| /* | 
 |  *	An async IO implementation for Linux | 
 |  *	Written by Benjamin LaHaise <bcrl@kvack.org> | 
 |  * | 
 |  *	Implements an efficient asynchronous io interface. | 
 |  * | 
 |  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved. | 
 |  * | 
 |  *	See ../COPYING for licensing terms. | 
 |  */ | 
 | #define pr_fmt(fmt) "%s: " fmt, __func__ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/time.h> | 
 | #include <linux/aio_abi.h> | 
 | #include <linux/export.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/uio.h> | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mmu_context.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/aio.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/security.h> | 
 | #include <linux/eventfd.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/ramfs.h> | 
 | #include <linux/percpu-refcount.h> | 
 | #include <linux/mount.h> | 
 |  | 
 | #include <asm/kmap_types.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define AIO_RING_MAGIC			0xa10a10a1 | 
 | #define AIO_RING_COMPAT_FEATURES	1 | 
 | #define AIO_RING_INCOMPAT_FEATURES	0 | 
 | struct aio_ring { | 
 | 	unsigned	id;	/* kernel internal index number */ | 
 | 	unsigned	nr;	/* number of io_events */ | 
 | 	unsigned	head; | 
 | 	unsigned	tail; | 
 |  | 
 | 	unsigned	magic; | 
 | 	unsigned	compat_features; | 
 | 	unsigned	incompat_features; | 
 | 	unsigned	header_length;	/* size of aio_ring */ | 
 |  | 
 |  | 
 | 	struct io_event		io_events[0]; | 
 | }; /* 128 bytes + ring size */ | 
 |  | 
 | #define AIO_RING_PAGES	8 | 
 |  | 
 | struct kioctx_table { | 
 | 	struct rcu_head	rcu; | 
 | 	unsigned	nr; | 
 | 	struct kioctx	*table[]; | 
 | }; | 
 |  | 
 | struct kioctx_cpu { | 
 | 	unsigned		reqs_available; | 
 | }; | 
 |  | 
 | struct kioctx { | 
 | 	struct percpu_ref	users; | 
 | 	atomic_t		dead; | 
 |  | 
 | 	struct percpu_ref	reqs; | 
 |  | 
 | 	unsigned long		user_id; | 
 |  | 
 | 	struct __percpu kioctx_cpu *cpu; | 
 |  | 
 | 	/* | 
 | 	 * For percpu reqs_available, number of slots we move to/from global | 
 | 	 * counter at a time: | 
 | 	 */ | 
 | 	unsigned		req_batch; | 
 | 	/* | 
 | 	 * This is what userspace passed to io_setup(), it's not used for | 
 | 	 * anything but counting against the global max_reqs quota. | 
 | 	 * | 
 | 	 * The real limit is nr_events - 1, which will be larger (see | 
 | 	 * aio_setup_ring()) | 
 | 	 */ | 
 | 	unsigned		max_reqs; | 
 |  | 
 | 	/* Size of ringbuffer, in units of struct io_event */ | 
 | 	unsigned		nr_events; | 
 |  | 
 | 	unsigned long		mmap_base; | 
 | 	unsigned long		mmap_size; | 
 |  | 
 | 	struct page		**ring_pages; | 
 | 	long			nr_pages; | 
 |  | 
 | 	struct work_struct	free_work; | 
 |  | 
 | 	struct { | 
 | 		/* | 
 | 		 * This counts the number of available slots in the ringbuffer, | 
 | 		 * so we avoid overflowing it: it's decremented (if positive) | 
 | 		 * when allocating a kiocb and incremented when the resulting | 
 | 		 * io_event is pulled off the ringbuffer. | 
 | 		 * | 
 | 		 * We batch accesses to it with a percpu version. | 
 | 		 */ | 
 | 		atomic_t	reqs_available; | 
 | 	} ____cacheline_aligned_in_smp; | 
 |  | 
 | 	struct { | 
 | 		spinlock_t	ctx_lock; | 
 | 		struct list_head active_reqs;	/* used for cancellation */ | 
 | 	} ____cacheline_aligned_in_smp; | 
 |  | 
 | 	struct { | 
 | 		struct mutex	ring_lock; | 
 | 		wait_queue_head_t wait; | 
 | 	} ____cacheline_aligned_in_smp; | 
 |  | 
 | 	struct { | 
 | 		unsigned	tail; | 
 | 		spinlock_t	completion_lock; | 
 | 	} ____cacheline_aligned_in_smp; | 
 |  | 
 | 	struct page		*internal_pages[AIO_RING_PAGES]; | 
 | 	struct file		*aio_ring_file; | 
 |  | 
 | 	unsigned		id; | 
 | }; | 
 |  | 
 | /*------ sysctl variables----*/ | 
 | static DEFINE_SPINLOCK(aio_nr_lock); | 
 | unsigned long aio_nr;		/* current system wide number of aio requests */ | 
 | unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | 
 | /*----end sysctl variables---*/ | 
 |  | 
 | static struct kmem_cache	*kiocb_cachep; | 
 | static struct kmem_cache	*kioctx_cachep; | 
 |  | 
 | static struct vfsmount *aio_mnt; | 
 |  | 
 | static const struct file_operations aio_ring_fops; | 
 | static const struct address_space_operations aio_ctx_aops; | 
 |  | 
 | static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) | 
 | { | 
 | 	struct qstr this = QSTR_INIT("[aio]", 5); | 
 | 	struct file *file; | 
 | 	struct path path; | 
 | 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); | 
 | 	if (IS_ERR(inode)) | 
 | 		return ERR_CAST(inode); | 
 |  | 
 | 	inode->i_mapping->a_ops = &aio_ctx_aops; | 
 | 	inode->i_mapping->private_data = ctx; | 
 | 	inode->i_size = PAGE_SIZE * nr_pages; | 
 |  | 
 | 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); | 
 | 	if (!path.dentry) { | 
 | 		iput(inode); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	path.mnt = mntget(aio_mnt); | 
 |  | 
 | 	d_instantiate(path.dentry, inode); | 
 | 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); | 
 | 	if (IS_ERR(file)) { | 
 | 		path_put(&path); | 
 | 		return file; | 
 | 	} | 
 |  | 
 | 	file->f_flags = O_RDWR; | 
 | 	file->private_data = ctx; | 
 | 	return file; | 
 | } | 
 |  | 
 | static struct dentry *aio_mount(struct file_system_type *fs_type, | 
 | 				int flags, const char *dev_name, void *data) | 
 | { | 
 | 	static const struct dentry_operations ops = { | 
 | 		.d_dname	= simple_dname, | 
 | 	}; | 
 | 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); | 
 | } | 
 |  | 
 | /* aio_setup | 
 |  *	Creates the slab caches used by the aio routines, panic on | 
 |  *	failure as this is done early during the boot sequence. | 
 |  */ | 
 | static int __init aio_setup(void) | 
 | { | 
 | 	static struct file_system_type aio_fs = { | 
 | 		.name		= "aio", | 
