| GPIO Descriptor Driver Interface |
| ================================ |
| |
| This document serves as a guide for GPIO chip drivers writers. Note that it |
| describes the new descriptor-based interface. For a description of the |
| deprecated integer-based GPIO interface please refer to gpio-legacy.txt. |
| |
| Each GPIO controller driver needs to include the following header, which defines |
| the structures used to define a GPIO driver: |
| |
| #include <linux/gpio/driver.h> |
| |
| |
| Internal Representation of GPIOs |
| ================================ |
| |
| Inside a GPIO driver, individual GPIOs are identified by their hardware number, |
| which is a unique number between 0 and n, n being the number of GPIOs managed by |
| the chip. This number is purely internal: the hardware number of a particular |
| GPIO descriptor is never made visible outside of the driver. |
| |
| On top of this internal number, each GPIO also need to have a global number in |
| the integer GPIO namespace so that it can be used with the legacy GPIO |
| interface. Each chip must thus have a "base" number (which can be automatically |
| assigned), and for each GPIO the global number will be (base + hardware number). |
| Although the integer representation is considered deprecated, it still has many |
| users and thus needs to be maintained. |
| |
| So for example one platform could use numbers 32-159 for GPIOs, with a |
| controller defining 128 GPIOs at a "base" of 32 ; while another platform uses |
| numbers 0..63 with one set of GPIO controllers, 64-79 with another type of GPIO |
| controller, and on one particular board 80-95 with an FPGA. The numbers need not |
| be contiguous; either of those platforms could also use numbers 2000-2063 to |
| identify GPIOs in a bank of I2C GPIO expanders. |
| |
| |
| Controller Drivers: gpio_chip |
| ============================= |
| |
| In the gpiolib framework each GPIO controller is packaged as a "struct |
| gpio_chip" (see linux/gpio/driver.h for its complete definition) with members |
| common to each controller of that type: |
| |
| - methods to establish GPIO direction |
| - methods used to access GPIO values |
| - method to return the IRQ number associated to a given GPIO |
| - flag saying whether calls to its methods may sleep |
| - optional debugfs dump method (showing extra state like pullup config) |
| - optional base number (will be automatically assigned if omitted) |
| - label for diagnostics and GPIOs mapping using platform data |
| |
| The code implementing a gpio_chip should support multiple instances of the |
| controller, possibly using the driver model. That code will configure each |
| gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be rare; |
| use gpiochip_remove() when it is unavoidable. |
| |
| Most often a gpio_chip is part of an instance-specific structure with state not |
| exposed by the GPIO interfaces, such as addressing, power management, and more. |
| Chips such as codecs will have complex non-GPIO state. |
| |
| Any debugfs dump method should normally ignore signals which haven't been |
| requested as GPIOs. They can use gpiochip_is_requested(), which returns either |
| NULL or the label associated with that GPIO when it was requested. |
| |
| Locking IRQ usage |
| ----------------- |
| Input GPIOs can be used as IRQ signals. When this happens, a driver is requested |
| to mark the GPIO as being used as an IRQ: |
| |
| int gpiod_lock_as_irq(struct gpio_desc *desc) |
| |
| This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock |
| is released: |
| |
| void gpiod_unlock_as_irq(struct gpio_desc *desc) |