| /* | 
 |  * GHES/EDAC Linux driver | 
 |  * | 
 |  * This file may be distributed under the terms of the GNU General Public | 
 |  * License version 2. | 
 |  * | 
 |  * Copyright (c) 2013 by Mauro Carvalho Chehab <mchehab@redhat.com> | 
 |  * | 
 |  * Red Hat Inc. http://www.redhat.com | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <acpi/ghes.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/dmi.h> | 
 | #include "edac_core.h" | 
 | #include <ras/ras_event.h> | 
 |  | 
 | #define GHES_EDAC_REVISION " Ver: 1.0.0" | 
 |  | 
 | struct ghes_edac_pvt { | 
 | 	struct list_head list; | 
 | 	struct ghes *ghes; | 
 | 	struct mem_ctl_info *mci; | 
 |  | 
 | 	/* Buffers for the error handling routine */ | 
 | 	char detail_location[240]; | 
 | 	char other_detail[160]; | 
 | 	char msg[80]; | 
 | }; | 
 |  | 
 | static LIST_HEAD(ghes_reglist); | 
 | static DEFINE_MUTEX(ghes_edac_lock); | 
 | static int ghes_edac_mc_num; | 
 |  | 
 |  | 
 | /* Memory Device - Type 17 of SMBIOS spec */ | 
 | struct memdev_dmi_entry { | 
 | 	u8 type; | 
 | 	u8 length; | 
 | 	u16 handle; | 
 | 	u16 phys_mem_array_handle; | 
 | 	u16 mem_err_info_handle; | 
 | 	u16 total_width; | 
 | 	u16 data_width; | 
 | 	u16 size; | 
 | 	u8 form_factor; | 
 | 	u8 device_set; | 
 | 	u8 device_locator; | 
 | 	u8 bank_locator; | 
 | 	u8 memory_type; | 
 | 	u16 type_detail; | 
 | 	u16 speed; | 
 | 	u8 manufacturer; | 
 | 	u8 serial_number; | 
 | 	u8 asset_tag; | 
 | 	u8 part_number; | 
 | 	u8 attributes; | 
 | 	u32 extended_size; | 
 | 	u16 conf_mem_clk_speed; | 
 | } __attribute__((__packed__)); | 
 |  | 
 | struct ghes_edac_dimm_fill { | 
 | 	struct mem_ctl_info *mci; | 
 | 	unsigned count; | 
 | }; | 
 |  | 
 | char *memory_type[] = { | 
 | 	[MEM_EMPTY] = "EMPTY", | 
 | 	[MEM_RESERVED] = "RESERVED", | 
 | 	[MEM_UNKNOWN] = "UNKNOWN", | 
 | 	[MEM_FPM] = "FPM", | 
 | 	[MEM_EDO] = "EDO", | 
 | 	[MEM_BEDO] = "BEDO", | 
 | 	[MEM_SDR] = "SDR", | 
 | 	[MEM_RDR] = "RDR", | 
 | 	[MEM_DDR] = "DDR", | 
 | 	[MEM_RDDR] = "RDDR", | 
 | 	[MEM_RMBS] = "RMBS", | 
 | 	[MEM_DDR2] = "DDR2", | 
 | 	[MEM_FB_DDR2] = "FB_DDR2", | 
 | 	[MEM_RDDR2] = "RDDR2", | 
 | 	[MEM_XDR] = "XDR", | 
 | 	[MEM_DDR3] = "DDR3", | 
 | 	[MEM_RDDR3] = "RDDR3", | 
 | }; | 
 |  | 
 | static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg) | 
 | { | 
 | 	int *num_dimm = arg; | 
 |  | 
 | 	if (dh->type == DMI_ENTRY_MEM_DEVICE) | 
 | 		(*num_dimm)++; | 
 | } | 
 |  | 
 | static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg) | 
 | { | 
 | 	struct ghes_edac_dimm_fill *dimm_fill = arg; | 
 | 	struct mem_ctl_info *mci = dimm_fill->mci; | 
 |  | 
 | 	if (dh->type == DMI_ENTRY_MEM_DEVICE) { | 
 | 		struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh; | 
 | 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | 
 | 						       mci->n_layers, | 
 | 						       dimm_fill->count, 0, 0); | 
 |  | 
 | 		if (entry->size == 0xffff) { | 
 | 			pr_info("Can't get DIMM%i size\n", | 
 | 				dimm_fill->count); | 
 | 			dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */ | 
 | 		} else if (entry->size == 0x7fff) { | 
 | 			dimm->nr_pages = MiB_TO_PAGES(entry->extended_size); | 
 | 		} else { | 
 | 			if (entry->size & 1 << 15) | 
 | 				dimm->nr_pages = MiB_TO_PAGES((entry->size & | 