 | 		.mount		= aio_mount, | 
 | 		.kill_sb	= kill_anon_super, | 
 | 	}; | 
 | 	aio_mnt = kern_mount(&aio_fs); | 
 | 	if (IS_ERR(aio_mnt)) | 
 | 		panic("Failed to create aio fs mount."); | 
 |  | 
 | 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
 | 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
 |  | 
 | 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(aio_setup); | 
 |  | 
 | static void put_aio_ring_file(struct kioctx *ctx) | 
 | { | 
 | 	struct file *aio_ring_file = ctx->aio_ring_file; | 
 | 	if (aio_ring_file) { | 
 | 		truncate_setsize(aio_ring_file->f_inode, 0); | 
 |  | 
 | 		/* Prevent further access to the kioctx from migratepages */ | 
 | 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); | 
 | 		aio_ring_file->f_inode->i_mapping->private_data = NULL; | 
 | 		ctx->aio_ring_file = NULL; | 
 | 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); | 
 |  | 
 | 		fput(aio_ring_file); | 
 | 	} | 
 | } | 
 |  | 
 | static void aio_free_ring(struct kioctx *ctx) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ctx->nr_pages; i++) { | 
 | 		struct page *page; | 
 | 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, | 
 | 				page_count(ctx->ring_pages[i])); | 
 | 		page = ctx->ring_pages[i]; | 
 | 		if (!page) | 
 | 			continue; | 
 | 		ctx->ring_pages[i] = NULL; | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	put_aio_ring_file(ctx); | 
 |  | 
 | 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { | 
 | 		kfree(ctx->ring_pages); | 
 | 		ctx->ring_pages = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	vma->vm_ops = &generic_file_vm_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations aio_ring_fops = { | 
 | 	.mmap = aio_ring_mmap, | 
 | }; | 
 |  | 
 | static int aio_set_page_dirty(struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if IS_ENABLED(CONFIG_MIGRATION) | 
 | static int aio_migratepage(struct address_space *mapping, struct page *new, | 
 | 			struct page *old, enum migrate_mode mode) | 
 | { | 
 | 	struct kioctx *ctx; | 
 | 	unsigned long flags; | 
 | 	int rc; | 
 |  | 
 | 	rc = 0; | 
 |  | 
 | 	/* Make sure the old page hasn't already been changed */ | 
 | 	spin_lock(&mapping->private_lock); | 
 | 	ctx = mapping->private_data; | 
 | 	if (ctx) { | 
 | 		pgoff_t idx; | 
 | 		spin_lock_irqsave(&ctx->completion_lock, flags); | 
 | 		idx = old->index; | 
 | 		if (idx < (pgoff_t)ctx->nr_pages) { | 
 | 			if (ctx->ring_pages[idx] != old) | 
 | 				rc = -EAGAIN; | 
 | 		} else | 
 | 			rc = -EINVAL; | 
 | 		spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
 | 	} else | 
 | 		rc = -EINVAL; | 
 | 	spin_unlock(&mapping->private_lock); | 
 |  | 
 | 	if (rc != 0) | 
 | 		return rc; | 
 |  | 
 | 	/* Writeback must be complete */ | 
 | 	BUG_ON(PageWriteback(old)); | 
 | 	get_page(new); | 
 |  | 
 | 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); | 
 | 	if (rc != MIGRATEPAGE_SUCCESS) { | 
 | 		put_page(new); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* We can potentially race against kioctx teardown here.  Use the | 
 | 	 * address_space's private data lock to protect the mapping's | 
 | 	 * private_data. | 
 | 	 */ | 
 | 	spin_lock(&mapping->private_lock); | 
 | 	ctx = mapping->private_data; | 
 | 	if (ctx) { | 
 | 		pgoff_t idx; | 
 | 		spin_lock_irqsave(&ctx->completion_lock, flags); | 
 | 		migrate_page_copy(new, old); | 
 | 		idx = old->index; | 
 | 		if (idx < (pgoff_t)ctx->nr_pages) { | 
 | 			/* And only do the move if things haven't changed */ | 
 | 			if (ctx->ring_pages[idx] == old) | 
 | 				ctx->ring_pages[idx] = new; | 
 | 			else | 
 | 				rc = -EAGAIN; | 
 | 		} else | 
 | 			rc = -EINVAL; | 
 | 		spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
 | 	} else | 
 | 		rc = -EBUSY; | 
 | 	spin_unlock(&mapping->private_lock); | 
 |  | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) | 
 | 		put_page(old); | 
 | 	else | 
 | 		put_page(new); | 
 |  | 
 | 	return rc; | 
 | } | 
 | #endif | 
 |  | 
 | static const struct address_space_operations aio_ctx_aops = { | 
 | 	.set_page_dirty = aio_set_page_dirty, | 
 | #if IS_ENABLED(CONFIG_MIGRATION) | 
 | 	.migratepage	= aio_migratepage, | 
 | #endif | 
 | }; | 
 |  | 
 | static int aio_setup_ring(struct kioctx *ctx) | 
 | { | 
 | 	struct aio_ring *ring; | 
 | 	unsigned nr_events = ctx->max_reqs; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long size, unused; | 
 | 	int nr_pages; | 
 | 	int i; | 
 | 	struct file *file; | 
 |  | 
 | 	/* Compensate for the ring buffer's head/tail overlap entry */ | 
 | 	nr_events += 2;	/* 1 is required, 2 for good luck */ | 
 |  | 
 | 	size = sizeof(struct aio_ring); | 
 | 	size += sizeof(struct io_event) * nr_events; | 
 |  | 
 | 	nr_pages = PFN_UP(size); | 
 | 	if (nr_pages < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	file = aio_private_file(ctx, nr_pages); | 
 | 	if (IS_ERR(file)) { | 
 | 		ctx->aio_ring_file = NULL; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	ctx->aio_ring_file = file; | 
 | 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) | 
 | 			/ sizeof(struct io_event); | 
 |  | 
 | 	ctx->ring_pages = ctx->internal_pages; | 
 | 	if (nr_pages > AIO_RING_PAGES) { | 
 | 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), | 
 | 					  GFP_KERNEL); | 
 | 		if (!ctx->ring_pages) { | 
 | 			put_aio_ring_file(ctx); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct page *page; | 
 | 		page = find_or_create_page(file->f_inode->i_mapping, | 
 | 					   i, GFP_HIGHUSER | __GFP_ZERO); | 
 | 		if (!page) | 
 | 			break; | 
 | 		pr_debug("pid(%d) page[%d]->count=%d\n", | 
 | 			 current->pid, i, page_count(page)); | 
 | 		SetPageUptodate(page); | 
 | 		SetPageDirty(page); | 
 | 		unlock_page(page); | 
 |  | 
 | 		ctx->ring_pages[i] = page; | 
