| /* |
| * Intel CPU microcode early update for Linux |
| * |
| * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> |
| * H Peter Anvin" <hpa@zytor.com> |
| * |
| * This allows to early upgrade microcode on Intel processors |
| * belonging to IA-32 family - PentiumPro, Pentium II, |
| * Pentium III, Xeon, Pentium 4, etc. |
| * |
| * Reference: Section 9.11 of Volume 3, IA-32 Intel Architecture |
| * Software Developer's Manual. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/earlycpio.h> |
| #include <linux/initrd.h> |
| #include <linux/cpu.h> |
| #include <asm/msr.h> |
| #include <asm/microcode_intel.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/setup.h> |
| |
| unsigned long mc_saved_in_initrd[MAX_UCODE_COUNT]; |
| struct mc_saved_data { |
| unsigned int mc_saved_count; |
| struct microcode_intel **mc_saved; |
| } mc_saved_data; |
| |
| static enum ucode_state |
| generic_load_microcode_early(struct microcode_intel **mc_saved_p, |
| unsigned int mc_saved_count, |
| struct ucode_cpu_info *uci) |
| { |
| struct microcode_intel *ucode_ptr, *new_mc = NULL; |
| int new_rev = uci->cpu_sig.rev; |
| enum ucode_state state = UCODE_OK; |
| unsigned int mc_size; |
| struct microcode_header_intel *mc_header; |
| unsigned int csig = uci->cpu_sig.sig; |
| unsigned int cpf = uci->cpu_sig.pf; |
| int i; |
| |
| for (i = 0; i < mc_saved_count; i++) { |
| ucode_ptr = mc_saved_p[i]; |
| |
| mc_header = (struct microcode_header_intel *)ucode_ptr; |
| mc_size = get_totalsize(mc_header); |
| if (get_matching_microcode(csig, cpf, ucode_ptr, new_rev)) { |
| new_rev = mc_header->rev; |
| new_mc = ucode_ptr; |
| } |
| } |
| |
| if (!new_mc) { |
| state = UCODE_NFOUND; |
| goto out; |
| } |
| |
| uci->mc = (struct microcode_intel *)new_mc; |
| out: |
| return state; |
| } |
| |
| static void |
| microcode_pointer(struct microcode_intel **mc_saved, |
| unsigned long *mc_saved_in_initrd, |
| unsigned long initrd_start, int mc_saved_count) |
| { |
| int i; |
| |
| for (i = 0; i < mc_saved_count; i++) |
| mc_saved[i] = (struct microcode_intel *) |
| (mc_saved_in_initrd[i] + initrd_start); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| static void |
| microcode_phys(struct microcode_intel **mc_saved_tmp, |
| struct mc_saved_data *mc_saved_data) |
| { |
| int i; |
| struct microcode_intel ***mc_saved; |
| |
| mc_saved = (struct microcode_intel ***) |
| __pa_nodebug(&mc_saved_data->mc_saved); |
| for (i = 0; i < mc_saved_data->mc_saved_count; i++) { |
| struct microcode_intel *p; |
| |
| p = *(struct microcode_intel **) |
| __pa_nodebug(mc_saved_data->mc_saved + i); |
| mc_saved_tmp[i] = (struct microcode_intel *)__pa_nodebug(p); |
| } |
| } |
| #endif |
| |
| static enum ucode_state |
| load_microcode(struct mc_saved_data *mc_saved_data, |
| unsigned long *mc_saved_in_initrd, |
| unsigned long initrd_start, |
| struct ucode_cpu_info *uci) |
| { |
| struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; |
| unsigned int count = mc_saved_data->mc_saved_count; |
| |
| if (!mc_saved_data->mc_saved) { |
| microcode_pointer(mc_saved_tmp, mc_saved_in_initrd, |