 | 							       0x7fff) << 10); | 
 | 			else | 
 | 				dimm->nr_pages = MiB_TO_PAGES(entry->size); | 
 | 		} | 
 |  | 
 | 		switch (entry->memory_type) { | 
 | 		case 0x12: | 
 | 			if (entry->type_detail & 1 << 13) | 
 | 				dimm->mtype = MEM_RDDR; | 
 | 			else | 
 | 				dimm->mtype = MEM_DDR; | 
 | 			break; | 
 | 		case 0x13: | 
 | 			if (entry->type_detail & 1 << 13) | 
 | 				dimm->mtype = MEM_RDDR2; | 
 | 			else | 
 | 				dimm->mtype = MEM_DDR2; | 
 | 			break; | 
 | 		case 0x14: | 
 | 			dimm->mtype = MEM_FB_DDR2; | 
 | 			break; | 
 | 		case 0x18: | 
 | 			if (entry->type_detail & 1 << 13) | 
 | 				dimm->mtype = MEM_RDDR3; | 
 | 			else | 
 | 				dimm->mtype = MEM_DDR3; | 
 | 			break; | 
 | 		default: | 
 | 			if (entry->type_detail & 1 << 6) | 
 | 				dimm->mtype = MEM_RMBS; | 
 | 			else if ((entry->type_detail & ((1 << 7) | (1 << 13))) | 
 | 				 == ((1 << 7) | (1 << 13))) | 
 | 				dimm->mtype = MEM_RDR; | 
 | 			else if (entry->type_detail & 1 << 7) | 
 | 				dimm->mtype = MEM_SDR; | 
 | 			else if (entry->type_detail & 1 << 9) | 
 | 				dimm->mtype = MEM_EDO; | 
 | 			else | 
 | 				dimm->mtype = MEM_UNKNOWN; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Actually, we can only detect if the memory has bits for | 
 | 		 * checksum or not | 
 | 		 */ | 
 | 		if (entry->total_width == entry->data_width) | 
 | 			dimm->edac_mode = EDAC_NONE; | 
 | 		else | 
 | 			dimm->edac_mode = EDAC_SECDED; | 
 |  | 
 | 		dimm->dtype = DEV_UNKNOWN; | 
 | 		dimm->grain = 128;		/* Likely, worse case */ | 
 |  | 
 | 		/* | 
 | 		 * FIXME: It shouldn't be hard to also fill the DIMM labels | 
 | 		 */ | 
 |  | 
 | 		if (dimm->nr_pages) { | 
 | 			edac_dbg(1, "DIMM%i: %s size = %d MB%s\n", | 
 | 				dimm_fill->count, memory_type[dimm->mtype], | 
 | 				PAGES_TO_MiB(dimm->nr_pages), | 
 | 				(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : ""); | 
 | 			edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n", | 
 | 				entry->memory_type, entry->type_detail, | 
 | 				entry->total_width, entry->data_width); | 
 | 		} | 
 |  | 
 | 		dimm_fill->count++; | 
 | 	} | 
 | } | 
 |  | 
 | void ghes_edac_report_mem_error(struct ghes *ghes, int sev, | 
 | 				struct cper_sec_mem_err *mem_err) | 
 | { | 
 | 	enum hw_event_mc_err_type type; | 
 | 	struct edac_raw_error_desc *e; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct ghes_edac_pvt *pvt = NULL; | 
 | 	char *p; | 
 | 	u8 grain_bits; | 
 |  | 
 | 	list_for_each_entry(pvt, &ghes_reglist, list) { | 
 | 		if (ghes == pvt->ghes) | 
 | 			break; | 
 | 	} | 
 | 	if (!pvt) { | 
 | 		pr_err("Internal error: Can't find EDAC structure\n"); | 
 | 		return; | 
 | 	} | 
 | 	mci = pvt->mci; | 
 | 	e = &mci->error_desc; | 
 |  | 
 | 	/* Cleans the error report buffer */ | 
 | 	memset(e, 0, sizeof (*e)); | 
 | 	e->error_count = 1; | 
 | 	strcpy(e->label, "unknown label"); | 
 | 	e->msg = pvt->msg; | 
 | 	e->other_detail = pvt->other_detail; | 
 | 	e->top_layer = -1; | 
 | 	e->mid_layer = -1; | 
 | 	e->low_layer = -1; | 
 | 	*pvt->other_detail = '\0'; | 
 | 	*pvt->msg = '\0'; | 
 |  | 
 | 	switch (sev) { | 
 | 	case GHES_SEV_CORRECTED: | 
 | 		type = HW_EVENT_ERR_CORRECTED; | 
 | 		break; | 
 | 	case GHES_SEV_RECOVERABLE: | 
 | 		type = HW_EVENT_ERR_UNCORRECTED; | 
