware time stamps | 
|  | * @hwtstamp:	hardware time stamp transformed into duration | 
|  | *		since arbitrary point in time | 
|  | * @syststamp:	hwtstamp transformed to system time base | 
|  | * | 
|  | * Software time stamps generated by ktime_get_real() are stored in | 
|  | * skb->tstamp. The relation between the different kinds of time | 
|  | * stamps is as follows: | 
|  | * | 
|  | * syststamp and tstamp can be compared against each other in | 
|  | * arbitrary combinations.  The accuracy of a | 
|  | * syststamp/tstamp/"syststamp from other device" comparison is | 
|  | * limited by the accuracy of the transformation into system time | 
|  | * base. This depends on the device driver and its underlying | 
|  | * hardware. | 
|  | * | 
|  | * hwtstamps can only be compared against other hwtstamps from | 
|  | * the same device. | 
|  | * | 
|  | * This structure is attached to packets as part of the | 
|  | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. | 
|  | */ | 
|  | struct skb_shared_hwtstamps { | 
|  | ktime_t	hwtstamp; | 
|  | ktime_t	syststamp; | 
|  | }; | 
|  |  | 
|  | /* Definitions for tx_flags in struct skb_shared_info */ | 
|  | enum { | 
|  | /* generate hardware time stamp */ | 
|  | SKBTX_HW_TSTAMP = 1 << 0, | 
|  |  | 
|  | /* generate software time stamp */ | 
|  | SKBTX_SW_TSTAMP = 1 << 1, | 
|  |  | 
|  | /* device driver is going to provide hardware time stamp */ | 
|  | SKBTX_IN_PROGRESS = 1 << 2, | 
|  |  | 
|  | /* device driver supports TX zero-copy buffers */ | 
|  | SKBTX_DEV_ZEROCOPY = 1 << 3, | 
|  |  | 
|  | /* generate wifi status information (where possible) */ | 
|  | SKBTX_WIFI_STATUS = 1 << 4, | 
|  |  | 
|  | /* This indicates at least one fragment might be overwritten | 
|  | * (as in vmsplice(), sendfile() ...) | 
|  | * If we need to compute a TX checksum, we'll need to copy | 
|  | * all frags to avoid possible bad checksum | 
|  | */ | 
|  | SKBTX_SHARED_FRAG = 1 << 5, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The callback notifies userspace to release buffers when skb DMA is done in | 
|  | * lower device, the skb last reference should be 0 when calling this. | 
|  | * The zerocopy_success argument is true if zero copy transmit occurred, | 
|  | * false on data copy or out of memory error caused by data copy attempt. | 
|  | * The ctx field is used to track device context. | 
|  | * The desc field is used to track userspace buffer index. | 
|  | */ | 
|  | struct ubuf_info { | 
|  | void (*callback)(struct ubuf_info *, bool zerocopy_success); | 
|  | void *ctx; | 
|  | unsigned long desc; | 
|  | }; | 
|  |  | 
|  | /* This data is invariant across clones and lives at | 
|  | * the end of the header data, ie. at skb->end. | 
|  | */ | 
|  | struct skb_shared_info { | 
|  | unsigned char	nr_frags; | 
|  | __u8		tx_flags; | 
|  | unsigned short	gso_size; | 
|  | /* Warning: this field is not always filled in (UFO)! */ | 
|  | unsigned short	gso_segs; | 
|  | unsigned short  gso_type; | 
|  | struct sk_buff	*frag_list; | 
|  | struct skb_shared_hwtstamps hwtstamps; | 
|  | __be32          ip6_frag_id; | 
|  |  | 
|  | /* | 
|  | * Warning : all fields before dataref are cleared in __alloc_skb() | 
|  | */ | 
|  | atomic_t	dataref; | 
|  |  | 
|  | /* Intermediate layers must ensure that destructor_arg | 
|  | * remains valid until skb destructor */ | 
|  | void *		destructor_arg; | 
|  |  | 
|  | /* must be last field, see pskb_expand_head() */ | 
|  | skb_frag_t	frags[MAX_SKB_FRAGS]; | 
|  | }; | 
|  |  | 
|  | /* We divide dataref into two halves.  The higher 16 bits hold references | 
|  | * to the payload part of skb->data.  The lower 16 bits hold references to | 
|  | * the entire skb->data.  A clone of a headerless skb holds the length of | 
|  | * the header in skb->hdr_len. | 
|  | * | 
|  | * All users must obey the rule that the skb->data reference count must be | 
|  | * greater than or equal to the payload reference count. | 
|  | * | 
|  | * Holding a reference to the payload part means that the user does not | 
|  | * care about modifications to the header part of skb->data. | 
|  | */ | 
|  | #define SKB_DATAREF_SHIFT 16 | 
|  | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) | 
|  |  | 
|  |  | 
|  | enum { | 
|  | SKB_FCLONE_UNAVAILABLE, | 
|  | SKB_FCLONE_ORIG, | 
|  | SKB_FCLONE_CLONE, | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | SKB_GSO_TCPV4 = 1 << 0, | 
|  | SKB_GSO_UDP = 1 << 1, | 
|  |  | 
|  | /* This indicates the skb is from an untrusted source. */ | 
|  | SKB_GSO_DODGY = 1 << 2, | 
|  |  | 
|  | /* This indicates the tcp segment has CWR set. */ | 
|  | SKB_GSO_TCP_ECN = 1 << 3, | 
|  |  | 
|  | SKB_GSO_TCPV6 = 1 << 4, | 
|  |  | 
|  | SKB_GSO_FCOE = 1 << 5, | 
|  |  | 
|  | SKB_GSO_GRE = 1 << 6, | 
|  |  | 
|  | SKB_GSO_IPIP = 1 << 7, | 
|  |  | 
|  | SKB_GSO_SIT = 1 << 8, | 
|  |  | 
|  | SKB_GSO_UDP_TUNNEL = 1 << 9, | 
|  |  | 
|  | SKB_GSO_MPLS = 1 << 10, | 
|  | }; | 
|  |  | 
|  | #if BITS_PER_LONG > 32 | 
|  | #define NET_SKBUFF_DATA_USES_OFFSET 1 | 
|  | #endif | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | typedef unsigned int sk_buff_data_t; | 
|  | #else | 
|  | typedef unsigned char *sk_buff_data_t; | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *	struct sk_buff - socket buffer | 
|  | *	@next: Next buffer in list | 
|  | *	@prev: Previous buffer in list | 
|  | *	@tstamp: Time we arrived | 
|  | *	@sk: Socket we are owned by | 
|  | *	@dev: Device we arrived on/are leaving by | 
|  | *	@cb: Control buffer. Free for use by every layer. Put private vars here | 
|  | *	@_skb_refdst: destination entry (with norefcount bit) | 
|  | *	@sp: the security path, used for xfrm | 
|  | *	@len: Length of actual data | 
|  | *	@data_len: Data length | 
|  | *	@mac_len: Length of link layer header | 
|  | *	@hdr_len: writable header length of cloned skb | 
|  | *	@csum: Checksum (must include start/offset pair) | 
|  | *	@csum_start: Offset from skb->head where checksumming should start | 
|  | *	@csum_offset: Offset from csum_start where checksum should be stored | 
|  | *	@priority: Packet queueing priority | 
|  | *	@local_df: allow local fragmentation | 
|  | *	@cloned: Head may be cloned (check refcnt to be sure) | 
|  | *	@ip_summed: Driver fed us an IP checksum | 
|  | *	@nohdr: Payload reference only, must not modify header | 
|  | *	@nfctinfo: Relationship of this skb to the connection | 
|  | *	@pkt_type: Packet class | 
|  | *	@fclone: skbuff clone status | 
|  | *	@ipvs_property: skbuff is owned by ipvs | 
|  | *	@peeked: this packet has been seen already, so stats have been | 
|  | *		done for it, don't do them again | 
|  | *	@nf_trace: netfilter packet trace flag | 
|  | *	@protocol: Packet protocol from driver | 
|  | *	@destructor: Destruct function | 
|  | *	@nfct: Associated connection, if any | 
|  | *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c | 
|  | *	@skb_iif: ifindex of device we arrived on | 
|  | *	@tc_index: Traffic control index | 
|  | *	@tc_verd: traffic control verdict | 
|  | *	@rxhash: the packet hash computed on receive | 
|  | *	@queue_mapping: Queue mapping for multiqueue devices | 
|  | *	@ndisc_nodetype: router type (from link layer) | 
|  | *	@ooo_okay: allow the mapping of a socket to a queue to be changed | 
|  | *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport | 
|  | *		ports. | 
|  | *	@wifi_acked_valid: wifi_acked was set | 
|  | *	@wifi_acked: whether frame was acked on wifi or not | 
|  | *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS | 
|  | *	@dma_cookie: a cookie to one of several possible DMA operations | 
|  | *		done by skb DMA functions | 
|  | *	@napi_id: id of the NAPI struct this skb came from | 
|  | *	@secmark: security marking | 
|  | *	@mark: Generic packet mark | 
|  | *	@dropcount: total number of sk_receive_queue overflows | 
|  | *	@vlan_proto: vlan encapsulation protocol | 
|  | *	@vlan_tci: vlan tag control information | 
|  | *	@inner_protocol: Protocol (encapsulation) | 
|  | *	@inner_transport_header: Inner transport layer header (encapsulation) | 
|  | *	@inner_network_header: Network layer header (encapsulation) | 
|  | *	@inner_mac_header: Link layer header (encapsulation) | 
|  | *	@transport_header: Transport layer header | 
|  | *	@network_header: Network layer header | 
|  | *	@mac_header: Link layer header | 
|  | *	@tail: Tail pointer | 
|  | *	@end: End pointer | 
|  | *	@head: Head of buffer | 
|  | *	@data: Data head pointer | 
|  | *	@truesize: Buffer size | 
|  | *	@users: User count - see {datagram,tcp}.c | 
|  | */ | 
|  |  | 
|  | struct sk_buff { | 
|  | /* These two members must be first. */ | 
|  | struct sk_buff		*next; | 
|  | struct sk_buff		*prev; | 
|  |  | 
|  | ktime_t			tstamp; | 
|  |  | 
|  | struct sock		*sk; | 
|  | struct net_device	*dev; | 
|  |  | 
|  | /* | 
|  | * This is the control buffer. It is free to use for every | 
|  | * layer. Please put your private variables there. If you | 
|  | * want to keep them across layers you have to do a skb_clone() | 
|  | * first. This is owned by whoever has the skb queued ATM. | 
|  | */ | 
|  | char			cb[48] __aligned(8); | 
|  |  | 
|  | unsigned long		_skb_refdst; | 
|  | #ifdef CONFIG_XFRM | 
|  | struct	sec_path	*sp; | 
|  | #endif | 
|  | unsigned int		len, | 
|  | data_len; | 
|  | __u16			mac_len, | 
|  | hdr_len; | 
|  | union { | 
|  | __wsum		csum; | 
|  | struct { | 
|  | __u16	csum_start; | 
|  | __u16	csum_offset; | 
|  | }; | 
|  | }; | 
|  | __u32			priority; | 
|  | kmemcheck_bitfield_begin(flags1); | 
|  | __u8			local_df:1, | 
|  | cloned:1, | 
|  | ip_summed:2, | 
|  | nohdr:1, | 
|  | nfctinfo:3; | 
|  | __u8			pkt_type:3, | 
|  | fclone:2, | 
|  | ipvs_property:1, | 
|  | peeked:1, | 
|  | nf_trace:1; | 
|  | kmemcheck_bitfield_end(flags1); | 
|  | __be16			protocol; | 
|  |  | 
|  | void			(*destructor)(struct sk_buff *skb); | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | struct nf_conntrack	*nfct; | 
|  | #endif | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | struct nf_bridge_info	*nf_bridge; | 
|  | #endif | 
|  |  | 
|  | int			skb_iif; | 
|  |  | 
|  | __u32			rxhash; | 
|  |  | 
|  | __be16			vlan_proto; | 
|  | __u16			vlan_tci; | 
|  |  | 
|  | #ifdef CONFIG_NET_SCHED | 
|  | __u16			tc_index;	/* traffic control index */ | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | __u16			tc_verd;	/* traffic control verdict */ | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | __u16			queue_mapping; | 
|  | kmemcheck_bitfield_begin(flags2); | 