| initrd_start, count); |
| |
| return generic_load_microcode_early(mc_saved_tmp, count, uci); |
| } else { |
| #ifdef CONFIG_X86_32 |
| microcode_phys(mc_saved_tmp, mc_saved_data); |
| return generic_load_microcode_early(mc_saved_tmp, count, uci); |
| #else |
| return generic_load_microcode_early(mc_saved_data->mc_saved, |
| count, uci); |
| #endif |
| } |
| } |
| |
| static u8 get_x86_family(unsigned long sig) |
| { |
| u8 x86; |
| |
| x86 = (sig >> 8) & 0xf; |
| |
| if (x86 == 0xf) |
| x86 += (sig >> 20) & 0xff; |
| |
| return x86; |
| } |
| |
| static u8 get_x86_model(unsigned long sig) |
| { |
| u8 x86, x86_model; |
| |
| x86 = get_x86_family(sig); |
| x86_model = (sig >> 4) & 0xf; |
| |
| if (x86 == 0x6 || x86 == 0xf) |
| x86_model += ((sig >> 16) & 0xf) << 4; |
| |
| return x86_model; |
| } |
| |
| /* |
| * Given CPU signature and a microcode patch, this function finds if the |
| * microcode patch has matching family and model with the CPU. |
| */ |
| static enum ucode_state |
| matching_model_microcode(struct microcode_header_intel *mc_header, |
| unsigned long sig) |
| { |
| u8 x86, x86_model; |
| u8 x86_ucode, x86_model_ucode; |
| struct extended_sigtable *ext_header; |
| unsigned long total_size = get_totalsize(mc_header); |
| unsigned long data_size = get_datasize(mc_header); |
| int ext_sigcount, i; |
| struct extended_signature *ext_sig; |
| |
| x86 = get_x86_family(sig); |
| x86_model = get_x86_model(sig); |
| |
| x86_ucode = get_x86_family(mc_header->sig); |
| x86_model_ucode = get_x86_model(mc_header->sig); |
| |
| if (x86 == x86_ucode && x86_model == x86_model_ucode) |
| return UCODE_OK; |
| |
| /* Look for ext. headers: */ |
| if (total_size <= data_size + MC_HEADER_SIZE) |
| return UCODE_NFOUND; |
| |
| ext_header = (struct extended_sigtable *) |
| mc_header + data_size + MC_HEADER_SIZE; |
| ext_sigcount = ext_header->count; |
| ext_sig = (void *)ext_header + EXT_HEADER_SIZE; |
| |
| for (i = 0; i < ext_sigcount; i++) { |
| x86_ucode = get_x86_family(ext_sig->sig); |
| x86_model_ucode = get_x86_model(ext_sig->sig); |
| |
| if (x86 == x86_ucode && x86_model == x86_model_ucode) |
| return UCODE_OK; |
| |
| ext_sig++; |
| } |
| |
| return UCODE_NFOUND; |
| } |
| |
| static int |
| save_microcode(struct mc_saved_data *mc_saved_data, |
| struct microcode_intel **mc_saved_src, |
| unsigned int mc_saved_count) |
| { |
| int i, j; |
| struct microcode_intel **mc_saved_p; |
| int ret; |
| |
| if (!mc_saved_count) |
| return -EINVAL; |
| |
| /* |
| * Copy new microcode data. |
| */ |
| mc_saved_p = kmalloc(mc_saved_count*sizeof(struct microcode_intel *), |
| GFP_KERNEL); |
| if (!mc_saved_p) |
| return -ENOMEM; |
| |
| for (i = 0; i < mc_saved_count; i++) { |
| struct microcode_intel *mc = mc_saved_src[i]; |
| struct microcode_header_intel *mc_header = &mc->hdr; |
| unsigned long mc_size = get_totalsize(mc_header); |
| mc_saved_p[i] = kmalloc(mc_size, GFP_KERNEL); |
| if (!mc_saved_p[i]) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| if (!mc_saved_src[i]) { |
| ret = -EINVAL; |