 | 		break; | 
 | 	case GHES_SEV_PANIC: | 
 | 		type = HW_EVENT_ERR_FATAL; | 
 | 		break; | 
 | 	default: | 
 | 	case GHES_SEV_NO: | 
 | 		type = HW_EVENT_ERR_INFO; | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "error validation_bits: 0x%08llx\n", | 
 | 		 (long long)mem_err->validation_bits); | 
 |  | 
 | 	/* Error type, mapped on e->msg */ | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { | 
 | 		p = pvt->msg; | 
 | 		switch (mem_err->error_type) { | 
 | 		case 0: | 
 | 			p += sprintf(p, "Unknown"); | 
 | 			break; | 
 | 		case 1: | 
 | 			p += sprintf(p, "No error"); | 
 | 			break; | 
 | 		case 2: | 
 | 			p += sprintf(p, "Single-bit ECC"); | 
 | 			break; | 
 | 		case 3: | 
 | 			p += sprintf(p, "Multi-bit ECC"); | 
 | 			break; | 
 | 		case 4: | 
 | 			p += sprintf(p, "Single-symbol ChipKill ECC"); | 
 | 			break; | 
 | 		case 5: | 
 | 			p += sprintf(p, "Multi-symbol ChipKill ECC"); | 
 | 			break; | 
 | 		case 6: | 
 | 			p += sprintf(p, "Master abort"); | 
 | 			break; | 
 | 		case 7: | 
 | 			p += sprintf(p, "Target abort"); | 
 | 			break; | 
 | 		case 8: | 
 | 			p += sprintf(p, "Parity Error"); | 
 | 			break; | 
 | 		case 9: | 
 | 			p += sprintf(p, "Watchdog timeout"); | 
 | 			break; | 
 | 		case 10: | 
 | 			p += sprintf(p, "Invalid address"); | 
 | 			break; | 
 | 		case 11: | 
 | 			p += sprintf(p, "Mirror Broken"); | 
 | 			break; | 
 | 		case 12: | 
 | 			p += sprintf(p, "Memory Sparing"); | 
 | 			break; | 
 | 		case 13: | 
 | 			p += sprintf(p, "Scrub corrected error"); | 
 | 			break; | 
 | 		case 14: | 
 | 			p += sprintf(p, "Scrub uncorrected error"); | 
 | 			break; | 
 | 		case 15: | 
 | 			p += sprintf(p, "Physical Memory Map-out event"); | 
 | 			break; | 
 | 		default: | 
 | 			p += sprintf(p, "reserved error (%d)", | 
 | 				     mem_err->error_type); | 
 | 		} | 
 | 	} else { | 
 | 		strcpy(pvt->msg, "unknown error"); | 
 | 	} | 
 |  | 
 | 	/* Error address */ | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_PA) { | 
 | 		e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT; | 
 | 		e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK; | 
 | 	} | 
 |  | 
 | 	/* Error grain */ | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK) | 
 | 		e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK); | 
 |  | 
 | 	/* Memory error location, mapped on e->location */ | 
 | 	p = e->location; | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_NODE) | 
 | 		p += sprintf(p, "node:%d ", mem_err->node); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_CARD) | 
 | 		p += sprintf(p, "card:%d ", mem_err->card); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE) | 
 | 		p += sprintf(p, "module:%d ", mem_err->module); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER) | 
 | 		p += sprintf(p, "rank:%d ", mem_err->rank); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK) | 
 | 		p += sprintf(p, "bank:%d ", mem_err->bank); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_ROW) | 
 | 		p += sprintf(p, "row:%d ", mem_err->row); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN) | 
 | 		p += sprintf(p, "col:%d ", mem_err->column); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION) | 
 | 		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) { | 