|  | #ifdef CONFIG_IPV6_NDISC_NODETYPE | 
|  | __u8			ndisc_nodetype:2; | 
|  | #endif | 
|  | __u8			pfmemalloc:1; | 
|  | __u8			ooo_okay:1; | 
|  | __u8			l4_rxhash:1; | 
|  | __u8			wifi_acked_valid:1; | 
|  | __u8			wifi_acked:1; | 
|  | __u8			no_fcs:1; | 
|  | __u8			head_frag:1; | 
|  | /* Encapsulation protocol and NIC drivers should use | 
|  | * this flag to indicate to each other if the skb contains | 
|  | * encapsulated packet or not and maybe use the inner packet | 
|  | * headers if needed | 
|  | */ | 
|  | __u8			encapsulation:1; | 
|  | /* 6/8 bit hole (depending on ndisc_nodetype presence) */ | 
|  | kmemcheck_bitfield_end(flags2); | 
|  |  | 
|  | #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL | 
|  | union { | 
|  | unsigned int	napi_id; | 
|  | dma_cookie_t	dma_cookie; | 
|  | }; | 
|  | #endif | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | __u32			secmark; | 
|  | #endif | 
|  | union { | 
|  | __u32		mark; | 
|  | __u32		dropcount; | 
|  | __u32		reserved_tailroom; | 
|  | }; | 
|  |  | 
|  | __be16			inner_protocol; | 
|  | __u16			inner_transport_header; | 
|  | __u16			inner_network_header; | 
|  | __u16			inner_mac_header; | 
|  | __u16			transport_header; | 
|  | __u16			network_header; | 
|  | __u16			mac_header; | 
|  | /* These elements must be at the end, see alloc_skb() for details.  */ | 
|  | sk_buff_data_t		tail; | 
|  | sk_buff_data_t		end; | 
|  | unsigned char		*head, | 
|  | *data; | 
|  | unsigned int		truesize; | 
|  | atomic_t		users; | 
|  | }; | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | /* | 
|  | *	Handling routines are only of interest to the kernel | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  |  | 
|  |  | 
|  | #define SKB_ALLOC_FCLONE	0x01 | 
|  | #define SKB_ALLOC_RX		0x02 | 
|  |  | 
|  | /* Returns true if the skb was allocated from PFMEMALLOC reserves */ | 
|  | static inline bool skb_pfmemalloc(const struct sk_buff *skb) | 
|  | { | 
|  | return unlikely(skb->pfmemalloc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * skb might have a dst pointer attached, refcounted or not. | 
|  | * _skb_refdst low order bit is set if refcount was _not_ taken | 
|  | */ | 
|  | #define SKB_DST_NOREF	1UL | 
|  | #define SKB_DST_PTRMASK	~(SKB_DST_NOREF) | 
|  |  | 
|  | /** | 
|  | * skb_dst - returns skb dst_entry | 
|  | * @skb: buffer | 
|  | * | 
|  | * Returns skb dst_entry, regardless of reference taken or not. | 
|  | */ | 
|  | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) | 
|  | { | 
|  | /* If refdst was not refcounted, check we still are in a | 
|  | * rcu_read_lock section | 
|  | */ | 
|  | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && | 
|  | !rcu_read_lock_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_set - sets skb dst | 
|  | * @skb: buffer | 
|  | * @dst: dst entry | 
|  | * | 
|  | * Sets skb dst, assuming a reference was taken on dst and should | 
|  | * be released by skb_dst_drop() | 
|  | */ | 
|  | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) | 
|  | { | 
|  | skb->_skb_refdst = (unsigned long)dst; | 
|  | } | 
|  |  | 
|  | void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, | 
|  | bool force); | 
|  |  | 
|  | /** | 
|  | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference | 
|  | * @skb: buffer | 
|  | * @dst: dst entry | 
|  | * | 
|  | * Sets skb dst, assuming a reference was not taken on dst. | 
|  | * If dst entry is cached, we do not take reference and dst_release | 
|  | * will be avoided by refdst_drop. If dst entry is not cached, we take | 
|  | * reference, so that last dst_release can destroy the dst immediately. | 
|  | */ | 
|  | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) | 
|  | { | 
|  | __skb_dst_set_noref(skb, dst, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_set_noref_force - sets skb dst, without taking reference | 
|  | * @skb: buffer | 
|  | * @dst: dst entry | 
|  | * | 
|  | * Sets skb dst, assuming a reference was not taken on dst. | 
|  | * No reference is taken and no dst_release will be called. While for | 
|  | * cached dsts deferred reclaim is a basic feature, for entries that are | 
|  | * not cached it is caller's job to guarantee that last dst_release for | 
|  | * provided dst happens when nobody uses it, eg. after a RCU grace period. | 
|  | */ | 
|  | static inline void skb_dst_set_noref_force(struct sk_buff *skb, | 
|  | struct dst_entry *dst) | 
|  | { | 
|  | __skb_dst_set_noref(skb, dst, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_is_noref - Test if skb dst isn't refcounted | 
|  | * @skb: buffer | 
|  | */ | 
|  | static inline bool skb_dst_is_noref(const struct sk_buff *skb) | 
|  | { | 
|  | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); | 
|  | } | 
|  |  | 
|  | static inline struct rtable *skb_rtable(const struct sk_buff *skb) | 
|  | { | 
|  | return (struct rtable *)skb_dst(skb); | 
|  | } | 
|  |  | 
|  | void kfree_skb(struct sk_buff *skb); | 
|  | void kfree_skb_list(struct sk_buff *segs); | 
|  | void skb_tx_error(struct sk_buff *skb); | 
|  | void consume_skb(struct sk_buff *skb); | 
|  | void  __kfree_skb(struct sk_buff *skb); | 
|  | extern struct kmem_cache *skbuff_head_cache; | 
|  |  | 
|  | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); | 
|  | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | 
|  | bool *fragstolen, int *delta_truesize); | 
|  |  | 
|  | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, | 
|  | int node); | 
|  | struct sk_buff *build_skb(void *data, unsigned int frag_size); | 
|  | static inline struct sk_buff *alloc_skb(unsigned int size, | 
|  | gfp_t priority) | 
|  | { | 
|  | return __alloc_skb(size, priority, 0, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, | 
|  | gfp_t priority) | 
|  | { | 
|  | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | struct sk_buff *__alloc_skb_head(gfp_t priority, int node); | 
|  | static inline struct sk_buff *alloc_skb_head(gfp_t priority) | 
|  | { | 
|  | return __alloc_skb_head(priority, -1); | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); | 
|  | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); | 
|  | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); | 
|  | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); | 
|  | struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); | 
|  |  | 
|  | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); | 
|  | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, | 
|  | unsigned int headroom); | 
|  | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, | 
|  | int newtailroom, gfp_t priority); | 
|  | int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, | 
|  | int len); | 
|  | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); | 
|  | int skb_pad(struct sk_buff *skb, int pad); | 
|  | #define dev_kfree_skb(a)	consume_skb(a) | 
|  |  | 
|  | int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, | 
|  | int getfrag(void *from, char *to, int offset, | 
|  | int len, int odd, struct sk_buff *skb), | 
|  | void *from, int length); | 
|  |  | 
|  | struct skb_seq_state { | 
|  | __u32		lower_offset; | 
|  | __u32		upper_offset; | 
|  | __u32		frag_idx; | 
|  | __u32		stepped_offset; | 
|  | struct sk_buff	*root_skb; | 
|  | struct sk_buff	*cur_skb; | 
|  | __u8		*frag_data; | 
|  | }; | 
|  |  | 
|  | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct skb_seq_state *st); | 
|  | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | 
|  | struct skb_seq_state *st); | 
|  | void skb_abort_seq_read(struct skb_seq_state *st); | 
|  |  | 
|  | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct ts_config *config, | 
|  | struct ts_state *state); | 
|  |  | 
|  | /* | 
|  | * Packet hash types specify the type of hash in skb_set_hash. | 
|  | * | 
|  | * Hash types refer to the protocol layer addresses which are used to | 
|  | * construct a packet's hash. The hashes are used to differentiate or identify | 
|  | * flows of the protocol layer for the hash type. Hash types are either | 
|  | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). | 
|  | * | 
|  | * Properties of hashes: | 
|  | * | 
|  | * 1) Two packets in different flows have different hash values | 
|  | * 2) Two packets in the same flow should have the same hash value | 
|  | * | 
|  | * A hash at a higher layer is considered to be more specific. A driver should | 
|  | * set the most specific hash possible. | 
|  | * | 
|  | * A driver cannot indicate a more specific hash than the layer at which a hash | 
|  | * was computed. For instance an L3 hash cannot be set as an L4 hash. | 
|  | * | 
|  | * A driver may indicate a hash level which is less specific than the | 
|  | * actual layer the hash was computed on. For instance, a hash computed | 
|  | * at L4 may be considered an L3 hash. This should only be done if the | 
|  | * driver can't unambiguously determine that the HW computed the hash at | 
|  | * the higher layer. Note that the "should" in the second property above | 
|  | * permits this. | 
|  | */ | 
|  | enum pkt_hash_types { | 
|  | PKT_HASH_TYPE_NONE,	/* Undefined type */ | 
|  | PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */ | 
|  | PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */ | 
|  | PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */ | 
|  | }; | 
|  |  | 
|  | static inline void | 
|  | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) | 
|  | { | 
|  | skb->l4_rxhash = (type == PKT_HASH_TYPE_L4); | 
|  | skb->rxhash = hash; | 
|  | } | 
|  |  | 
|  | void __skb_get_hash(struct sk_buff *skb); | 
|  | static inline __u32 skb_get_hash(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb->l4_rxhash) | 
|  | __skb_get_hash(skb); | 
|  |  | 
|  | return skb->rxhash; | 
|  | } | 
|  |  | 
|  | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->rxhash; | 
|  | } | 
|  |  | 
|  | static inline void skb_clear_hash(struct sk_buff *skb) | 
|  | { | 
|  | skb->rxhash = 0; | 
|  | skb->l4_rxhash = 0; | 
|  | } | 
|  |  | 
|  | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb->l4_rxhash) | 
|  | skb_clear_hash(skb); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->rxhash = from->rxhash; | 
|  | to->l4_rxhash = from->l4_rxhash; | 
|  | }; | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->end; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end; | 
|  | } | 
|  | #else | 
|  | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end - skb->head; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Internal */ | 
|  | #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB))) | 