| goto err; |
| } |
| memcpy(mc_saved_p[i], mc, mc_size); |
| } |
| |
| /* |
| * Point to newly saved microcode. |
| */ |
| mc_saved_data->mc_saved = mc_saved_p; |
| mc_saved_data->mc_saved_count = mc_saved_count; |
| |
| return 0; |
| |
| err: |
| for (j = 0; j <= i; j++) |
| kfree(mc_saved_p[j]); |
| kfree(mc_saved_p); |
| |
| return ret; |
| } |
| |
| /* |
| * A microcode patch in ucode_ptr is saved into mc_saved |
| * - if it has matching signature and newer revision compared to an existing |
| * patch mc_saved. |
| * - or if it is a newly discovered microcode patch. |
| * |
| * The microcode patch should have matching model with CPU. |
| */ |
| static void _save_mc(struct microcode_intel **mc_saved, u8 *ucode_ptr, |
| unsigned int *mc_saved_count_p) |
| { |
| int i; |
| int found = 0; |
| unsigned int mc_saved_count = *mc_saved_count_p; |
| struct microcode_header_intel *mc_header; |
| |
| mc_header = (struct microcode_header_intel *)ucode_ptr; |
| for (i = 0; i < mc_saved_count; i++) { |
| unsigned int sig, pf; |
| unsigned int new_rev; |
| struct microcode_header_intel *mc_saved_header = |
| (struct microcode_header_intel *)mc_saved[i]; |
| sig = mc_saved_header->sig; |
| pf = mc_saved_header->pf; |
| new_rev = mc_header->rev; |
| |
| if (get_matching_sig(sig, pf, ucode_ptr, new_rev)) { |
| found = 1; |
| if (update_match_revision(mc_header, new_rev)) { |
| /* |
| * Found an older ucode saved before. |
| * Replace the older one with this newer |
| * one. |
| */ |
| mc_saved[i] = |
| (struct microcode_intel *)ucode_ptr; |
| break; |
| } |
| } |
| } |
| if (i >= mc_saved_count && !found) |
| /* |
| * This ucode is first time discovered in ucode file. |
| * Save it to memory. |
| */ |
| mc_saved[mc_saved_count++] = |
| (struct microcode_intel *)ucode_ptr; |
| |
| *mc_saved_count_p = mc_saved_count; |
| } |
| |
| /* |
| * Get microcode matching with BSP's model. Only CPUs with the same model as |
| * BSP can stay in the platform. |
| */ |
| static enum ucode_state __init |
| get_matching_model_microcode(int cpu, unsigned long start, |
| void *data, size_t size, |
| struct mc_saved_data *mc_saved_data, |
| unsigned long *mc_saved_in_initrd, |
| struct ucode_cpu_info *uci) |
| { |
| u8 *ucode_ptr = data; |
| unsigned int leftover = size; |
| enum ucode_state state = UCODE_OK; |
| unsigned int mc_size; |
| struct microcode_header_intel *mc_header; |
| struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; |
| unsigned int mc_saved_count = mc_saved_data->mc_saved_count; |
| int i; |
| |
| while (leftover) { |
| mc_header = (struct microcode_header_intel *)ucode_ptr; |
| |
| mc_size = get_totalsize(mc_header); |
| if (!mc_size || mc_size > leftover || |
| microcode_sanity_check(ucode_ptr, 0) < 0) |
| break; |
| |
| leftover -= mc_size; |
| |
| /* |
| * Since APs with same family and model as the BSP may boot in |
| * the platform, we need to find and save microcode patches |
| * with the same family and model as the BSP. |
| */ |
| if (matching_model_microcode(mc_header, uci->cpu_sig.sig) != |
| UCODE_OK) { |
| ucode_ptr += mc_size; |
