| /* |
| * Copyright (C) 2013 Advanced Micro Devices, Inc. |
| * |
| * Author: Jacob Shin <jacob.shin@amd.com> |
| * Fixes: Borislav Petkov <bp@suse.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/earlycpio.h> |
| #include <linux/initrd.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/setup.h> |
| #include <asm/microcode_amd.h> |
| |
| /* |
| * This points to the current valid container of microcode patches which we will |
| * save from the initrd before jettisoning its contents. |
| */ |
| static u8 *container; |
| static size_t container_size; |
| |
| static u32 ucode_new_rev; |
| u8 amd_ucode_patch[PATCH_MAX_SIZE]; |
| static u16 this_equiv_id; |
| |
| struct cpio_data ucode_cpio; |
| |
| /* |
| * Microcode patch container file is prepended to the initrd in cpio format. |
| * See Documentation/x86/early-microcode.txt |
| */ |
| static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin"; |
| |
| static struct cpio_data __init find_ucode_in_initrd(void) |
| { |
| long offset = 0; |
| char *path; |
| void *start; |
| size_t size; |
| |
| #ifdef CONFIG_X86_32 |
| struct boot_params *p; |
| |
| /* |
| * On 32-bit, early load occurs before paging is turned on so we need |
| * to use physical addresses. |
| */ |
| p = (struct boot_params *)__pa_nodebug(&boot_params); |
| path = (char *)__pa_nodebug(ucode_path); |
| start = (void *)p->hdr.ramdisk_image; |
| size = p->hdr.ramdisk_size; |
| #else |
| path = ucode_path; |
| start = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET); |
| size = boot_params.hdr.ramdisk_size; |
| #endif |
| |
| return find_cpio_data(path, start, size, &offset); |
| } |
| |
| static size_t compute_container_size(u8 *data, u32 total_size) |
| { |
| size_t size = 0; |
| u32 *header = (u32 *)data; |
| |
| if (header[0] != UCODE_MAGIC || |
| header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ |
| header[2] == 0) /* size */ |
| return size; |
| |
| size = header[2] + CONTAINER_HDR_SZ; |
| total_size -= size; |
| data += size; |
| |
| while (total_size) { |
| u16 patch_size; |
| |
| header = (u32 *)data; |
| |
| if (header[0] != UCODE_UCODE_TYPE) |
| break; |
| |
| /* |
| * Sanity-check patch size. |
| */ |
| patch_size = header[1]; |
| if (patch_size > PATCH_MAX_SIZE) |
| break; |
| |
| size += patch_size + SECTION_HDR_SIZE; |
| data += patch_size + SECTION_HDR_SIZE; |
| total_size -= patch_size + SECTION_HDR_SIZE; |
| } |
| |
| return size; |
| } |
| |
| /* |
| * Early load occurs before we can vmalloc(). So we look for the microcode |
| * patch container file in initrd, traverse equivalent cpu table, look for a |
| * matching microcode patch, and update, all in initrd memory in place. |
| * When vmalloc() is available for use later -- on 64-bit during first AP load, |
| * and on 32-bit during save_microcode_in_initrd_amd() -- we can call |
| * load_microcode_amd() to save equivalent cpu table and microcode patches in |
| * kernel heap memory. |
| */ |
| static void apply_ucode_in_initrd(void *ucode, size_t size) |
| { |
| struct equiv_cpu_entry *eq; |
| size_t *cont_sz; |
| u32 *header; |
| u8 *data, **cont; |
| u16 eq_id = 0; |
| int offset, left; |
| u32 rev, eax, ebx, ecx, edx; |
| u32 *new_rev; |
| |
| #ifdef CONFIG_X86_32 |
| new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); |
| cont_sz = (size_t *)__pa_nodebug(&container_size); |
| cont = (u8 **)__pa_nodebug(&container); |
| #else |
| new_rev = &ucode_new_rev; |
| cont_sz = &container_size; |
| cont = &container; |
| #endif |
| |
| data = ucode; |
| left = size; |
| header = (u32 *)data; |
| |
| /* find equiv cpu table */ |
| if (header[0] != UCODE_MAGIC || |
| header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ |
| header[2] == 0) /* size */ |
| return; |
| |
| eax = 0x00000001; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| while (left > 0) { |
| eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ); |
| |
| *cont = data; |
| |
| /* Advance past the container header */ |
| offset = header[2] + CONTAINER_HDR_SZ; |
| data += offset; |
| left -= offset; |
| |
| eq_id = find_equiv_id(eq, eax); |
| if (eq_id) { |
| this_equiv_id = eq_id; |
| *cont_sz = compute_container_size(*cont, left + offset); |
| |
| /* |
| * truncate how much we need to iterate over in the |
| * ucode update loop below |
| */ |
| left = *cont_sz - offset; |
| break; |
| } |
| |
| /* |
| * support multiple container files appended together. if this |
| * one does not have a matching equivalent cpu entry, we fast |
| * forward to the next container file. |
| */ |
| while (left > 0) { |
| header = (u32 *)data; |
| if (header[0] == UCODE_MAGIC && |
| header[1] == UCODE_EQUIV_CPU_TABLE_TYPE) |
| break; |
| |
| offset = header[1] + SECTION_HDR_SIZE; |
| data += offset; |
| left -= offset; |
| } |
| |
| /* mark where the next microcode container file starts */ |
| offset = data - (u8 *)ucode; |
| ucode = data; |
| } |
| |
| if (!eq_id) { |