|  |  | 
|  | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) | 
|  | { | 
|  | return &skb_shinfo(skb)->hwtstamps; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_empty - check if a queue is empty | 
|  | *	@list: queue head | 
|  | * | 
|  | *	Returns true if the queue is empty, false otherwise. | 
|  | */ | 
|  | static inline int skb_queue_empty(const struct sk_buff_head *list) | 
|  | { | 
|  | return list->next == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_is_last - check if skb is the last entry in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Returns true if @skb is the last buffer on the list. | 
|  | */ | 
|  | static inline bool skb_queue_is_last(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb->next == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_is_first - check if skb is the first entry in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Returns true if @skb is the first buffer on the list. | 
|  | */ | 
|  | static inline bool skb_queue_is_first(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb->prev == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_next - return the next packet in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: current buffer | 
|  | * | 
|  | *	Return the next packet in @list after @skb.  It is only valid to | 
|  | *	call this if skb_queue_is_last() evaluates to false. | 
|  | */ | 
|  | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | /* This BUG_ON may seem severe, but if we just return then we | 
|  | * are going to dereference garbage. | 
|  | */ | 
|  | BUG_ON(skb_queue_is_last(list, skb)); | 
|  | return skb->next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_prev - return the prev packet in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: current buffer | 
|  | * | 
|  | *	Return the prev packet in @list before @skb.  It is only valid to | 
|  | *	call this if skb_queue_is_first() evaluates to false. | 
|  | */ | 
|  | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | /* This BUG_ON may seem severe, but if we just return then we | 
|  | * are going to dereference garbage. | 
|  | */ | 
|  | BUG_ON(skb_queue_is_first(list, skb)); | 
|  | return skb->prev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_get - reference buffer | 
|  | *	@skb: buffer to reference | 
|  | * | 
|  | *	Makes another reference to a socket buffer and returns a pointer | 
|  | *	to the buffer. | 
|  | */ | 
|  | static inline struct sk_buff *skb_get(struct sk_buff *skb) | 
|  | { | 
|  | atomic_inc(&skb->users); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If users == 1, we are the only owner and are can avoid redundant | 
|  | * atomic change. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	skb_cloned - is the buffer a clone | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if the buffer was generated with skb_clone() and is | 
|  | *	one of multiple shared copies of the buffer. Cloned buffers are | 
|  | *	shared data so must not be written to under normal circumstances. | 
|  | */ | 
|  | static inline int skb_cloned(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->cloned && | 
|  | (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; | 
|  | } | 
|  |  | 
|  | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(pri & __GFP_WAIT); | 
|  |  | 
|  | if (skb_cloned(skb)) | 
|  | return pskb_expand_head(skb, 0, 0, pri); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_header_cloned - is the header a clone | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if modifying the header part of the buffer requires | 
|  | *	the data to be copied. | 
|  | */ | 
|  | static inline int skb_header_cloned(const struct sk_buff *skb) | 
|  | { | 
|  | int dataref; | 
|  |  | 
|  | if (!skb->cloned) | 
|  | return 0; | 
|  |  | 
|  | dataref = atomic_read(&skb_shinfo(skb)->dataref); | 
|  | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); | 
|  | return dataref != 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_header_release - release reference to header | 
|  | *	@skb: buffer to operate on | 
|  | * | 
|  | *	Drop a reference to the header part of the buffer.  This is done | 
|  | *	by acquiring a payload reference.  You must not read from the header | 
|  | *	part of skb->data after this. | 
|  | */ | 
|  | static inline void skb_header_release(struct sk_buff *skb) | 
|  | { | 
|  | BUG_ON(skb->nohdr); | 
|  | skb->nohdr = 1; | 
|  | atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_shared - is the buffer shared | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if more than one person has a reference to this | 
|  | *	buffer. | 
|  | */ | 
|  | static inline int skb_shared(const struct sk_buff *skb) | 
|  | { | 
|  | return atomic_read(&skb->users) != 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_share_check - check if buffer is shared and if so clone it | 
|  | *	@skb: buffer to check | 
|  | *	@pri: priority for memory allocation | 
|  | * | 
|  | *	If the buffer is shared the buffer is cloned and the old copy | 
|  | *	drops a reference. A new clone with a single reference is returned. | 
|  | *	If the buffer is not shared the original buffer is returned. When | 
|  | *	being called from interrupt status or with spinlocks held pri must | 
|  | *	be GFP_ATOMIC. | 
|  | * | 
|  | *	NULL is returned on a memory allocation failure. | 
|  | */ | 
|  | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(pri & __GFP_WAIT); | 
|  | if (skb_shared(skb)) { | 
|  | struct sk_buff *nskb = skb_clone(skb, pri); | 
|  |  | 
|  | if (likely(nskb)) | 
|  | consume_skb(skb); | 
|  | else | 
|  | kfree_skb(skb); | 
|  | skb = nskb; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Copy shared buffers into a new sk_buff. We effectively do COW on | 
|  | *	packets to handle cases where we have a local reader and forward | 
|  | *	and a couple of other messy ones. The normal one is tcpdumping | 
|  | *	a packet thats being forwarded. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	skb_unshare - make a copy of a shared buffer | 
|  | *	@skb: buffer to check | 
|  | *	@pri: priority for memory allocation | 
|  | * | 
|  | *	If the socket buffer is a clone then this function creates a new | 
|  | *	copy of the data, drops a reference count on the old copy and returns | 
|  | *	the new copy with the reference count at 1. If the buffer is not a clone | 
|  | *	the original buffer is returned. When called with a spinlock held or | 
|  | *	from interrupt state @pri must be %GFP_ATOMIC | 
|  | * | 
|  | *	%NULL is returned on a memory allocation failure. | 
|  | */ | 
|  | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, | 
|  | gfp_t pri) | 
|  | { | 
|  | might_sleep_if(pri & __GFP_WAIT); | 
|  | if (skb_cloned(skb)) { | 
|  | struct sk_buff *nskb = skb_copy(skb, pri); | 
|  | kfree_skb(skb);	/* Free our shared copy */ | 
|  | skb = nskb; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek - peek at the head of an &sk_buff_head | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
|  | *	be careful with this one. A peek leaves the buffer on the | 
|  | *	list and someone else may run off with it. You must hold | 
|  | *	the appropriate locks or have a private queue to do this. | 
|  | * | 
|  | *	Returns %NULL for an empty list or a pointer to the head element. | 
|  | *	The reference count is not incremented and the reference is therefore | 
|  | *	volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *skb = list_->next; | 
|  |  | 
|  | if (skb == (struct sk_buff *)list_) | 
|  | skb = NULL; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek_next - peek skb following the given one from a queue | 
|  | *	@skb: skb to start from | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Returns %NULL when the end of the list is met or a pointer to the | 
|  | *	next element. The reference count is not incremented and the | 
|  | *	reference is therefore volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, | 
|  | const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *next = skb->next; | 
|  |  | 
|  | if (next == (struct sk_buff *)list_) | 
|  | next = NULL; | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek_tail - peek at the tail of an &sk_buff_head | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
|  | *	be careful with this one. A peek leaves the buffer on the | 
|  | *	list and someone else may run off with it. You must hold | 
|  | *	the appropriate locks or have a private queue to do this. | 
|  | * | 
|  | *	Returns %NULL for an empty list or a pointer to the tail element. | 
|  | *	The reference count is not incremented and the reference is therefore | 
|  | *	volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *skb = list_->prev; | 
|  |  | 
|  | if (skb == (struct sk_buff *)list_) | 
|  | skb = NULL; | 
|  | return skb; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_len	- get queue length | 
|  | *	@list_: list to measure | 
|  | * | 
|  | *	Return the length of an &sk_buff queue. | 
|  | */ | 
|  | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) | 
|  | { | 
|  | return list_->qlen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head | 
|  | *	@list: queue to initialize | 
|  | * | 
|  | *	This initializes only the list and queue length aspects of | 
|  | *	an sk_buff_head object.  This allows to initialize the list | 
|  | *	aspects of an sk_buff_head without reinitializing things like | 
|  | *	the spinlock.  It can also be used for on-stack sk_buff_head | 
|  | *	objects where the spinlock is known to not be used. | 
|  | */ | 
|  | static inline void __skb_queue_head_init(struct sk_buff_head *list) | 
|  | { | 
|  | list->prev = list->next = (struct sk_buff *)list; | 
|  | list->qlen = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function creates a split out lock class for each invocation; | 
|  | * this is needed for now since a whole lot of users of the skb-queue | 
|  | * infrastructure in drivers have different locking usage (in hardirq) | 
|  | * than the networking core (in softirq only). In the long run either the | 
|  | * network layer or drivers should need annotation to consolidate the | 
|  | * main types of usage into 3 classes. | 
|  | */ | 
|  | static inline void skb_queue_head_init(struct sk_buff_head *list) | 
|  | { | 
|  | spin_lock_init(&list->lock); | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  |  | 
|  | static inline void skb_queue_head_init_class(struct sk_buff_head *list, | 
|  | struct lock_class_key *class) | 
|  | { | 
|  | skb_queue_head_init(list); | 