| continue; |
| } |
| |
| _save_mc(mc_saved_tmp, ucode_ptr, &mc_saved_count); |
| |
| ucode_ptr += mc_size; |
| } |
| |
| if (leftover) { |
| state = UCODE_ERROR; |
| goto out; |
| } |
| |
| if (mc_saved_count == 0) { |
| state = UCODE_NFOUND; |
| goto out; |
| } |
| |
| for (i = 0; i < mc_saved_count; i++) |
| mc_saved_in_initrd[i] = (unsigned long)mc_saved_tmp[i] - start; |
| |
| mc_saved_data->mc_saved_count = mc_saved_count; |
| out: |
| return state; |
| } |
| |
| #define native_rdmsr(msr, val1, val2) \ |
| do { \ |
| u64 __val = native_read_msr((msr)); \ |
| (void)((val1) = (u32)__val); \ |
| (void)((val2) = (u32)(__val >> 32)); \ |
| } while (0) |
| |
| #define native_wrmsr(msr, low, high) \ |
| native_write_msr(msr, low, high); |
| |
| static int collect_cpu_info_early(struct ucode_cpu_info *uci) |
| { |
| unsigned int val[2]; |
| u8 x86, x86_model; |
| struct cpu_signature csig; |
| unsigned int eax, ebx, ecx, edx; |
| |
| csig.sig = 0; |
| csig.pf = 0; |
| csig.rev = 0; |
| |
| memset(uci, 0, sizeof(*uci)); |
| |
| eax = 0x00000001; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| csig.sig = eax; |
| |
| x86 = get_x86_family(csig.sig); |
| x86_model = get_x86_model(csig.sig); |
| |
| if ((x86_model >= 5) || (x86 > 6)) { |
| /* get processor flags from MSR 0x17 */ |
| native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); |
| csig.pf = 1 << ((val[1] >> 18) & 7); |
| } |
| native_wrmsr(MSR_IA32_UCODE_REV, 0, 0); |
| |
| /* As documented in the SDM: Do a CPUID 1 here */ |
| sync_core(); |
| |
| /* get the current revision from MSR 0x8B */ |
| native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); |
| |
| csig.rev = val[1]; |
| |
| uci->cpu_sig = csig; |
| uci->valid = 1; |
| |
| return 0; |
| } |
| |
| #ifdef DEBUG |
| static void __ref show_saved_mc(void) |
| { |
| int i, j; |
| unsigned int sig, pf, rev, total_size, data_size, date; |
| struct ucode_cpu_info uci; |
| |
| if (mc_saved_data.mc_saved_count == 0) { |
| pr_debug("no micorcode data saved.\n"); |
| return; |
| } |
| pr_debug("Total microcode saved: %d\n", mc_saved_data.mc_saved_count); |
| |
| collect_cpu_info_early(&uci); |
| |
| sig = uci.cpu_sig.sig; |
| pf = uci.cpu_sig.pf; |
| rev = uci.cpu_sig.rev; |
| pr_debug("CPU%d: sig=0x%x, pf=0x%x, rev=0x%x\n", |
| smp_processor_id(), sig, pf, rev); |
| |
| for (i = 0; i < mc_saved_data.mc_saved_count; i++) { |
| struct microcode_header_intel *mc_saved_header; |
| struct extended_sigtable *ext_header; |
| int ext_sigcount; |
| struct extended_signature *ext_sig; |
| |
| mc_saved_header = (struct microcode_header_intel *) |
| mc_saved_data.mc_saved[i]; |
| sig = mc_saved_header->sig; |
| pf = mc_saved_header->pf; |
| rev = mc_saved_header->rev; |
| total_size = get_totalsize(mc_saved_header); |
| data_size = get_datasize(mc_saved_header); |
| date = mc_saved_header->date; |
| |
| pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, toal size=0x%x, date = %04x-%02x-%02x\n", |
| i, sig, pf, rev, total_size, |
| date & 0xffff, |
| date >> 24, |
| (date >> 16) & 0xff); |
| |
| /* Look for ext. headers: */ |