 | 	} | 
 | 	ctx->nr_pages = i; | 
 |  | 
 | 	if (unlikely(i != nr_pages)) { | 
 | 		aio_free_ring(ctx); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	ctx->mmap_size = nr_pages * PAGE_SIZE; | 
 | 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, | 
 | 				       PROT_READ | PROT_WRITE, | 
 | 				       MAP_SHARED, 0, &unused); | 
 | 	up_write(&mm->mmap_sem); | 
 | 	if (IS_ERR((void *)ctx->mmap_base)) { | 
 | 		ctx->mmap_size = 0; | 
 | 		aio_free_ring(ctx); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); | 
 |  | 
 | 	ctx->user_id = ctx->mmap_base; | 
 | 	ctx->nr_events = nr_events; /* trusted copy */ | 
 |  | 
 | 	ring = kmap_atomic(ctx->ring_pages[0]); | 
 | 	ring->nr = nr_events;	/* user copy */ | 
 | 	ring->id = ~0U; | 
 | 	ring->head = ring->tail = 0; | 
 | 	ring->magic = AIO_RING_MAGIC; | 
 | 	ring->compat_features = AIO_RING_COMPAT_FEATURES; | 
 | 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | 
 | 	ring->header_length = sizeof(struct aio_ring); | 
 | 	kunmap_atomic(ring); | 
 | 	flush_dcache_page(ctx->ring_pages[0]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event)) | 
 | #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | 
 | #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | 
 |  | 
 | void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) | 
 | { | 
 | 	struct kioctx *ctx = req->ki_ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ctx->ctx_lock, flags); | 
 |  | 
 | 	if (!req->ki_list.next) | 
 | 		list_add(&req->ki_list, &ctx->active_reqs); | 
 |  | 
 | 	req->ki_cancel = cancel; | 
 |  | 
 | 	spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(kiocb_set_cancel_fn); | 
 |  | 
 | static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) | 
 | { | 
 | 	kiocb_cancel_fn *old, *cancel; | 
 |  | 
 | 	/* | 
 | 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it | 
 | 	 * actually has a cancel function, hence the cmpxchg() | 
 | 	 */ | 
 |  | 
 | 	cancel = ACCESS_ONCE(kiocb->ki_cancel); | 
 | 	do { | 
 | 		if (!cancel || cancel == KIOCB_CANCELLED) | 
 | 			return -EINVAL; | 
 |  | 
 | 		old = cancel; | 
 | 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); | 
 | 	} while (cancel != old); | 
 |  | 
 | 	return cancel(kiocb); | 
 | } | 
 |  | 
 | static void free_ioctx(struct work_struct *work) | 
 | { | 
 | 	struct kioctx *ctx = container_of(work, struct kioctx, free_work); | 
 |  | 
 | 	pr_debug("freeing %p\n", ctx); | 
 |  | 
 | 	aio_free_ring(ctx); | 
 | 	free_percpu(ctx->cpu); | 
 | 	kmem_cache_free(kioctx_cachep, ctx); | 
 | } | 
 |  | 
 | static void free_ioctx_reqs(struct percpu_ref *ref) | 
 | { | 
 | 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs); | 
 |  | 
 | 	INIT_WORK(&ctx->free_work, free_ioctx); | 
 | 	schedule_work(&ctx->free_work); | 
 | } | 
 |  | 
 | /* | 
 |  * When this function runs, the kioctx has been removed from the "hash table" | 
 |  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - | 
 |  * now it's safe to cancel any that need to be. | 
 |  */ | 
 | static void free_ioctx_users(struct percpu_ref *ref) | 
 | { | 
 | 	struct kioctx *ctx = container_of(ref, struct kioctx, users); | 
 | 	struct kiocb *req; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	while (!list_empty(&ctx->active_reqs)) { | 
 | 		req = list_first_entry(&ctx->active_reqs, | 
 | 				       struct kiocb, ki_list); | 
 |  | 
 | 		list_del_init(&req->ki_list); | 
 | 		kiocb_cancel(ctx, req); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	percpu_ref_kill(&ctx->reqs); | 
 | 	percpu_ref_put(&ctx->reqs); | 
 | } | 
 |  | 
 | static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) | 
 | { | 
 | 	unsigned i, new_nr; | 
 | 	struct kioctx_table *table, *old; | 
 | 	struct aio_ring *ring; | 
 |  | 
 | 	spin_lock(&mm->ioctx_lock); | 
 | 	rcu_read_lock(); | 
 | 	table = rcu_dereference(mm->ioctx_table); | 
 |  | 
 | 	while (1) { | 
 | 		if (table) | 
 | 			for (i = 0; i < table->nr; i++) | 
 | 				if (!table->table[i]) { | 
 | 					ctx->id = i; | 
 | 					table->table[i] = ctx; | 
 | 					rcu_read_unlock(); | 
 | 					spin_unlock(&mm->ioctx_lock); | 
 |  | 
 | 					ring = kmap_atomic(ctx->ring_pages[0]); | 
 | 					ring->id = ctx->id; | 
 | 					kunmap_atomic(ring); | 
 | 					return 0; | 
 | 				} | 
 |  | 
 | 		new_nr = (table ? table->nr : 1) * 4; | 
 |  | 
 | 		rcu_read_unlock(); | 
 | 		spin_unlock(&mm->ioctx_lock); | 
 |  | 
 | 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * | 
 | 				new_nr, GFP_KERNEL); | 
 | 		if (!table) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		table->nr = new_nr; | 
 |  | 
 | 		spin_lock(&mm->ioctx_lock); | 
 | 		rcu_read_lock(); | 
 | 		old = rcu_dereference(mm->ioctx_table); | 
 |  | 
 | 		if (!old) { | 
 | 			rcu_assign_pointer(mm->ioctx_table, table); | 
 | 		} else if (table->nr > old->nr) { | 
 | 			memcpy(table->table, old->table, | 
 | 			       old->nr * sizeof(struct kioctx *)); | 
 |  | 
 | 			rcu_assign_pointer(mm->ioctx_table, table); | 
 | 			kfree_rcu(old, rcu); | 
 | 		} else { | 
 | 			kfree(table); | 
 | 			table = old; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void aio_nr_sub(unsigned nr) | 
 | { | 
 | 	spin_lock(&aio_nr_lock); | 
 | 	if (WARN_ON(aio_nr - nr > aio_nr)) | 
 | 		aio_nr = 0; | 
 | 	else | 
 | 		aio_nr -= nr; | 
 | 	spin_unlock(&aio_nr_lock); | 
 | } | 
 |  | 
 | /* ioctx_alloc | 
 |  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed. | 
 |  */ | 
 | static struct kioctx *ioctx_alloc(unsigned nr_events) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct kioctx *ctx; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * We keep track of the number of available ringbuffer slots, to prevent | 
 | 	 * overflow (reqs_available), and we also use percpu counters for this. | 
 | 	 * | 