|  | lockdep_set_class(&list->lock, class); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Insert an sk_buff on a list. | 
|  | * | 
|  | *	The "__skb_xxxx()" functions are the non-atomic ones that | 
|  | *	can only be called with interrupts disabled. | 
|  | */ | 
|  | void skb_insert(struct sk_buff *old, struct sk_buff *newsk, | 
|  | struct sk_buff_head *list); | 
|  | static inline void __skb_insert(struct sk_buff *newsk, | 
|  | struct sk_buff *prev, struct sk_buff *next, | 
|  | struct sk_buff_head *list) | 
|  | { | 
|  | newsk->next = next; | 
|  | newsk->prev = prev; | 
|  | next->prev  = prev->next = newsk; | 
|  | list->qlen++; | 
|  | } | 
|  |  | 
|  | static inline void __skb_queue_splice(const struct sk_buff_head *list, | 
|  | struct sk_buff *prev, | 
|  | struct sk_buff *next) | 
|  | { | 
|  | struct sk_buff *first = list->next; | 
|  | struct sk_buff *last = list->prev; | 
|  |  | 
|  | first->prev = prev; | 
|  | prev->next = first; | 
|  |  | 
|  | last->next = next; | 
|  | next->prev = last; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice - join two skb lists, this is designed for stacks | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | */ | 
|  | static inline void skb_queue_splice(const struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
|  | head->qlen += list->qlen; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | * | 
|  | *	The list at @list is reinitialised | 
|  | */ | 
|  | static inline void skb_queue_splice_init(struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
|  | head->qlen += list->qlen; | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_tail - join two skb lists, each list being a queue | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | */ | 
|  | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
|  | head->qlen += list->qlen; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | * | 
|  | *	Each of the lists is a queue. | 
|  | *	The list at @list is reinitialised | 
|  | */ | 
|  | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
|  | head->qlen += list->qlen; | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_after - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@prev: place after this buffer | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer int the middle of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | static inline void __skb_queue_after(struct sk_buff_head *list, | 
|  | struct sk_buff *prev, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_insert(newsk, prev, prev->next, list); | 
|  | } | 
|  |  | 
|  | void skb_append(struct sk_buff *old, struct sk_buff *newsk, | 
|  | struct sk_buff_head *list); | 
|  |  | 
|  | static inline void __skb_queue_before(struct sk_buff_head *list, | 
|  | struct sk_buff *next, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_insert(newsk, next->prev, next, list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_head - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the start of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); | 
|  | static inline void __skb_queue_head(struct sk_buff_head *list, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_queue_after(list, (struct sk_buff *)list, newsk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_tail - queue a buffer at the list tail | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the end of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); | 
|  | static inline void __skb_queue_tail(struct sk_buff_head *list, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_queue_before(list, (struct sk_buff *)list, newsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove sk_buff from list. _Must_ be called atomically, and with | 
|  | * the list known.. | 
|  | */ | 
|  | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); | 
|  | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *next, *prev; | 
|  |  | 
|  | list->qlen--; | 
|  | next	   = skb->next; | 
|  | prev	   = skb->prev; | 
|  | skb->next  = skb->prev = NULL; | 
|  | next->prev = prev; | 
|  | prev->next = next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_dequeue - remove from the head of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the head of the list. This function does not take any locks | 
|  | *	so must be used with appropriate locks held only. The head item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | struct sk_buff *skb_dequeue(struct sk_buff_head *list); | 
|  | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb = skb_peek(list); | 
|  | if (skb) | 
|  | __skb_unlink(skb, list); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_dequeue_tail - remove from the tail of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the tail of the list. This function does not take any locks | 
|  | *	so must be used with appropriate locks held only. The tail item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); | 
|  | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb = skb_peek_tail(list); | 
|  | if (skb) | 
|  | __skb_unlink(skb, list); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline bool skb_is_nonlinear(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->data_len; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_headlen(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->len - skb->data_len; | 
|  | } | 
|  |  | 
|  | static inline int skb_pagelen(const struct sk_buff *skb) | 
|  | { | 
|  | int i, len = 0; | 
|  |  | 
|  | for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) | 
|  | len += skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | return len + skb_headlen(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_fill_page_desc - initialise a paged fragment in an skb | 
|  | * @skb: buffer containing fragment to be initialised | 
|  | * @i: paged fragment index to initialise | 
|  | * @page: the page to use for this fragment | 
|  | * @off: the offset to the data with @page | 
|  | * @size: the length of the data | 
|  | * | 
|  | * Initialises the @i'th fragment of @skb to point to &size bytes at | 
|  | * offset @off within @page. | 
|  | * | 
|  | * Does not take any additional reference on the fragment. | 
|  | */ | 
|  | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, | 
|  | struct page *page, int off, int size) | 
|  | { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | /* | 
|  | * Propagate page->pfmemalloc to the skb if we can. The problem is | 
|  | * that not all callers have unique ownership of the page. If | 
|  | * pfmemalloc is set, we check the mapping as a mapping implies | 
|  | * page->index is set (index and pfmemalloc share space). | 
|  | * If it's a valid mapping, we cannot use page->pfmemalloc but we | 
|  | * do not lose pfmemalloc information as the pages would not be | 
|  | * allocated using __GFP_MEMALLOC. | 
|  | */ | 
|  | frag->page.p		  = page; | 
|  | frag->page_offset	  = off; | 
|  | skb_frag_size_set(frag, size); | 
|  |  | 
|  | page = compound_head(page); | 
|  | if (page->pfmemalloc && !page->mapping) | 
|  | skb->pfmemalloc	= true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_fill_page_desc - initialise a paged fragment in an skb | 
|  | * @skb: buffer containing fragment to be initialised | 
|  | * @i: paged fragment index to initialise | 
|  | * @page: the page to use for this fragment | 
|  | * @off: the offset to the data with @page | 
|  | * @size: the length of the data | 
|  | * | 
|  | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of | 
|  | * @skb to point to @size bytes at offset @off within @page. In | 
|  | * addition updates @skb such that @i is the last fragment. | 
|  | * | 
|  | * Does not take any additional reference on the fragment. | 
|  | */ | 
|  | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, | 
|  | struct page *page, int off, int size) | 
|  | { | 
|  | __skb_fill_page_desc(skb, i, page, off, size); | 
|  | skb_shinfo(skb)->nr_frags = i + 1; | 
|  | } | 
|  |  | 
|  | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, | 
|  | int size, unsigned int truesize); | 
|  |  | 
|  | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, | 
|  | unsigned int truesize); | 
|  |  | 
|  | #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags) | 
|  | #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb)) | 
|  | #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb)) | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->tail; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
|  | { | 
|  | skb->tail = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb->tail += offset; | 
|  | } | 
|  |  | 
|  | #else /* NET_SKBUFF_DATA_USES_OFFSET */ | 
|  | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->tail; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
|  | { | 
|  | skb->tail = skb->data; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb->tail = skb->data + offset; | 
|  | } | 
|  |  | 
|  | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ | 
|  |  | 
|  | /* | 
|  | *	Add data to an sk_buff | 
|  | */ | 
|  | unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); | 
|  | unsigned char *skb_put(struct sk_buff *skb, unsigned int len); | 
|  | static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned char *tmp = skb_tail_pointer(skb); | 
|  | SKB_LINEAR_ASSERT(skb); | 
|  | skb->tail += len; | 
|  | skb->len  += len; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | unsigned char *skb_push(struct sk_buff *skb, unsigned int len); | 
|  | static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->data -= len; | 
|  | skb->len  += len; | 
|  | return skb->data; | 
|  | } | 
|  |  | 
|  | unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); | 
|  | static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->len -= len; | 
|  | BUG_ON(skb->len < skb->data_len); | 
|  | return skb->data += len; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); | 
|  | } | 
|  |  | 
|  | unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); | 
|  |  | 
|  | static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (len > skb_headlen(skb) && | 
|  | !__pskb_pull_tail(skb, len - skb_headlen(skb))) | 
|  | return NULL; | 
|  | skb->len -= len; | 
|  | return skb->data += len; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); | 
|  | } | 
|  |  | 
|  | static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (likely(len <= skb_headlen(skb))) | 
|  | return 1; | 
|  | if (unlikely(len > skb->len)) | 
|  | return 0; | 
|  | return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_headroom - bytes at buffer head | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the head of an &sk_buff. | 