| if (total_size <= data_size + MC_HEADER_SIZE) |
| continue; |
| |
| ext_header = (struct extended_sigtable *) |
| mc_saved_header + data_size + MC_HEADER_SIZE; |
| ext_sigcount = ext_header->count; |
| ext_sig = (void *)ext_header + EXT_HEADER_SIZE; |
| |
| for (j = 0; j < ext_sigcount; j++) { |
| sig = ext_sig->sig; |
| pf = ext_sig->pf; |
| |
| pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n", |
| j, sig, pf); |
| |
| ext_sig++; |
| } |
| |
| } |
| } |
| #else |
| static inline void show_saved_mc(void) |
| { |
| } |
| #endif |
| |
| #if defined(CONFIG_MICROCODE_INTEL_EARLY) && defined(CONFIG_HOTPLUG_CPU) |
| static DEFINE_MUTEX(x86_cpu_microcode_mutex); |
| /* |
| * Save this mc into mc_saved_data. So it will be loaded early when a CPU is |
| * hot added or resumes. |
| * |
| * Please make sure this mc should be a valid microcode patch before calling |
| * this function. |
| */ |
| int save_mc_for_early(u8 *mc) |
| { |
| struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; |
| unsigned int mc_saved_count_init; |
| unsigned int mc_saved_count; |
| struct microcode_intel **mc_saved; |
| int ret = 0; |
| int i; |
| |
| /* |
| * Hold hotplug lock so mc_saved_data is not accessed by a CPU in |
| * hotplug. |
| */ |
| mutex_lock(&x86_cpu_microcode_mutex); |
| |
| mc_saved_count_init = mc_saved_data.mc_saved_count; |
| mc_saved_count = mc_saved_data.mc_saved_count; |
| mc_saved = mc_saved_data.mc_saved; |
| |
| if (mc_saved && mc_saved_count) |
| memcpy(mc_saved_tmp, mc_saved, |
| mc_saved_count * sizeof(struct mirocode_intel *)); |
| /* |
| * Save the microcode patch mc in mc_save_tmp structure if it's a newer |
| * version. |
| */ |
| |
| _save_mc(mc_saved_tmp, mc, &mc_saved_count); |
| |
| /* |
| * Save the mc_save_tmp in global mc_saved_data. |
| */ |
| ret = save_microcode(&mc_saved_data, mc_saved_tmp, mc_saved_count); |
| if (ret) { |
| pr_err("Cannot save microcode patch.\n"); |
| goto out; |
| } |
| |
| show_saved_mc(); |
| |
| /* |
| * Free old saved microcod data. |
| */ |
| if (mc_saved) { |
| for (i = 0; i < mc_saved_count_init; i++) |
| kfree(mc_saved[i]); |
| kfree(mc_saved); |
| } |
| |
| out: |
| mutex_unlock(&x86_cpu_microcode_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(save_mc_for_early); |
| #endif |
| |
| static __initdata char ucode_name[] = "kernel/x86/microcode/GenuineIntel.bin"; |
| static __init enum ucode_state |
| scan_microcode(unsigned long start, unsigned long end, |
| struct mc_saved_data *mc_saved_data, |
| unsigned long *mc_saved_in_initrd, |
| struct ucode_cpu_info *uci) |
| { |
| unsigned int size = end - start + 1; |
| struct cpio_data cd; |
| long offset = 0; |
| #ifdef CONFIG_X86_32 |
| char *p = (char *)__pa_nodebug(ucode_name); |
| #else |
| char *p = ucode_name; |
| #endif |
| |
| cd.data = NULL; |
| cd.size = 0; |
| |
| cd = find_cpio_data(p, (void *)start, size, &offset); |
| if (!cd.data) |
| return UCODE_ERROR; |
| |
| |
| return get_matching_model_microcode(0, start, cd.data, cd.size, |
| mc_saved_data, mc_saved_in_initrd, |
| uci); |
| } |
| |