 | 	 * So since up to half the slots might be on other cpu's percpu counters | 
 | 	 * and unavailable, double nr_events so userspace sees what they | 
 | 	 * expected: additionally, we move req_batch slots to/from percpu | 
 | 	 * counters at a time, so make sure that isn't 0: | 
 | 	 */ | 
 | 	nr_events = max(nr_events, num_possible_cpus() * 4); | 
 | 	nr_events *= 2; | 
 |  | 
 | 	/* Prevent overflows */ | 
 | 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) || | 
 | 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) { | 
 | 		pr_debug("ENOMEM: nr_events too high\n"); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) | 
 | 		return ERR_PTR(-EAGAIN); | 
 |  | 
 | 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ctx->max_reqs = nr_events; | 
 |  | 
 | 	if (percpu_ref_init(&ctx->users, free_ioctx_users)) | 
 | 		goto err; | 
 |  | 
 | 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) | 
 | 		goto err; | 
 |  | 
 | 	spin_lock_init(&ctx->ctx_lock); | 
 | 	spin_lock_init(&ctx->completion_lock); | 
 | 	mutex_init(&ctx->ring_lock); | 
 | 	init_waitqueue_head(&ctx->wait); | 
 |  | 
 | 	INIT_LIST_HEAD(&ctx->active_reqs); | 
 |  | 
 | 	ctx->cpu = alloc_percpu(struct kioctx_cpu); | 
 | 	if (!ctx->cpu) | 
 | 		goto err; | 
 |  | 
 | 	if (aio_setup_ring(ctx) < 0) | 
 | 		goto err; | 
 |  | 
 | 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1); | 
 | 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); | 
 | 	if (ctx->req_batch < 1) | 
 | 		ctx->req_batch = 1; | 
 |  | 
 | 	/* limit the number of system wide aios */ | 
 | 	spin_lock(&aio_nr_lock); | 
 | 	if (aio_nr + nr_events > (aio_max_nr * 2UL) || | 
 | 	    aio_nr + nr_events < aio_nr) { | 
 | 		spin_unlock(&aio_nr_lock); | 
 | 		err = -EAGAIN; | 
 | 		goto err_ctx; | 
 | 	} | 
 | 	aio_nr += ctx->max_reqs; | 
 | 	spin_unlock(&aio_nr_lock); | 
 |  | 
 | 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */ | 
 | 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */ | 
 |  | 
 | 	err = ioctx_add_table(ctx, mm); | 
 | 	if (err) | 
 | 		goto err_cleanup; | 
 |  | 
 | 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | 
 | 		 ctx, ctx->user_id, mm, ctx->nr_events); | 
 | 	return ctx; | 
 |  | 
 | err_cleanup: | 
 | 	aio_nr_sub(ctx->max_reqs); | 
 | err_ctx: | 
 | 	aio_free_ring(ctx); | 
 | err: | 
 | 	free_percpu(ctx->cpu); | 
 | 	free_percpu(ctx->reqs.pcpu_count); | 
 | 	free_percpu(ctx->users.pcpu_count); | 
 | 	kmem_cache_free(kioctx_cachep, ctx); | 
 | 	pr_debug("error allocating ioctx %d\n", err); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* kill_ioctx | 
 |  *	Cancels all outstanding aio requests on an aio context.  Used | 
 |  *	when the processes owning a context have all exited to encourage | 
 |  *	the rapid destruction of the kioctx. | 
 |  */ | 
 | static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) | 
 | { | 
 | 	if (!atomic_xchg(&ctx->dead, 1)) { | 
 | 		struct kioctx_table *table; | 
 |  | 
 | 		spin_lock(&mm->ioctx_lock); | 
 | 		rcu_read_lock(); | 
 | 		table = rcu_dereference(mm->ioctx_table); | 
 |  | 
 | 		WARN_ON(ctx != table->table[ctx->id]); | 
 | 		table->table[ctx->id] = NULL; | 
 | 		rcu_read_unlock(); | 
 | 		spin_unlock(&mm->ioctx_lock); | 
 |  | 
 | 		/* percpu_ref_kill() will do the necessary call_rcu() */ | 
 | 		wake_up_all(&ctx->wait); | 
 |  | 
 | 		/* | 
 | 		 * It'd be more correct to do this in free_ioctx(), after all | 
 | 		 * the outstanding kiocbs have finished - but by then io_destroy | 
 | 		 * has already returned, so io_setup() could potentially return | 
 | 		 * -EAGAIN with no ioctxs actually in use (as far as userspace | 
 | 		 *  could tell). | 
 | 		 */ | 
 | 		aio_nr_sub(ctx->max_reqs); | 
 |  | 
 | 		if (ctx->mmap_size) | 
 | 			vm_munmap(ctx->mmap_base, ctx->mmap_size); | 
 |  | 
 | 		percpu_ref_kill(&ctx->users); | 
 | 	} | 
 | } | 
 |  | 
 | /* wait_on_sync_kiocb: | 
 |  *	Waits on the given sync kiocb to complete. | 
 |  */ | 
 | ssize_t wait_on_sync_kiocb(struct kiocb *req) | 
 | { | 
 | 	while (!req->ki_ctx) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (req->ki_ctx) | 
 | 			break; | 
 | 		io_schedule(); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return req->ki_user_data; | 
 | } | 
 | EXPORT_SYMBOL(wait_on_sync_kiocb); | 
 |  | 
 | /* | 
 |  * exit_aio: called when the last user of mm goes away.  At this point, there is | 
 |  * no way for any new requests to be submited or any of the io_* syscalls to be | 
 |  * called on the context. | 
 |  * | 
 |  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on | 
 |  * them. | 
 |  */ | 
 | void exit_aio(struct mm_struct *mm) | 
 | { | 
 | 	struct kioctx_table *table; | 
 | 	struct kioctx *ctx; | 
 | 	unsigned i = 0; | 
 |  | 
 | 	while (1) { | 
 | 		rcu_read_lock(); | 
 | 		table = rcu_dereference(mm->ioctx_table); | 
 |  | 
 | 		do { | 
 | 			if (!table || i >= table->nr) { | 
 | 				rcu_read_unlock(); | 
 | 				rcu_assign_pointer(mm->ioctx_table, NULL); | 
 | 				if (table) | 
 | 					kfree(table); | 
 | 				return; | 
 | 			} | 
 |  | 
 | 			ctx = table->table[i++]; | 
 | 		} while (!ctx); | 
 |  | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		/* | 
 | 		 * We don't need to bother with munmap() here - | 
 | 		 * exit_mmap(mm) is coming and it'll unmap everything. | 
 | 		 * Since aio_free_ring() uses non-zero ->mmap_size | 
 | 		 * as indicator that it needs to unmap the area, | 
 | 		 * just set it to 0; aio_free_ring() is the only | 
 | 		 * place that uses ->mmap_size, so it's safe. | 
 | 		 */ | 
 | 		ctx->mmap_size = 0; | 
 |  | 
 | 		kill_ioctx(mm, ctx); | 
 | 	} | 
 | } | 
 |  | 
 | static void put_reqs_available(struct kioctx *ctx, unsigned nr) | 
 | { | 
 | 	struct kioctx_cpu *kcpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	kcpu = this_cpu_ptr(ctx->cpu); | 