 | 		const char *bank = NULL, *device = NULL; | 
 | 		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device); | 
 | 		if (bank != NULL && device != NULL) | 
 | 			p += sprintf(p, "DIMM location:%s %s ", bank, device); | 
 | 		else | 
 | 			p += sprintf(p, "DIMM DMI handle: 0x%.4x ", | 
 | 				     mem_err->mem_dev_handle); | 
 | 	} | 
 | 	if (p > e->location) | 
 | 		*(p - 1) = '\0'; | 
 |  | 
 | 	/* All other fields are mapped on e->other_detail */ | 
 | 	p = pvt->other_detail; | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) { | 
 | 		u64 status = mem_err->error_status; | 
 |  | 
 | 		p += sprintf(p, "status(0x%016llx): ", (long long)status); | 
 | 		switch ((status >> 8) & 0xff) { | 
 | 		case 1: | 
 | 			p += sprintf(p, "Error detected internal to the component "); | 
 | 			break; | 
 | 		case 16: | 
 | 			p += sprintf(p, "Error detected in the bus "); | 
 | 			break; | 
 | 		case 4: | 
 | 			p += sprintf(p, "Storage error in DRAM memory "); | 
 | 			break; | 
 | 		case 5: | 
 | 			p += sprintf(p, "Storage error in TLB "); | 
 | 			break; | 
 | 		case 6: | 
 | 			p += sprintf(p, "Storage error in cache "); | 
 | 			break; | 
 | 		case 7: | 
 | 			p += sprintf(p, "Error in one or more functional units "); | 
 | 			break; | 
 | 		case 8: | 
 | 			p += sprintf(p, "component failed self test "); | 
 | 			break; | 
 | 		case 9: | 
 | 			p += sprintf(p, "Overflow or undervalue of internal queue "); | 
 | 			break; | 
 | 		case 17: | 
 | 			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR "); | 
 | 			break; | 
 | 		case 18: | 
 | 			p += sprintf(p, "Improper access error "); | 
 | 			break; | 
 | 		case 19: | 
 | 			p += sprintf(p, "Access to a memory address which is not mapped to any component "); | 
 | 			break; | 
 | 		case 20: | 
 | 			p += sprintf(p, "Loss of Lockstep "); | 
 | 			break; | 
 | 		case 21: | 
 | 			p += sprintf(p, "Response not associated with a request "); | 
 | 			break; | 
 | 		case 22: | 
 | 			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits "); | 
 | 			break; | 
 | 		case 23: | 
 | 			p += sprintf(p, "Detection of a PATH_ERROR "); | 
 | 			break; | 
 | 		case 25: | 
 | 			p += sprintf(p, "Bus operation timeout "); | 
 | 			break; | 
 | 		case 26: | 
 | 			p += sprintf(p, "A read was issued to data that has been poisoned "); | 
 | 			break; | 
 | 		default: | 
 | 			p += sprintf(p, "reserved "); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) | 
 | 		p += sprintf(p, "requestorID: 0x%016llx ", | 
 | 			     (long long)mem_err->requestor_id); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID) | 
 | 		p += sprintf(p, "responderID: 0x%016llx ", | 
 | 			     (long long)mem_err->responder_id); | 
 | 	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID) | 
 | 		p += sprintf(p, "targetID: 0x%016llx ", | 
 | 			     (long long)mem_err->responder_id); | 
 | 	if (p > pvt->other_detail) | 
 | 		*(p - 1) = '\0'; | 
 |  | 
 | 	/* Generate the trace event */ | 
 | 	grain_bits = fls_long(e->grain); | 
 | 	sprintf(pvt->detail_location, "APEI location: %s %s", | 
 | 		e->location, e->other_detail); | 
 | 	trace_mc_event(type, e->msg, e->label, e->error_count, | 
 | 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, | 