| /* |
| * Print ucode update info. |
| */ |
| static void |
| print_ucode_info(struct ucode_cpu_info *uci, unsigned int date) |
| { |
| int cpu = smp_processor_id(); |
| |
| pr_info("CPU%d microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n", |
| cpu, |
| uci->cpu_sig.rev, |
| date & 0xffff, |
| date >> 24, |
| (date >> 16) & 0xff); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| |
| static int delay_ucode_info; |
| static int current_mc_date; |
| |
| /* |
| * Print early updated ucode info after printk works. This is delayed info dump. |
| */ |
| void show_ucode_info_early(void) |
| { |
| struct ucode_cpu_info uci; |
| |
| if (delay_ucode_info) { |
| collect_cpu_info_early(&uci); |
| print_ucode_info(&uci, current_mc_date); |
| delay_ucode_info = 0; |
| } |
| } |
| |
| /* |
| * At this point, we can not call printk() yet. Keep microcode patch number in |
| * mc_saved_data.mc_saved and delay printing microcode info in |
| * show_ucode_info_early() until printk() works. |
| */ |
| static void print_ucode(struct ucode_cpu_info *uci) |
| { |
| struct microcode_intel *mc_intel; |
| int *delay_ucode_info_p; |
| int *current_mc_date_p; |
| |
| mc_intel = uci->mc; |
| if (mc_intel == NULL) |
| return; |
| |
| delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info); |
| current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date); |
| |
| *delay_ucode_info_p = 1; |
| *current_mc_date_p = mc_intel->hdr.date; |
| } |
| #else |
| |
| /* |
| * Flush global tlb. We only do this in x86_64 where paging has been enabled |
| * already and PGE should be enabled as well. |
| */ |
| static inline void flush_tlb_early(void) |
| { |
| __native_flush_tlb_global_irq_disabled(); |
| } |
| |
| static inline void print_ucode(struct ucode_cpu_info *uci) |
| { |
| struct microcode_intel *mc_intel; |
| |
| mc_intel = uci->mc; |
| if (mc_intel == NULL) |
| return; |
| |
| print_ucode_info(uci, mc_intel->hdr.date); |
| } |
| #endif |
| |
| static int apply_microcode_early(struct mc_saved_data *mc_saved_data, |
| struct ucode_cpu_info *uci) |
| { |
| struct microcode_intel *mc_intel; |
| unsigned int val[2]; |
| |
| mc_intel = uci->mc; |
| if (mc_intel == NULL) |
| return 0; |
| |
| /* write microcode via MSR 0x79 */ |
| native_wrmsr(MSR_IA32_UCODE_WRITE, |
| (unsigned long) mc_intel->bits, |
| (unsigned long) mc_intel->bits >> 16 >> 16); |
| native_wrmsr(MSR_IA32_UCODE_REV, 0, 0); |
| |
| /* As documented in the SDM: Do a CPUID 1 here */ |
| sync_core(); |
| |
| /* get the current revision from MSR 0x8B */ |
| native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); |
| if (val[1] != mc_intel->hdr.rev) |
| return -1; |
| |
| #ifdef CONFIG_X86_64 |
| /* Flush global tlb. This is precaution. */ |
| flush_tlb_early(); |
| #endif |
| uci->cpu_sig.rev = val[1]; |
| |
| print_ucode(uci); |
| |
| return 0; |
| } |
| |
| /* |
| * This function converts microcode patch offsets previously stored in |
| * mc_saved_in_initrd to pointers and stores the pointers in mc_saved_data. |
| */ |
| int __init save_microcode_in_initrd_intel(void) |