 |  | 
 | 	kcpu->reqs_available += nr; | 
 | 	while (kcpu->reqs_available >= ctx->req_batch * 2) { | 
 | 		kcpu->reqs_available -= ctx->req_batch; | 
 | 		atomic_add(ctx->req_batch, &ctx->reqs_available); | 
 | 	} | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static bool get_reqs_available(struct kioctx *ctx) | 
 | { | 
 | 	struct kioctx_cpu *kcpu; | 
 | 	bool ret = false; | 
 |  | 
 | 	preempt_disable(); | 
 | 	kcpu = this_cpu_ptr(ctx->cpu); | 
 |  | 
 | 	if (!kcpu->reqs_available) { | 
 | 		int old, avail = atomic_read(&ctx->reqs_available); | 
 |  | 
 | 		do { | 
 | 			if (avail < ctx->req_batch) | 
 | 				goto out; | 
 |  | 
 | 			old = avail; | 
 | 			avail = atomic_cmpxchg(&ctx->reqs_available, | 
 | 					       avail, avail - ctx->req_batch); | 
 | 		} while (avail != old); | 
 |  | 
 | 		kcpu->reqs_available += ctx->req_batch; | 
 | 	} | 
 |  | 
 | 	ret = true; | 
 | 	kcpu->reqs_available--; | 
 | out: | 
 | 	preempt_enable(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* aio_get_req | 
 |  *	Allocate a slot for an aio request. | 
 |  * Returns NULL if no requests are free. | 
 |  */ | 
 | static inline struct kiocb *aio_get_req(struct kioctx *ctx) | 
 | { | 
 | 	struct kiocb *req; | 
 |  | 
 | 	if (!get_reqs_available(ctx)) | 
 | 		return NULL; | 
 |  | 
 | 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); | 
 | 	if (unlikely(!req)) | 
 | 		goto out_put; | 
 |  | 
 | 	percpu_ref_get(&ctx->reqs); | 
 |  | 
 | 	req->ki_ctx = ctx; | 
 | 	return req; | 
 | out_put: | 
 | 	put_reqs_available(ctx, 1); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void kiocb_free(struct kiocb *req) | 
 | { | 
 | 	if (req->ki_filp) | 
 | 		fput(req->ki_filp); | 
 | 	if (req->ki_eventfd != NULL) | 
 | 		eventfd_ctx_put(req->ki_eventfd); | 
 | 	kmem_cache_free(kiocb_cachep, req); | 
 | } | 
 |  | 
 | static struct kioctx *lookup_ioctx(unsigned long ctx_id) | 
 | { | 
 | 	struct aio_ring __user *ring  = (void __user *)ctx_id; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct kioctx *ctx, *ret = NULL; | 
 | 	struct kioctx_table *table; | 
 | 	unsigned id; | 
 |  | 
 | 	if (get_user(id, &ring->id)) | 
 | 		return NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	table = rcu_dereference(mm->ioctx_table); | 
 |  | 
 | 	if (!table || id >= table->nr) | 
 | 		goto out; | 
 |  | 
 | 	ctx = table->table[id]; | 
 | 	if (ctx && ctx->user_id == ctx_id) { | 
 | 		percpu_ref_get(&ctx->users); | 
 | 		ret = ctx; | 
 | 	} | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* aio_complete | 
 |  *	Called when the io request on the given iocb is complete. | 
 |  */ | 
 | void aio_complete(struct kiocb *iocb, long res, long res2) | 
 | { | 
 | 	struct kioctx	*ctx = iocb->ki_ctx; | 
 | 	struct aio_ring	*ring; | 
 | 	struct io_event	*ev_page, *event; | 
 | 	unsigned long	flags; | 
 | 	unsigned tail, pos; | 
 |  | 
 | 	/* | 
 | 	 * Special case handling for sync iocbs: | 
 | 	 *  - events go directly into the iocb for fast handling | 
 | 	 *  - the sync task with the iocb in its stack holds the single iocb | 
 | 	 *    ref, no other paths have a way to get another ref | 
 | 	 *  - the sync task helpfully left a reference to itself in the iocb | 
 | 	 */ | 
 | 	if (is_sync_kiocb(iocb)) { | 
 | 		iocb->ki_user_data = res; | 
 | 		smp_wmb(); | 
 | 		iocb->ki_ctx = ERR_PTR(-EXDEV); | 
 | 		wake_up_process(iocb->ki_obj.tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (iocb->ki_list.next) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&ctx->ctx_lock, flags); | 
 | 		list_del(&iocb->ki_list); | 
 | 		spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Add a completion event to the ring buffer. Must be done holding | 
 | 	 * ctx->completion_lock to prevent other code from messing with the tail | 
 | 	 * pointer since we might be called from irq context. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ctx->completion_lock, flags); | 
 |  | 
 | 	tail = ctx->tail; | 
 | 	pos = tail + AIO_EVENTS_OFFSET; | 
 |  | 
 | 	if (++tail >= ctx->nr_events) | 
 | 		tail = 0; | 
 |  | 
 | 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); | 
 | 	event = ev_page + pos % AIO_EVENTS_PER_PAGE; | 
 |  | 
 | 	event->obj = (u64)(unsigned long)iocb->ki_obj.user; | 
 | 	event->data = iocb->ki_user_data; | 
 | 	event->res = res; | 
 | 	event->res2 = res2; | 
 |  | 
 | 	kunmap_atomic(ev_page); | 
 | 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); | 
 |  | 
 | 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", | 
 | 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, | 
 | 		 res, res2); | 
 |  | 
 | 	/* after flagging the request as done, we | 
 | 	 * must never even look at it again | 
 | 	 */ | 
 | 	smp_wmb();	/* make event visible before updating tail */ | 
 |  | 
 | 	ctx->tail = tail; | 
 |  | 
 | 	ring = kmap_atomic(ctx->ring_pages[0]); | 
 | 	ring->tail = tail; | 
 | 	kunmap_atomic(ring); | 
 | 	flush_dcache_page(ctx->ring_pages[0]); | 
 |  | 
 | 	spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
 |  | 
 | 	pr_debug("added to ring %p at [%u]\n", iocb, tail); | 
 |  | 
 | 	/* | 
 | 	 * Check if the user asked us to deliver the result through an | 
 | 	 * eventfd. The eventfd_signal() function is safe to be called | 
 | 	 * from IRQ context. | 
 | 	 */ | 
 | 	if (iocb->ki_eventfd != NULL) | 
 | 		eventfd_signal(iocb->ki_eventfd, 1); | 
 |  | 
 | 	/* everything turned out well, dispose of the aiocb. */ | 
 | 	kiocb_free(iocb); | 
 |  | 
 | 	/* | 
 | 	 * We have to order our ring_info tail store above and test | 
 | 	 * of the wait list below outside the wait lock.  This is | 
 | 	 * like in wake_up_bit() where clearing a bit has to be | 