|  | */ | 
|  | static inline unsigned int skb_headroom(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_tailroom - bytes at buffer end | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the tail of an sk_buff | 
|  | */ | 
|  | static inline int skb_tailroom(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_availroom - bytes at buffer end | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the tail of an sk_buff | 
|  | *	allocated by sk_stream_alloc() | 
|  | */ | 
|  | static inline int skb_availroom(const struct sk_buff *skb) | 
|  | { | 
|  | if (skb_is_nonlinear(skb)) | 
|  | return 0; | 
|  |  | 
|  | return skb->end - skb->tail - skb->reserved_tailroom; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_reserve - adjust headroom | 
|  | *	@skb: buffer to alter | 
|  | *	@len: bytes to move | 
|  | * | 
|  | *	Increase the headroom of an empty &sk_buff by reducing the tail | 
|  | *	room. This is only allowed for an empty buffer. | 
|  | */ | 
|  | static inline void skb_reserve(struct sk_buff *skb, int len) | 
|  | { | 
|  | skb->data += len; | 
|  | skb->tail += len; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_headers(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_mac_header = skb->mac_header; | 
|  | skb->inner_network_header = skb->network_header; | 
|  | skb->inner_transport_header = skb->transport_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_mac_len(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_len = skb->network_header - skb->mac_header; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_transport_header(const struct sk_buff | 
|  | *skb) | 
|  | { | 
|  | return skb->head + skb->inner_transport_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_transport_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_transport_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_transport_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_transport_header(skb); | 
|  | skb->inner_transport_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->inner_network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_network_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_network_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_network_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_network_header(skb); | 
|  | skb->inner_network_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->inner_mac_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_mac_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_mac_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_mac_header(skb); | 
|  | skb->inner_mac_header += offset; | 
|  | } | 
|  | static inline bool skb_transport_header_was_set(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->transport_header != (typeof(skb->transport_header))~0U; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->transport_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_transport_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->transport_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_transport_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_transport_header(skb); | 
|  | skb->transport_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_network_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_network_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->network_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_network_header(skb); | 
|  | skb->network_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->mac_header; | 
|  | } | 
|  |  | 
|  | static inline int skb_mac_header_was_set(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->mac_header != (typeof(skb->mac_header))~0U; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_mac_header(skb); | 
|  | skb->mac_header += offset; | 
|  | } | 
|  |  | 
|  | static inline void skb_pop_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_header = skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_probe_transport_header(struct sk_buff *skb, | 
|  | const int offset_hint) | 
|  | { | 
|  | struct flow_keys keys; | 
|  |  | 
|  | if (skb_transport_header_was_set(skb)) | 
|  | return; | 
|  | else if (skb_flow_dissect(skb, &keys)) | 
|  | skb_set_transport_header(skb, keys.thoff); | 
|  | else | 
|  | skb_set_transport_header(skb, offset_hint); | 
|  | } | 
|  |  | 
|  | static inline void skb_mac_header_rebuild(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_mac_header_was_set(skb)) { | 
|  | const unsigned char *old_mac = skb_mac_header(skb); | 
|  |  | 
|  | skb_set_mac_header(skb, -skb->mac_len); | 
|  | memmove(skb_mac_header(skb), old_mac, skb->mac_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int skb_checksum_start_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->csum_start - skb_headroom(skb); | 
|  | } | 
|  |  | 
|  | static inline int skb_transport_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_transport_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline u32 skb_network_header_len(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->transport_header - skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->inner_transport_header - skb->inner_network_header; | 
|  | } | 
|  |  | 
|  | static inline int skb_network_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_network_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline int skb_inner_network_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_inner_network_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_network_offset(skb) + len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPUs often take a performance hit when accessing unaligned memory | 
|  | * locations. The actual performance hit varies, it can be small if the | 
|  | * hardware handles it or large if we have to take an exception and fix it | 
|  | * in software. | 
|  | * | 
|  | * Since an ethernet header is 14 bytes network drivers often end up with | 
|  | * the IP header at an unaligned offset. The IP header can be aligned by | 
|  | * shifting the start of the packet by 2 bytes. Drivers should do this | 
|  | * with: | 
|  | * | 
|  | * skb_reserve(skb, NET_IP_ALIGN); | 
|  | * | 
|  | * The downside to this alignment of the IP header is that the DMA is now | 
|  | * unaligned. On some architectures the cost of an unaligned DMA is high | 
|  | * and this cost outweighs the gains made by aligning the IP header. | 
|  | * | 
|  | * Since this trade off varies between architectures, we allow NET_IP_ALIGN | 
|  | * to be overridden. | 
|  | */ | 
|  | #ifndef NET_IP_ALIGN | 
|  | #define NET_IP_ALIGN	2 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The networking layer reserves some headroom in skb data (via | 
|  | * dev_alloc_skb). This is used to avoid having to reallocate skb data when | 
|  | * the header has to grow. In the default case, if the header has to grow | 
|  | * 32 bytes or less we avoid the reallocation. | 
|  | * | 
|  | * Unfortunately this headroom changes the DMA alignment of the resulting | 
|  | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive | 
|  | * on some architectures. An architecture can override this value, | 
|  | * perhaps setting it to a cacheline in size (since that will maintain | 
|  | * cacheline alignment of the DMA). It must be a power of 2. | 
|  | * | 
|  | * Various parts of the networking layer expect at least 32 bytes of | 
|  | * headroom, you should not reduce this. | 
|  | * | 
|  | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) | 
|  | * to reduce average number of cache lines per packet. | 
|  | * get_rps_cpus() for example only access one 64 bytes aligned block : | 
|  | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) | 
|  | */ | 
|  | #ifndef NET_SKB_PAD | 
|  | #define NET_SKB_PAD	max(32, L1_CACHE_BYTES) | 
|  | #endif | 
|  |  | 
|  | int ___pskb_trim(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (unlikely(skb_is_nonlinear(skb))) { | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  | skb->len = len; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | void skb_trim(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->data_len) | 
|  | return ___pskb_trim(skb, len); | 
|  | __skb_trim(skb, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return (len < skb->len) ? __pskb_trim(skb, len) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer | 
|  | *	@skb: buffer to alter | 
|  | *	@len: new length | 
|  | * | 
|  | *	This is identical to pskb_trim except that the caller knows that | 
|  | *	the skb is not cloned so we should never get an error due to out- | 
|  | *	of-memory. | 
|  | */ | 
|  | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | int err = pskb_trim(skb, len); | 
|  | BUG_ON(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_orphan - orphan a buffer | 
|  | *	@skb: buffer to orphan | 
|  | * | 
|  | *	If a buffer currently has an owner then we call the owner's | 
|  | *	destructor function and make the @skb unowned. The buffer continues | 
|  | *	to exist but is no longer charged to its former owner. | 
|  | */ | 
|  | static inline void skb_orphan(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->destructor) { | 
|  | skb->destructor(skb); | 
|  | skb->destructor = NULL; | 
|  | skb->sk		= NULL; | 
|  | } else { | 
|  | BUG_ON(skb->sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_orphan_frags - orphan the frags contained in a buffer | 
|  | *	@skb: buffer to orphan frags from | 
|  | *	@gfp_mask: allocation mask for replacement pages | 
|  | * | 
|  | *	For each frag in the SKB which needs a destructor (i.e. has an | 
|  | *	owner) create a copy of that frag and release the original | 
|  | *	page by calling the destructor. | 
|  | */ | 
|  | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) | 
|  | return 0; | 
|  | return skb_copy_ubufs(skb, gfp_mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_purge - empty a list | 
|  | *	@list: list to empty | 
|  | * | 
|  | *	Delete all buffers on an &sk_buff list. Each buffer is removed from | 
|  | *	the list and one reference dropped. This function does not take the | 
|  | *	list lock and the caller must hold the relevant locks to use it. | 
|  | */ | 
|  | void skb_queue_purge(struct sk_buff_head *list); | 
|  | static inline void __skb_queue_purge(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | while ((skb = __skb_dequeue(list)) != NULL) | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) | 
|  | #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) | 