| *cont = NULL; |
| *cont_sz = 0; |
| return; |
| } |
| |
| /* find ucode and update if needed */ |
| |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax); |
| |
| while (left > 0) { |
| struct microcode_amd *mc; |
| |
| header = (u32 *)data; |
| if (header[0] != UCODE_UCODE_TYPE || /* type */ |
| header[1] == 0) /* size */ |
| break; |
| |
| mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE); |
| |
| if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) { |
| |
| if (!__apply_microcode_amd(mc)) { |
| rev = mc->hdr.patch_id; |
| *new_rev = rev; |
| |
| /* save ucode patch */ |
| memcpy(amd_ucode_patch, mc, |
| min_t(u32, header[1], PATCH_MAX_SIZE)); |
| } |
| } |
| |
| offset = header[1] + SECTION_HDR_SIZE; |
| data += offset; |
| left -= offset; |
| } |
| } |
| |
| void __init load_ucode_amd_bsp(void) |
| { |
| struct cpio_data cp; |
| void **data; |
| size_t *size; |
| |
| #ifdef CONFIG_X86_32 |
| data = (void **)__pa_nodebug(&ucode_cpio.data); |
| size = (size_t *)__pa_nodebug(&ucode_cpio.size); |
| #else |
| data = &ucode_cpio.data; |
| size = &ucode_cpio.size; |
| #endif |
| |
| cp = find_ucode_in_initrd(); |
| if (!cp.data) |
| return; |
| |
| *data = cp.data; |
| *size = cp.size; |
| |
| apply_ucode_in_initrd(cp.data, cp.size); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * On 32-bit, since AP's early load occurs before paging is turned on, we |
| * cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during |
| * cold boot, AP will apply_ucode_in_initrd() just like the BSP. During |
| * save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch, |
| * which is used upon resume from suspend. |
| */ |
| void load_ucode_amd_ap(void) |
| { |
| struct microcode_amd *mc; |
| size_t *usize; |
| void **ucode; |
| |
| mc = (struct microcode_amd *)__pa(amd_ucode_patch); |
| if (mc->hdr.patch_id && mc->hdr.processor_rev_id) { |
| __apply_microcode_amd(mc); |
| return; |
| } |
| |
| ucode = (void *)__pa_nodebug(&container); |
| usize = (size_t *)__pa_nodebug(&container_size); |
| |
| if (!*ucode || !*usize) |
| return; |
| |
| apply_ucode_in_initrd(*ucode, *usize); |
| } |
| |
| static void __init collect_cpu_sig_on_bsp(void *arg) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| |
| uci->cpu_sig.sig = cpuid_eax(0x00000001); |
| } |
| |
| static void __init get_bsp_sig(void) |
| { |
| unsigned int bsp = boot_cpu_data.cpu_index; |
| struct ucode_cpu_info *uci = ucode_cpu_info + bsp; |
| |
| if (!uci->cpu_sig.sig) |
| smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1); |
| } |
| #else |
| void load_ucode_amd_ap(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| struct equiv_cpu_entry *eq; |
| struct microcode_amd *mc; |
| u32 rev, eax; |
| u16 eq_id; |
| |
| /* Exit if called on the BSP. */ |
| if (!cpu) |
| return; |
| |
| if (!container) |
| return; |
| |
| rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax); |
| |
| uci->cpu_sig.rev = rev; |
| uci->cpu_sig.sig = eax; |
| |
| eax = cpuid_eax(0x00000001); |
| eq = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ); |
| |
| eq_id = find_equiv_id(eq, eax); |
| if (!eq_id) |
| return; |
| |
| if (eq_id == this_equiv_id) { |
| mc = (struct microcode_amd *)amd_ucode_patch; |
| |
| if (mc && rev < mc->hdr.patch_id) { |
| if (!__apply_microcode_amd(mc)) |
| ucode_new_rev = mc->hdr.patch_id; |
| } |
| |
| } else { |
| if (!ucode_cpio.data) |
| return; |
| |
| /* |
| * AP has a different equivalence ID than BSP, looks like |
| * mixed-steppings silicon so go through the ucode blob anew. |
| */ |
| apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size); |
| } |
| } |
| #endif |
| |
| int __init save_microcode_in_initrd_amd(void) |
| { |
| unsigned long cont; |
| enum ucode_state ret; |
| u32 eax; |
| |
| if (!container) |
| return -EINVAL; |
| |
| #ifdef CONFIG_X86_32 |
| get_bsp_sig(); |
| cont = (unsigned long)container; |
| #else |
| /* |
| * We need the physical address of the container for both bitness since |
| * boot_params.hdr.ramdisk_image is a physical address. |
| */ |
| cont = __pa(container); |
| #endif |
| |
| /* |
| * Take into account the fact that the ramdisk might get relocated and |
| * therefore we need to recompute the container's position in virtual |
| * memory space. |
| */ |
| if (relocated_ramdisk) |
| container = (u8 *)(__va(relocated_ramdisk) + |
| (cont - boot_params.hdr.ramdisk_image)); |
| |
| if (ucode_new_rev) |
| pr_info("microcode: updated early to new patch_level=0x%08x\n", |
| ucode_new_rev); |
| |
| eax = cpuid_eax(0x00000001); |
| eax = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff); |
| |
| ret = load_microcode_amd(eax, container, container_size); |
| if (ret != UCODE_OK) |
| return -EINVAL; |
| |
| /* |
| * This will be freed any msec now, stash patches for the current |
| * family and switch to patch cache for cpu hotplug, etc later. |
| */ |
| container = NULL; |
| container_size = 0; |
| |
| return 0; |
| } |