 | 	 * ordered with the unlocked test. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (waitqueue_active(&ctx->wait)) | 
 | 		wake_up(&ctx->wait); | 
 |  | 
 | 	percpu_ref_put(&ctx->reqs); | 
 | } | 
 | EXPORT_SYMBOL(aio_complete); | 
 |  | 
 | /* aio_read_events | 
 |  *	Pull an event off of the ioctx's event ring.  Returns the number of | 
 |  *	events fetched | 
 |  */ | 
 | static long aio_read_events_ring(struct kioctx *ctx, | 
 | 				 struct io_event __user *event, long nr) | 
 | { | 
 | 	struct aio_ring *ring; | 
 | 	unsigned head, tail, pos; | 
 | 	long ret = 0; | 
 | 	int copy_ret; | 
 |  | 
 | 	mutex_lock(&ctx->ring_lock); | 
 |  | 
 | 	ring = kmap_atomic(ctx->ring_pages[0]); | 
 | 	head = ring->head; | 
 | 	tail = ring->tail; | 
 | 	kunmap_atomic(ring); | 
 |  | 
 | 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); | 
 |  | 
 | 	if (head == tail) | 
 | 		goto out; | 
 |  | 
 | 	while (ret < nr) { | 
 | 		long avail; | 
 | 		struct io_event *ev; | 
 | 		struct page *page; | 
 |  | 
 | 		avail = (head <= tail ?  tail : ctx->nr_events) - head; | 
 | 		if (head == tail) | 
 | 			break; | 
 |  | 
 | 		avail = min(avail, nr - ret); | 
 | 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - | 
 | 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); | 
 |  | 
 | 		pos = head + AIO_EVENTS_OFFSET; | 
 | 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; | 
 | 		pos %= AIO_EVENTS_PER_PAGE; | 
 |  | 
 | 		ev = kmap(page); | 
 | 		copy_ret = copy_to_user(event + ret, ev + pos, | 
 | 					sizeof(*ev) * avail); | 
 | 		kunmap(page); | 
 |  | 
 | 		if (unlikely(copy_ret)) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret += avail; | 
 | 		head += avail; | 
 | 		head %= ctx->nr_events; | 
 | 	} | 
 |  | 
 | 	ring = kmap_atomic(ctx->ring_pages[0]); | 
 | 	ring->head = head; | 
 | 	kunmap_atomic(ring); | 
 | 	flush_dcache_page(ctx->ring_pages[0]); | 
 |  | 
 | 	pr_debug("%li  h%u t%u\n", ret, head, tail); | 
 |  | 
 | 	put_reqs_available(ctx, ret); | 
 | out: | 
 | 	mutex_unlock(&ctx->ring_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, | 
 | 			    struct io_event __user *event, long *i) | 
 | { | 
 | 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i); | 
 |  | 
 | 	if (ret > 0) | 
 | 		*i += ret; | 
 |  | 
 | 	if (unlikely(atomic_read(&ctx->dead))) | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	if (!*i) | 
 | 		*i = ret; | 
 |  | 
 | 	return ret < 0 || *i >= min_nr; | 
 | } | 
 |  | 
 | static long read_events(struct kioctx *ctx, long min_nr, long nr, | 
 | 			struct io_event __user *event, | 
 | 			struct timespec __user *timeout) | 
 | { | 
 | 	ktime_t until = { .tv64 = KTIME_MAX }; | 
 | 	long ret = 0; | 
 |  | 
 | 	if (timeout) { | 
 | 		struct timespec	ts; | 
 |  | 
 | 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) | 
 | 			return -EFAULT; | 
 |  | 
 | 		until = timespec_to_ktime(ts); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note that aio_read_events() is being called as the conditional - i.e. | 
 | 	 * we're calling it after prepare_to_wait() has set task state to | 
 | 	 * TASK_INTERRUPTIBLE. | 
 | 	 * | 
 | 	 * But aio_read_events() can block, and if it blocks it's going to flip | 
 | 	 * the task state back to TASK_RUNNING. | 
 | 	 * | 
 | 	 * This should be ok, provided it doesn't flip the state back to | 
 | 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That | 
 | 	 * will only happen if the mutex_lock() call blocks, and we then find | 
 | 	 * the ringbuffer empty. So in practice we should be ok, but it's | 
 | 	 * something to be aware of when touching this code. | 
 | 	 */ | 
 | 	wait_event_interruptible_hrtimeout(ctx->wait, | 
 | 			aio_read_events(ctx, min_nr, nr, event, &ret), until); | 
 |  | 
 | 	if (!ret && signal_pending(current)) | 
 | 		ret = -EINTR; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* sys_io_setup: | 
 |  *	Create an aio_context capable of receiving at least nr_events. | 
 |  *	ctxp must not point to an aio_context that already exists, and | 
 |  *	must be initialized to 0 prior to the call.  On successful | 
 |  *	creation of the aio_context, *ctxp is filled in with the resulting  | 
 |  *	handle.  May fail with -EINVAL if *ctxp is not initialized, | 
 |  *	if the specified nr_events exceeds internal limits.  May fail  | 
 |  *	with -EAGAIN if the specified nr_events exceeds the user's limit  | 
 |  *	of available events.  May fail with -ENOMEM if insufficient kernel | 
 |  *	resources are available.  May fail with -EFAULT if an invalid | 
 |  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not | 
 |  *	implemented. | 
 |  */ | 
 | SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) | 
 | { | 
 | 	struct kioctx *ioctx = NULL; | 
 | 	unsigned long ctx; | 
 | 	long ret; | 
 |  | 
 | 	ret = get_user(ctx, ctxp); | 
 | 	if (unlikely(ret)) | 
 | 		goto out; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (unlikely(ctx || nr_events == 0)) { | 
 | 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", | 
 | 		         ctx, nr_events); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ioctx = ioctx_alloc(nr_events); | 
 | 	ret = PTR_ERR(ioctx); | 
 | 	if (!IS_ERR(ioctx)) { | 
 | 		ret = put_user(ioctx->user_id, ctxp); | 
 | 		if (ret) | 
 | 			kill_ioctx(current->mm, ioctx); | 
 | 		percpu_ref_put(&ioctx->users); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* sys_io_destroy: | 
 |  *	Destroy the aio_context specified.  May cancel any outstanding  | 
 |  *	AIOs and block on completion.  Will fail with -ENOSYS if not | 
 |  *	implemented.  May fail with -EINVAL if the context pointed to | 
 |  *	is invalid. | 
 |  */ | 
 | SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) | 
 | { | 
 | 	struct kioctx *ioctx = lookup_ioctx(ctx); | 
 | 	if (likely(NULL != ioctx)) { | 
 | 		kill_ioctx(current->mm, ioctx); | 