|  | #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE | 
|  |  | 
|  | void *netdev_alloc_frag(unsigned int fragsz); | 
|  |  | 
|  | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, | 
|  | gfp_t gfp_mask); | 
|  |  | 
|  | /** | 
|  | *	netdev_alloc_skb - allocate an skbuff for rx on a specific device | 
|  | *	@dev: network device to receive on | 
|  | *	@length: length to allocate | 
|  | * | 
|  | *	Allocate a new &sk_buff and assign it a usage count of one. The | 
|  | *	buffer has unspecified headroom built in. Users should allocate | 
|  | *	the headroom they think they need without accounting for the | 
|  | *	built in space. The built in space is used for optimisations. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. Although this function | 
|  | *	allocates memory it can be called from an interrupt. | 
|  | */ | 
|  | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, | 
|  | unsigned int length) | 
|  | { | 
|  | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* legacy helper around __netdev_alloc_skb() */ | 
|  | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __netdev_alloc_skb(NULL, length, gfp_mask); | 
|  | } | 
|  |  | 
|  | /* legacy helper around netdev_alloc_skb() */ | 
|  | static inline struct sk_buff *dev_alloc_skb(unsigned int length) | 
|  | { | 
|  | return netdev_alloc_skb(NULL, length); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, | 
|  | unsigned int length, gfp_t gfp) | 
|  | { | 
|  | struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); | 
|  |  | 
|  | if (NET_IP_ALIGN && skb) | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, | 
|  | unsigned int length) | 
|  | { | 
|  | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data | 
|  | *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX | 
|  | *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used | 
|  | *	@order: size of the allocation | 
|  | * | 
|  | * 	Allocate a new page. | 
|  | * | 
|  | * 	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, | 
|  | struct sk_buff *skb, | 
|  | unsigned int order) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | gfp_mask |= __GFP_COLD; | 
|  |  | 
|  | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); | 
|  | if (skb && page && page->pfmemalloc) | 
|  | skb->pfmemalloc = true; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data | 
|  | *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX | 
|  | *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used | 
|  | * | 
|  | * 	Allocate a new page. | 
|  | * | 
|  | * 	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | static inline struct page *__skb_alloc_page(gfp_t gfp_mask, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | return __skb_alloc_pages(gfp_mask, skb, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page | 
|  | *	@page: The page that was allocated from skb_alloc_page | 
|  | *	@skb: The skb that may need pfmemalloc set | 
|  | */ | 
|  | static inline void skb_propagate_pfmemalloc(struct page *page, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | if (page && page->pfmemalloc) | 
|  | skb->pfmemalloc = true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_page - retrieve the page refered to by a paged fragment | 
|  | * @frag: the paged fragment | 
|  | * | 
|  | * Returns the &struct page associated with @frag. | 
|  | */ | 
|  | static inline struct page *skb_frag_page(const skb_frag_t *frag) | 
|  | { | 
|  | return frag->page.p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_ref - take an addition reference on a paged fragment. | 
|  | * @frag: the paged fragment | 
|  | * | 
|  | * Takes an additional reference on the paged fragment @frag. | 
|  | */ | 
|  | static inline void __skb_frag_ref(skb_frag_t *frag) | 
|  | { | 
|  | get_page(skb_frag_page(frag)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_ref - take an addition reference on a paged fragment of an skb. | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset. | 
|  | * | 
|  | * Takes an additional reference on the @f'th paged fragment of @skb. | 
|  | */ | 
|  | static inline void skb_frag_ref(struct sk_buff *skb, int f) | 
|  | { | 
|  | __skb_frag_ref(&skb_shinfo(skb)->frags[f]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_unref - release a reference on a paged fragment. | 
|  | * @frag: the paged fragment | 
|  | * | 
|  | * Releases a reference on the paged fragment @frag. | 
|  | */ | 
|  | static inline void __skb_frag_unref(skb_frag_t *frag) | 
|  | { | 
|  | put_page(skb_frag_page(frag)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_unref - release a reference on a paged fragment of an skb. | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset | 
|  | * | 
|  | * Releases a reference on the @f'th paged fragment of @skb. | 
|  | */ | 
|  | static inline void skb_frag_unref(struct sk_buff *skb, int f) | 
|  | { | 
|  | __skb_frag_unref(&skb_shinfo(skb)->frags[f]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_address - gets the address of the data contained in a paged fragment | 
|  | * @frag: the paged fragment buffer | 
|  | * | 
|  | * Returns the address of the data within @frag. The page must already | 
|  | * be mapped. | 
|  | */ | 
|  | static inline void *skb_frag_address(const skb_frag_t *frag) | 
|  | { | 
|  | return page_address(skb_frag_page(frag)) + frag->page_offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_address_safe - gets the address of the data contained in a paged fragment | 
|  | * @frag: the paged fragment buffer | 
|  | * | 
|  | * Returns the address of the data within @frag. Checks that the page | 
|  | * is mapped and returns %NULL otherwise. | 
|  | */ | 
|  | static inline void *skb_frag_address_safe(const skb_frag_t *frag) | 
|  | { | 
|  | void *ptr = page_address(skb_frag_page(frag)); | 
|  | if (unlikely(!ptr)) | 
|  | return NULL; | 
|  |  | 
|  | return ptr + frag->page_offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_set_page - sets the page contained in a paged fragment | 
|  | * @frag: the paged fragment | 
|  | * @page: the page to set | 
|  | * | 
|  | * Sets the fragment @frag to contain @page. | 
|  | */ | 
|  | static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) | 
|  | { | 
|  | frag->page.p = page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_set_page - sets the page contained in a paged fragment of an skb | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset | 
|  | * @page: the page to set | 
|  | * | 
|  | * Sets the @f'th fragment of @skb to contain @page. | 
|  | */ | 
|  | static inline void skb_frag_set_page(struct sk_buff *skb, int f, | 
|  | struct page *page) | 
|  | { | 
|  | __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); | 
|  | } | 
|  |  | 
|  | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); | 
|  |  | 
|  | /** | 
|  | * skb_frag_dma_map - maps a paged fragment via the DMA API | 
|  | * @dev: the device to map the fragment to | 
|  | * @frag: the paged fragment to map | 
|  | * @offset: the offset within the fragment (starting at the | 
|  | *          fragment's own offset) | 
|  | * @size: the number of bytes to map | 
|  | * @dir: the direction of the mapping (%PCI_DMA_*) | 
|  | * | 
|  | * Maps the page associated with @frag to @device. | 
|  | */ | 
|  | static inline dma_addr_t skb_frag_dma_map(struct device *dev, | 
|  | const skb_frag_t *frag, | 
|  | size_t offset, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | return dma_map_page(dev, skb_frag_page(frag), | 
|  | frag->page_offset + offset, size, dir); | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __pskb_copy(skb, skb_headroom(skb), gfp_mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_clone_writable - is the header of a clone writable | 
|  | *	@skb: buffer to check | 
|  | *	@len: length up to which to write | 
|  | * | 
|  | *	Returns true if modifying the header part of the cloned buffer | 
|  | *	does not requires the data to be copied. | 
|  | */ | 
|  | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return !skb_header_cloned(skb) && | 
|  | skb_headroom(skb) + len <= skb->hdr_len; | 
|  | } | 
|  |  | 
|  | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, | 
|  | int cloned) | 
|  | { | 
|  | int delta = 0; | 
|  |  | 
|  | if (headroom > skb_headroom(skb)) | 
|  | delta = headroom - skb_headroom(skb); | 
|  |  | 
|  | if (delta || cloned) | 
|  | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, | 
|  | GFP_ATOMIC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_cow - copy header of skb when it is required | 
|  | *	@skb: buffer to cow | 
|  | *	@headroom: needed headroom | 
|  | * | 
|  | *	If the skb passed lacks sufficient headroom or its data part | 
|  | *	is shared, data is reallocated. If reallocation fails, an error | 
|  | *	is returned and original skb is not changed. | 
|  | * | 
|  | *	The result is skb with writable area skb->head...skb->tail | 
|  | *	and at least @headroom of space at head. | 
|  | */ | 
|  | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | return __skb_cow(skb, headroom, skb_cloned(skb)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_cow_head - skb_cow but only making the head writable | 
|  | *	@skb: buffer to cow | 
|  | *	@headroom: needed headroom | 
|  | * | 
|  | *	This function is identical to skb_cow except that we replace the | 
|  | *	skb_cloned check by skb_header_cloned.  It should be used when | 
|  | *	you only need to push on some header and do not need to modify | 
|  | *	the data. | 
|  | */ | 
|  | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | return __skb_cow(skb, headroom, skb_header_cloned(skb)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_padto	- pad an skbuff up to a minimal size | 
|  | *	@skb: buffer to pad | 
|  | *	@len: minimal length | 
|  | * | 
|  | *	Pads up a buffer to ensure the trailing bytes exist and are | 
|  | *	blanked. If the buffer already contains sufficient data it | 
|  | *	is untouched. Otherwise it is extended. Returns zero on | 
|  | *	success. The skb is freed on error. | 
|  | */ | 
|  |  | 
|  | static inline int skb_padto(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned int size = skb->len; | 
|  | if (likely(size >= len)) | 
|  | return 0; | 
|  | return skb_pad(skb, len - size); | 
|  | } | 
|  |  | 
|  | static inline int skb_add_data(struct sk_buff *skb, | 
|  | char __user *from, int copy) | 
|  | { | 
|  | const int off = skb->len; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_NONE) { | 
|  | int err = 0; | 
|  | __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), | 