| { |
| unsigned int count = mc_saved_data.mc_saved_count; |
| struct microcode_intel *mc_saved[MAX_UCODE_COUNT]; |
| int ret = 0; |
| |
| if (count == 0) |
| return ret; |
| |
| microcode_pointer(mc_saved, mc_saved_in_initrd, initrd_start, count); |
| ret = save_microcode(&mc_saved_data, mc_saved, count); |
| if (ret) |
| pr_err("Cannot save microcode patches from initrd.\n"); |
| |
| show_saved_mc(); |
| |
| return ret; |
| } |
| |
| static void __init |
| _load_ucode_intel_bsp(struct mc_saved_data *mc_saved_data, |
| unsigned long *mc_saved_in_initrd, |
| unsigned long initrd_start_early, |
| unsigned long initrd_end_early, |
| struct ucode_cpu_info *uci) |
| { |
| collect_cpu_info_early(uci); |
| scan_microcode(initrd_start_early, initrd_end_early, mc_saved_data, |
| mc_saved_in_initrd, uci); |
| load_microcode(mc_saved_data, mc_saved_in_initrd, |
| initrd_start_early, uci); |
| apply_microcode_early(mc_saved_data, uci); |
| } |
| |
| void __init |
| load_ucode_intel_bsp(void) |
| { |
| u64 ramdisk_image, ramdisk_size; |
| unsigned long initrd_start_early, initrd_end_early; |
| struct ucode_cpu_info uci; |
| #ifdef CONFIG_X86_32 |
| struct boot_params *boot_params_p; |
| |
| boot_params_p = (struct boot_params *)__pa_nodebug(&boot_params); |
| ramdisk_image = boot_params_p->hdr.ramdisk_image; |
| ramdisk_size = boot_params_p->hdr.ramdisk_size; |
| initrd_start_early = ramdisk_image; |
| initrd_end_early = initrd_start_early + ramdisk_size; |
| |
| _load_ucode_intel_bsp( |
| (struct mc_saved_data *)__pa_nodebug(&mc_saved_data), |
| (unsigned long *)__pa_nodebug(&mc_saved_in_initrd), |
| initrd_start_early, initrd_end_early, &uci); |
| #else |
| ramdisk_image = boot_params.hdr.ramdisk_image; |
| ramdisk_size = boot_params.hdr.ramdisk_size; |
| initrd_start_early = ramdisk_image + PAGE_OFFSET; |
| initrd_end_early = initrd_start_early + ramdisk_size; |
| |
| _load_ucode_intel_bsp(&mc_saved_data, mc_saved_in_initrd, |
| initrd_start_early, initrd_end_early, &uci); |
| #endif |
| } |
| |
| void load_ucode_intel_ap(void) |
| { |
| struct mc_saved_data *mc_saved_data_p; |
| struct ucode_cpu_info uci; |
| unsigned long *mc_saved_in_initrd_p; |
| unsigned long initrd_start_addr; |
| #ifdef CONFIG_X86_32 |
| unsigned long *initrd_start_p; |
| |
| mc_saved_in_initrd_p = |
| (unsigned long *)__pa_nodebug(mc_saved_in_initrd); |
| mc_saved_data_p = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data); |
| initrd_start_p = (unsigned long *)__pa_nodebug(&initrd_start); |
| initrd_start_addr = (unsigned long)__pa_nodebug(*initrd_start_p); |
| #else |
| mc_saved_data_p = &mc_saved_data; |
| mc_saved_in_initrd_p = mc_saved_in_initrd; |
| initrd_start_addr = initrd_start; |
| #endif |
| |
| /* |
| * If there is no valid ucode previously saved in memory, no need to |
| * update ucode on this AP. |
| */ |
| if (mc_saved_data_p->mc_saved_count == 0) |
| return; |
| |
| collect_cpu_info_early(&uci); |
| load_microcode(mc_saved_data_p, mc_saved_in_initrd_p, |
| initrd_start_addr, &uci); |
| apply_microcode_early(mc_saved_data_p, &uci); |
| } |