 | 		percpu_ref_put(&ioctx->users); | 
 | 		return 0; | 
 | 	} | 
 | 	pr_debug("EINVAL: io_destroy: invalid context id\n"); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, | 
 | 			    unsigned long, loff_t); | 
 |  | 
 | static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, | 
 | 				     int rw, char __user *buf, | 
 | 				     unsigned long *nr_segs, | 
 | 				     struct iovec **iovec, | 
 | 				     bool compat) | 
 | { | 
 | 	ssize_t ret; | 
 |  | 
 | 	*nr_segs = kiocb->ki_nbytes; | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | 	if (compat) | 
 | 		ret = compat_rw_copy_check_uvector(rw, | 
 | 				(struct compat_iovec __user *)buf, | 
 | 				*nr_segs, 1, *iovec, iovec); | 
 | 	else | 
 | #endif | 
 | 		ret = rw_copy_check_uvector(rw, | 
 | 				(struct iovec __user *)buf, | 
 | 				*nr_segs, 1, *iovec, iovec); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* ki_nbytes now reflect bytes instead of segs */ | 
 | 	kiocb->ki_nbytes = ret; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t aio_setup_single_vector(struct kiocb *kiocb, | 
 | 				       int rw, char __user *buf, | 
 | 				       unsigned long *nr_segs, | 
 | 				       struct iovec *iovec) | 
 | { | 
 | 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	iovec->iov_base = buf; | 
 | 	iovec->iov_len = kiocb->ki_nbytes; | 
 | 	*nr_segs = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * aio_setup_iocb: | 
 |  *	Performs the initial checks and aio retry method | 
 |  *	setup for the kiocb at the time of io submission. | 
 |  */ | 
 | static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, | 
 | 			    char __user *buf, bool compat) | 
 | { | 
 | 	struct file *file = req->ki_filp; | 
 | 	ssize_t ret; | 
 | 	unsigned long nr_segs; | 
 | 	int rw; | 
 | 	fmode_t mode; | 
 | 	aio_rw_op *rw_op; | 
 | 	struct iovec inline_vec, *iovec = &inline_vec; | 
 |  | 
 | 	switch (opcode) { | 
 | 	case IOCB_CMD_PREAD: | 
 | 	case IOCB_CMD_PREADV: | 
 | 		mode	= FMODE_READ; | 
 | 		rw	= READ; | 
 | 		rw_op	= file->f_op->aio_read; | 
 | 		goto rw_common; | 
 |  | 
 | 	case IOCB_CMD_PWRITE: | 
 | 	case IOCB_CMD_PWRITEV: | 
 | 		mode	= FMODE_WRITE; | 
 | 		rw	= WRITE; | 
 | 		rw_op	= file->f_op->aio_write; | 
 | 		goto rw_common; | 
 | rw_common: | 
 | 		if (unlikely(!(file->f_mode & mode))) | 
 | 			return -EBADF; | 
 |  | 
 | 		if (!rw_op) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ret = (opcode == IOCB_CMD_PREADV || | 
 | 		       opcode == IOCB_CMD_PWRITEV) | 
 | 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs, | 
 | 						&iovec, compat) | 
 | 			: aio_setup_single_vector(req, rw, buf, &nr_segs, | 
 | 						  iovec); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); | 
 | 		if (ret < 0) { | 
 | 			if (iovec != &inline_vec) | 
 | 				kfree(iovec); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		req->ki_nbytes = ret; | 
 |  | 
 | 		/* XXX: move/kill - rw_verify_area()? */ | 
 | 		/* This matches the pread()/pwrite() logic */ | 
 | 		if (req->ki_pos < 0) { | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (rw == WRITE) | 
 | 			file_start_write(file); | 
 |  | 
 | 		ret = rw_op(req, iovec, nr_segs, req->ki_pos); | 
 |  | 
 | 		if (rw == WRITE) | 
 | 			file_end_write(file); | 
 | 		break; | 
 |  | 
 | 	case IOCB_CMD_FDSYNC: | 
 | 		if (!file->f_op->aio_fsync) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ret = file->f_op->aio_fsync(req, 1); | 
 | 		break; | 
 |  | 
 | 	case IOCB_CMD_FSYNC: | 
 | 		if (!file->f_op->aio_fsync) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ret = file->f_op->aio_fsync(req, 0); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_debug("EINVAL: no operation provided\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (iovec != &inline_vec) | 
 | 		kfree(iovec); | 
 |  | 
 | 	if (ret != -EIOCBQUEUED) { | 
 | 		/* | 
 | 		 * There's no easy way to restart the syscall since other AIO's | 
 | 		 * may be already running. Just fail this IO with EINTR. | 
 | 		 */ | 
 | 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || | 
 | 			     ret == -ERESTARTNOHAND || | 
 | 			     ret == -ERESTART_RESTARTBLOCK)) | 
 | 			ret = -EINTR; | 
 | 		aio_complete(req, ret, 0); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | 
 | 			 struct iocb *iocb, bool compat) | 
 | { | 
 | 	struct kiocb *req; | 
 | 	ssize_t ret; | 
 |  | 
 | 	/* enforce forwards compatibility on users */ | 
 | 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { | 
 | 		pr_debug("EINVAL: reserve field set\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* prevent overflows */ | 
 | 	if (unlikely( | 
 | 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) || | 
 | 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || | 
 | 	    ((ssize_t)iocb->aio_nbytes < 0) | 
 | 	   )) { | 
 | 		pr_debug("EINVAL: io_submit: overflow check\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	req = aio_get_req(ctx); | 
 | 	if (unlikely(!req)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	req->ki_filp = fget(iocb->aio_fildes); | 
 | 	if (unlikely(!req->ki_filp)) { | 
 | 		ret = -EBADF; | 
 | 		goto out_put_req; | 
 | 	} | 
 |  | 
 | 	if (iocb->aio_flags & IOCB_FLAG_RESFD) { | 
 | 		/* | 
 | 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an | 
 | 		 * instance of the file* now. The file descriptor must be | 
 | 		 * an eventfd() fd, and will be signaled for each completed | 
 | 		 * event using the eventfd_signal() function. | 
 | 		 */ | 
 | 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); | 
 | 		if (IS_ERR(req->ki_eventfd)) { | 
 | 			ret = PTR_ERR(req->ki_eventfd); | 
 | 			req->ki_eventfd = NULL; | 
 | 			goto out_put_req; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key); | 
 | 	if (unlikely(ret)) { | 