|  | copy, 0, &err); | 
|  | if (!err) { | 
|  | skb->csum = csum_block_add(skb->csum, csum, off); | 
|  | return 0; | 
|  | } | 
|  | } else if (!copy_from_user(skb_put(skb, copy), from, copy)) | 
|  | return 0; | 
|  |  | 
|  | __skb_trim(skb, off); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, | 
|  | const struct page *page, int off) | 
|  | { | 
|  | if (i) { | 
|  | const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; | 
|  |  | 
|  | return page == skb_frag_page(frag) && | 
|  | off == frag->page_offset + skb_frag_size(frag); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline int __skb_linearize(struct sk_buff *skb) | 
|  | { | 
|  | return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_linearize - convert paged skb to linear one | 
|  | *	@skb: buffer to linarize | 
|  | * | 
|  | *	If there is no free memory -ENOMEM is returned, otherwise zero | 
|  | *	is returned and the old skb data released. | 
|  | */ | 
|  | static inline int skb_linearize(struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_has_shared_frag - can any frag be overwritten | 
|  | * @skb: buffer to test | 
|  | * | 
|  | * Return true if the skb has at least one frag that might be modified | 
|  | * by an external entity (as in vmsplice()/sendfile()) | 
|  | */ | 
|  | static inline bool skb_has_shared_frag(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) && | 
|  | skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_linearize_cow - make sure skb is linear and writable | 
|  | *	@skb: buffer to process | 
|  | * | 
|  | *	If there is no free memory -ENOMEM is returned, otherwise zero | 
|  | *	is returned and the old skb data released. | 
|  | */ | 
|  | static inline int skb_linearize_cow(struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) || skb_cloned(skb) ? | 
|  | __skb_linearize(skb) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_postpull_rcsum - update checksum for received skb after pull | 
|  | *	@skb: buffer to update | 
|  | *	@start: start of data before pull | 
|  | *	@len: length of data pulled | 
|  | * | 
|  | *	After doing a pull on a received packet, you need to call this to | 
|  | *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to | 
|  | *	CHECKSUM_NONE so that it can be recomputed from scratch. | 
|  | */ | 
|  |  | 
|  | static inline void skb_postpull_rcsum(struct sk_buff *skb, | 
|  | const void *start, unsigned int len) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); | 
|  | } | 
|  |  | 
|  | unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | /** | 
|  | *	pskb_trim_rcsum - trim received skb and update checksum | 
|  | *	@skb: buffer to trim | 
|  | *	@len: new length | 
|  | * | 
|  | *	This is exactly the same as pskb_trim except that it ensures the | 
|  | *	checksum of received packets are still valid after the operation. | 
|  | */ | 
|  |  | 
|  | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (likely(len >= skb->len)) | 
|  | return 0; | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | return __pskb_trim(skb, len); | 
|  | } | 
|  |  | 
|  | #define skb_queue_walk(queue, skb) \ | 
|  | for (skb = (queue)->next;					\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = skb->next) | 
|  |  | 
|  | #define skb_queue_walk_safe(queue, skb, tmp)					\ | 
|  | for (skb = (queue)->next, tmp = skb->next;			\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->next) | 
|  |  | 
|  | #define skb_queue_walk_from(queue, skb)						\ | 
|  | for (; skb != (struct sk_buff *)(queue);			\ | 
|  | skb = skb->next) | 
|  |  | 
|  | #define skb_queue_walk_from_safe(queue, skb, tmp)				\ | 
|  | for (tmp = skb->next;						\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->next) | 
|  |  | 
|  | #define skb_queue_reverse_walk(queue, skb) \ | 
|  | for (skb = (queue)->prev;					\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = skb->prev) | 
|  |  | 
|  | #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\ | 
|  | for (skb = (queue)->prev, tmp = skb->prev;			\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->prev) | 
|  |  | 
|  | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\ | 
|  | for (tmp = skb->prev;						\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->prev) | 
|  |  | 
|  | static inline bool skb_has_frag_list(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->frag_list != NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_list_init(struct sk_buff *skb) | 
|  | { | 
|  | skb_shinfo(skb)->frag_list = NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) | 
|  | { | 
|  | frag->next = skb_shinfo(skb)->frag_list; | 
|  | skb_shinfo(skb)->frag_list = frag; | 
|  | } | 
|  |  | 
|  | #define skb_walk_frags(skb, iter)	\ | 
|  | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) | 
|  |  | 
|  | struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, | 
|  | int *peeked, int *off, int *err); | 
|  | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, | 
|  | int *err); | 
|  | unsigned int datagram_poll(struct file *file, struct socket *sock, | 
|  | struct poll_table_struct *wait); | 
|  | int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, | 
|  | struct iovec *to, int size); | 
|  | int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, | 
|  | struct iovec *iov); | 
|  | int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, | 
|  | const struct iovec *from, int from_offset, | 
|  | int len); | 
|  | int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, | 
|  | int offset, size_t count); | 
|  | int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, | 
|  | const struct iovec *to, int to_offset, | 
|  | int size); | 
|  | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); | 
|  | void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); | 
|  | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); | 
|  | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); | 
|  | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); | 
|  | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, | 
|  | int len, __wsum csum); | 
|  | int skb_splice_bits(struct sk_buff *skb, unsigned int offset, | 
|  | struct pipe_inode_info *pipe, unsigned int len, | 
|  | unsigned int flags); | 
|  | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); | 
|  | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); | 
|  | int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, | 
|  | int len, int hlen); | 
|  | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); | 
|  | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); | 
|  | void skb_scrub_packet(struct sk_buff *skb, bool xnet); | 
|  | unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); | 
|  | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); | 
|  |  | 
|  | struct skb_checksum_ops { | 
|  | __wsum (*update)(const void *mem, int len, __wsum wsum); | 
|  | __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); | 
|  | }; | 
|  |  | 
|  | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum, const struct skb_checksum_ops *ops); | 
|  | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum); | 
|  |  | 
|  | static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, | 
|  | int len, void *buffer) | 
|  | { | 
|  | int hlen = skb_headlen(skb); | 
|  |  | 
|  | if (hlen - offset >= len) | 
|  | return skb->data + offset; | 
|  |  | 
|  | if (skb_copy_bits(skb, offset, buffer, len) < 0) | 
|  | return NULL; | 
|  |  | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_needs_linearize - check if we need to linearize a given skb | 
|  | *			      depending on the given device features. | 
|  | *	@skb: socket buffer to check | 
|  | *	@features: net device features | 
|  | * | 
|  | *	Returns true if either: | 
|  | *	1. skb has frag_list and the device doesn't support FRAGLIST, or | 
|  | *	2. skb is fragmented and the device does not support SG. | 
|  | */ | 
|  | static inline bool skb_needs_linearize(struct sk_buff *skb, | 
|  | netdev_features_t features) | 
|  | { | 
|  | return skb_is_nonlinear(skb) && | 
|  | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || | 
|  | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, | 
|  | void *to, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(to, skb->data, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, | 
|  | const int offset, void *to, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(to, skb->data + offset, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_to_linear_data(struct sk_buff *skb, | 
|  | const void *from, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(skb->data, from, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, | 
|  | const int offset, | 
|  | const void *from, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(skb->data + offset, from, len); | 
|  | } | 
|  |  | 
|  | void skb_init(void); | 
|  |  | 
|  | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->tstamp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_get_timestamp - get timestamp from a skb | 
|  | *	@skb: skb to get stamp from | 
|  | *	@stamp: pointer to struct timeval to store stamp in | 
|  | * | 
|  | *	Timestamps are stored in the skb as offsets to a base timestamp. | 
|  | *	This function converts the offset back to a struct timeval and stores | 
|  | *	it in stamp. | 
|  | */ | 
|  | static inline void skb_get_timestamp(const struct sk_buff *skb, | 
|  | struct timeval *stamp) | 
|  | { | 
|  | *stamp = ktime_to_timeval(skb->tstamp); | 
|  | } | 
|  |  | 
|  | static inline void skb_get_timestampns(const struct sk_buff *skb, | 
|  | struct timespec *stamp) | 
|  | { | 
|  | *stamp = ktime_to_timespec(skb->tstamp); | 
|  | } | 
|  |  | 
|  | static inline void __net_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | skb->tstamp = ktime_get_real(); | 
|  | } | 
|  |  | 
|  | static inline ktime_t net_timedelta(ktime_t t) | 
|  | { | 
|  | return ktime_sub(ktime_get_real(), t); | 
|  | } | 
|  |  | 
|  | static inline ktime_t net_invalid_timestamp(void) | 
|  | { | 
|  | return ktime_set(0, 0); | 
|  | } | 
|  |  | 
|  | void skb_timestamping_init(void); | 
|  |  | 
|  | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING | 
|  |  | 
|  | void skb_clone_tx_timestamp(struct sk_buff *skb); | 
|  | bool skb_defer_rx_timestamp(struct sk_buff *skb); | 
|  |  | 
|  | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
|  |  | 
|  | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
|  |  | 
|  | /** | 
|  | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps | 
|  | * | 
|  | * PHY drivers may accept clones of transmitted packets for | 
|  | * timestamping via their phy_driver.txtstamp method. These drivers | 
|  | * must call this function to return the skb back to the stack, with | 
|  | * or without a timestamp. | 
|  | * | 
|  | * @skb: clone of the the original outgoing packet | 
|  | * @hwtstamps: hardware time stamps, may be NULL if not available | 
|  | * | 
|  | */ | 
|  | void skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps); | 
|  |  | 
|  | /** | 
|  | * skb_tstamp_tx - queue clone of skb with send time stamps | 
|  | * @orig_skb:	the original outgoing packet | 
|  | * @hwtstamps:	hardware time stamps, may be NULL if not available | 
|  | * | 
|  | * If the skb has a socket associated, then this function clones the | 
|  | * skb (thus sharing the actual data and optional structures), stores | 
|  | * the optional hardware time stamping information (if non NULL) or | 
|  | * generates a software time stamp (otherwise), then queues the clone | 
|  | * to the error queue of the socket.  Errors are silently ignored. | 
|  | */ | 
|  | void skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps); | 
|  |  | 
|  | static inline void sw_tx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && | 
|  | !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) | 
|  | skb_tstamp_tx(skb, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_tx_timestamp() - Driver hook for transmit timestamping | 
|  | * | 
|  | * Ethernet MAC Drivers should call this function in their hard_xmit() | 
|  | * function immediately before giving the sk_buff to the MAC hardware. | 
|  | * | 
|  | * Specifically, one should make absolutely sure that this function is | 
|  | * called before TX completion of this packet can trigger.  Otherwise | 
|  | * the packet could potentially already be freed. | 
|  | * | 
|  | * @skb: A socket buffer. | 
|  | */ | 
|  | static inline void skb_tx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | skb_clone_tx_timestamp(skb); | 
|  | sw_tx_timestamp(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_complete_wifi_ack - deliver skb with wifi status | 
|  | * | 
|  | * @skb: the original outgoing packet | 
|  | * @acked: ack status | 
|  | * | 
|  | */ | 
|  | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); | 
|  |  | 
|  | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); | 
|  | __sum16 __skb_checksum_complete(struct sk_buff *skb); | 
|  |  | 
|  | static inline int skb_csum_unnecessary(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->ip_summed & CHECKSUM_UNNECESSARY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_checksum_complete - Calculate checksum of an entire packet | 
|  | *	@skb: packet to process | 
|  | * | 
|  | *	This function calculates the checksum over the entire packet plus | 
|  | *	the value of skb->csum.  The latter can be used to supply the | 
|  | *	checksum of a pseudo header as used by TCP/UDP.  It returns the | 
|  | *	checksum. | 
|  | * | 
|  | *	For protocols that contain complete checksums such as ICMP/TCP/UDP, | 
|  | *	this function can be used to verify that checksum on received | 
|  | *	packets.  In that case the function should return zero if the | 
|  | *	checksum is correct.  In particular, this function will return zero | 
|  | *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the | 
|  | *	hardware has already verified the correctness of the checksum. | 
|  | */ | 
|  | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) | 
|  | { | 
|  | return skb_csum_unnecessary(skb) ? | 
|  | 0 : __skb_checksum_complete(skb); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | void nf_conntrack_destroy(struct nf_conntrack *nfct); | 
|  | static inline void nf_conntrack_put(struct nf_conntrack *nfct) | 
|  | { | 
|  | if (nfct && atomic_dec_and_test(&nfct->use)) | 
|  | nf_conntrack_destroy(nfct); | 
|  | } | 
|  | static inline void nf_conntrack_get(struct nf_conntrack *nfct) | 
|  | { | 
|  | if (nfct) | 
|  | atomic_inc(&nfct->use); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) | 
|  | { | 
|  | if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) | 
|  | kfree(nf_bridge); | 
|  | } | 
|  | static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) | 
|  | { | 
|  | if (nf_bridge) | 
|  | atomic_inc(&nf_bridge->use); | 
|  | } | 
|  | #endif /* CONFIG_BRIDGE_NETFILTER */ | 
|  | static inline void nf_reset(struct sk_buff *skb) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | nf_conntrack_put(skb->nfct); | 
|  | skb->nfct = NULL; | 
|  | #endif | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | nf_bridge_put(skb->nf_bridge); | 
|  | skb->nf_bridge = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void nf_reset_trace(struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) | 
|  | skb->nf_trace = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Note: This doesn't put any conntrack and bridge info in dst. */ | 
|  | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | dst->nfct = src->nfct; | 
|  | nf_conntrack_get(src->nfct); | 
|  | dst->nfctinfo = src->nfctinfo; | 
|  | #endif | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | dst->nf_bridge  = src->nf_bridge; | 
|  | nf_bridge_get(src->nf_bridge); | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) | 
|  | dst->nf_trace = src->nf_trace; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | nf_conntrack_put(dst->nfct); | 
|  | #endif | 
|  | #ifdef CONFIG_BRIDGE_NETFILTER | 
|  | nf_bridge_put(dst->nf_bridge); | 
|  | #endif | 
|  | __nf_copy(dst, src); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->secmark = from->secmark; | 
|  | } | 
|  |  | 
|  | static inline void skb_init_secmark(struct sk_buff *skb) | 
|  | { | 
|  | skb->secmark = 0; | 
|  | } | 
|  | #else | 
|  | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
|  | { } | 
|  |  | 
|  | static inline void skb_init_secmark(struct sk_buff *skb) | 
|  | { } | 
|  | #endif | 
|  |  | 
|  | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) | 
|  | { | 
|  | skb->queue_mapping = queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->queue_mapping = from->queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) | 
|  | { | 
|  | skb->queue_mapping = rx_queue + 1; | 
|  | } | 
|  |  | 
|  | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping - 1; | 
|  | } | 
|  |  | 
|  | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping != 0; | 
|  | } | 
|  |  | 
|  | u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, | 
|  | unsigned int num_tx_queues); | 
|  |  | 
|  | static inline struct sec_path *skb_sec_path(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_XFRM | 
|  | return skb->sp; | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Keeps track of mac header offset relative to skb->head. | 
|  | * It is useful for TSO of Tunneling protocol. e.g. GRE. | 
|  | * For non-tunnel skb it points to skb_mac_header() and for | 
|  | * tunnel skb it points to outer mac header. | 
|  | * Keeps track of level of encapsulation of network headers. | 
|  | */ | 
|  | struct skb_gso_cb { | 
|  | int	mac_offset; | 
|  | int	encap_level; | 
|  | }; | 
|  | #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) | 
|  |  | 
|  | static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) | 
|  | { | 
|  | return (skb_mac_header(inner_skb) - inner_skb->head) - | 
|  | SKB_GSO_CB(inner_skb)->mac_offset; | 
|  | } | 
|  |  | 
|  | static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) | 
|  | { | 
|  | int new_headroom, headroom; | 
|  | int ret; | 
|  |  | 
|  | headroom = skb_headroom(skb); | 
|  | ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | new_headroom = skb_headroom(skb); | 
|  | SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool skb_is_gso(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_size; | 
|  | } | 
|  |  | 
|  | /* Note: Should be called only if skb_is_gso(skb) is true */ | 
|  | static inline bool skb_is_gso_v6(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; | 
|  | } | 
|  |  | 
|  | void __skb_warn_lro_forwarding(const struct sk_buff *skb); | 
|  |  | 
|  | static inline bool skb_warn_if_lro(const struct sk_buff *skb) | 
|  | { | 
|  | /* LRO sets gso_size but not gso_type, whereas if GSO is really | 
|  | * wanted then gso_type will be set. */ | 
|  | const struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  |  | 
|  | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && | 
|  | unlikely(shinfo->gso_type == 0)) { | 
|  | __skb_warn_lro_forwarding(skb); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void skb_forward_csum(struct sk_buff *skb) | 
|  | { | 
|  | /* Unfortunately we don't support this one.  Any brave souls? */ | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE | 
|  | * @skb: skb to check | 
|  | * | 
|  | * fresh skbs have their ip_summed set to CHECKSUM_NONE. | 
|  | * Instead of forcing ip_summed to CHECKSUM_NONE, we can | 
|  | * use this helper, to document places where we make this assertion. | 
|  | */ | 
|  | static inline void skb_checksum_none_assert(const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef DEBUG | 
|  | BUG_ON(skb->ip_summed != CHECKSUM_NONE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); | 
|  |  | 
|  | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); | 
|  |  | 
|  | u32 __skb_get_poff(const struct sk_buff *skb); | 
|  |  | 
|  | /** | 
|  | * skb_head_is_locked - Determine if the skb->head is locked down | 
|  | * @skb: skb to check | 
|  | * | 
|  | * The head on skbs build around a head frag can be removed if they are | 
|  | * not cloned.  This function returns true if the skb head is locked down | 
|  | * due to either being allocated via kmalloc, or by being a clone with | 
|  | * multiple references to the head. | 
|  | */ | 
|  | static inline bool skb_head_is_locked(const struct sk_buff *skb) | 
|  | { | 
|  | return !skb->head_frag || skb_cloned(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_gso_network_seglen - Return length of individual segments of a gso packet | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * skb_gso_network_seglen is used to determine the real size of the | 
|  | * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). | 
|  | * | 
|  | * The MAC/L2 header is not accounted for. | 
|  | */ | 
|  | static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int hdr_len = skb_transport_header(skb) - | 
|  | skb_network_header(skb); | 
|  | return hdr_len + skb_gso_transport_seglen(skb); | 
|  | } | 
|  | #endif	/* __KERNEL__ */ | 
|  | #endif	/* _LINUX_SKBUFF_H */ |