 | 		pr_debug("EFAULT: aio_key\n"); | 
 | 		goto out_put_req; | 
 | 	} | 
 |  | 
 | 	req->ki_obj.user = user_iocb; | 
 | 	req->ki_user_data = iocb->aio_data; | 
 | 	req->ki_pos = iocb->aio_offset; | 
 | 	req->ki_nbytes = iocb->aio_nbytes; | 
 |  | 
 | 	ret = aio_run_iocb(req, iocb->aio_lio_opcode, | 
 | 			   (char __user *)(unsigned long)iocb->aio_buf, | 
 | 			   compat); | 
 | 	if (ret) | 
 | 		goto out_put_req; | 
 |  | 
 | 	return 0; | 
 | out_put_req: | 
 | 	put_reqs_available(ctx, 1); | 
 | 	percpu_ref_put(&ctx->reqs); | 
 | 	kiocb_free(req); | 
 | 	return ret; | 
 | } | 
 |  | 
 | long do_io_submit(aio_context_t ctx_id, long nr, | 
 | 		  struct iocb __user *__user *iocbpp, bool compat) | 
 | { | 
 | 	struct kioctx *ctx; | 
 | 	long ret = 0; | 
 | 	int i = 0; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	if (unlikely(nr < 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) | 
 | 		nr = LONG_MAX/sizeof(*iocbpp); | 
 |  | 
 | 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ctx = lookup_ioctx(ctx_id); | 
 | 	if (unlikely(!ctx)) { | 
 | 		pr_debug("EINVAL: invalid context id\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	/* | 
 | 	 * AKPM: should this return a partial result if some of the IOs were | 
 | 	 * successfully submitted? | 
 | 	 */ | 
 | 	for (i=0; i<nr; i++) { | 
 | 		struct iocb __user *user_iocb; | 
 | 		struct iocb tmp; | 
 |  | 
 | 		if (unlikely(__get_user(user_iocb, iocbpp + i))) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = io_submit_one(ctx, user_iocb, &tmp, compat); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 |  | 
 | 	percpu_ref_put(&ctx->users); | 
 | 	return i ? i : ret; | 
 | } | 
 |  | 
 | /* sys_io_submit: | 
 |  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns | 
 |  *	the number of iocbs queued.  May return -EINVAL if the aio_context | 
 |  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at | 
 |  *	*iocbpp[0] is not properly initialized, if the operation specified | 
 |  *	is invalid for the file descriptor in the iocb.  May fail with | 
 |  *	-EFAULT if any of the data structures point to invalid data.  May | 
 |  *	fail with -EBADF if the file descriptor specified in the first | 
 |  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources | 
 |  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will | 
 |  *	fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, | 
 | 		struct iocb __user * __user *, iocbpp) | 
 | { | 
 | 	return do_io_submit(ctx_id, nr, iocbpp, 0); | 
 | } | 
 |  | 
 | /* lookup_kiocb | 
 |  *	Finds a given iocb for cancellation. | 
 |  */ | 
 | static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, | 
 | 				  u32 key) | 
 | { | 
 | 	struct list_head *pos; | 
 |  | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	if (key != KIOCB_KEY) | 
 | 		return NULL; | 
 |  | 
 | 	/* TODO: use a hash or array, this sucks. */ | 
 | 	list_for_each(pos, &ctx->active_reqs) { | 
 | 		struct kiocb *kiocb = list_kiocb(pos); | 
 | 		if (kiocb->ki_obj.user == iocb) | 
 | 			return kiocb; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* sys_io_cancel: | 
 |  *	Attempts to cancel an iocb previously passed to io_submit.  If | 
 |  *	the operation is successfully cancelled, the resulting event is | 
 |  *	copied into the memory pointed to by result without being placed | 
 |  *	into the completion queue and 0 is returned.  May fail with | 
 |  *	-EFAULT if any of the data structures pointed to are invalid. | 
 |  *	May fail with -EINVAL if aio_context specified by ctx_id is | 
 |  *	invalid.  May fail with -EAGAIN if the iocb specified was not | 
 |  *	cancelled.  Will fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, | 
 | 		struct io_event __user *, result) | 
 | { | 
 | 	struct kioctx *ctx; | 
 | 	struct kiocb *kiocb; | 
 | 	u32 key; | 
 | 	int ret; | 
 |  | 
 | 	ret = get_user(key, &iocb->aio_key); | 
 | 	if (unlikely(ret)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ctx = lookup_ioctx(ctx_id); | 
 | 	if (unlikely(!ctx)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	kiocb = lookup_kiocb(ctx, iocb, key); | 
 | 	if (kiocb) | 
 | 		ret = kiocb_cancel(ctx, kiocb); | 
 | 	else | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	if (!ret) { | 
 | 		/* | 
 | 		 * The result argument is no longer used - the io_event is | 
 | 		 * always delivered via the ring buffer. -EINPROGRESS indicates | 
 | 		 * cancellation is progress: | 
 | 		 */ | 
 | 		ret = -EINPROGRESS; | 
 | 	} | 
 |  | 
 | 	percpu_ref_put(&ctx->users); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* io_getevents: | 
 |  *	Attempts to read at least min_nr events and up to nr events from | 
 |  *	the completion queue for the aio_context specified by ctx_id. If | 
 |  *	it succeeds, the number of read events is returned. May fail with | 
 |  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is | 
 |  *	out of range, if timeout is out of range.  May fail with -EFAULT | 
 |  *	if any of the memory specified is invalid.  May return 0 or | 
 |  *	< min_nr if the timeout specified by timeout has elapsed | 
 |  *	before sufficient events are available, where timeout == NULL | 
 |  *	specifies an infinite timeout. Note that the timeout pointed to by | 
 |  *	timeout is relative.  Will fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, | 
 | 		long, min_nr, | 
 | 		long, nr, | 
 | 		struct io_event __user *, events, | 
 | 		struct timespec __user *, timeout) | 
 | { | 
 | 	struct kioctx *ioctx = lookup_ioctx(ctx_id); | 
 | 	long ret = -EINVAL; | 
 |  | 
 | 	if (likely(ioctx)) { | 
 | 		if (likely(min_nr <= nr && min_nr >= 0)) | 
 | 			ret = read_events(ioctx, min_nr, nr, events, timeout); | 
 | 		percpu_ref_put(&ioctx->users); | 
 | 	} | 
 | 	return ret; | 
 | } |