 | 		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, | 
 | 		       grain_bits, e->syndrome, pvt->detail_location); | 
 |  | 
 | 	/* Report the error via EDAC API */ | 
 | 	edac_raw_mc_handle_error(type, mci, e); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ghes_edac_report_mem_error); | 
 |  | 
 | int ghes_edac_register(struct ghes *ghes, struct device *dev) | 
 | { | 
 | 	bool fake = false; | 
 | 	int rc, num_dimm = 0; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct edac_mc_layer layers[1]; | 
 | 	struct ghes_edac_pvt *pvt; | 
 | 	struct ghes_edac_dimm_fill dimm_fill; | 
 |  | 
 | 	/* Get the number of DIMMs */ | 
 | 	dmi_walk(ghes_edac_count_dimms, &num_dimm); | 
 |  | 
 | 	/* Check if we've got a bogus BIOS */ | 
 | 	if (num_dimm == 0) { | 
 | 		fake = true; | 
 | 		num_dimm = 1; | 
 | 	} | 
 |  | 
 | 	layers[0].type = EDAC_MC_LAYER_ALL_MEM; | 
 | 	layers[0].size = num_dimm; | 
 | 	layers[0].is_virt_csrow = true; | 
 |  | 
 | 	/* | 
 | 	 * We need to serialize edac_mc_alloc() and edac_mc_add_mc(), | 
 | 	 * to avoid duplicated memory controller numbers | 
 | 	 */ | 
 | 	mutex_lock(&ghes_edac_lock); | 
 | 	mci = edac_mc_alloc(ghes_edac_mc_num, ARRAY_SIZE(layers), layers, | 
 | 			    sizeof(*pvt)); | 
 | 	if (!mci) { | 
 | 		pr_info("Can't allocate memory for EDAC data\n"); | 
 | 		mutex_unlock(&ghes_edac_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	memset(pvt, 0, sizeof(*pvt)); | 
 | 	list_add_tail(&pvt->list, &ghes_reglist); | 
 | 	pvt->ghes = ghes; | 
 | 	pvt->mci  = mci; | 
 | 	mci->pdev = dev; | 
 |  | 
 | 	mci->mtype_cap = MEM_FLAG_EMPTY; | 
 | 	mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
 | 	mci->edac_cap = EDAC_FLAG_NONE; | 
 | 	mci->mod_name = "ghes_edac.c"; | 
 | 	mci->mod_ver = GHES_EDAC_REVISION; | 
 | 	mci->ctl_name = "ghes_edac"; | 
 | 	mci->dev_name = "ghes"; | 
 |  | 
 | 	if (!ghes_edac_mc_num) { | 
 | 		if (!fake) { | 
 | 			pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n"); | 
 | 			pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n"); | 
 | 			pr_info("So, the end result of using this driver varies from vendor to vendor.\n"); | 
 | 			pr_info("If you find incorrect reports, please contact your hardware vendor\n"); | 
 | 			pr_info("to correct its BIOS.\n"); | 
 | 			pr_info("This system has %d DIMM sockets.\n", | 
 | 				num_dimm); | 
 | 		} else { | 
 | 			pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n"); | 
 | 			pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n"); | 
 | 			pr_info("work on such system. Use this driver with caution\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!fake) { | 
 | 		/* | 
 | 		 * Fill DIMM info from DMI for the memory controller #0 | 
 | 		 * | 
 | 		 * Keep it in blank for the other memory controllers, as | 
 | 		 * there's no reliable way to properly credit each DIMM to | 
 | 		 * the memory controller, as different BIOSes fill the | 
 | 		 * DMI bank location fields on different ways | 
 | 		 */ | 
 | 		if (!ghes_edac_mc_num) { | 
 | 			dimm_fill.count = 0; | 
 | 			dimm_fill.mci = mci; | 
 | 			dmi_walk(ghes_edac_dmidecode, &dimm_fill); | 
 | 		} | 
 | 	} else { | 
 | 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | 
 | 						       mci->n_layers, 0, 0, 0); | 
 |  | 
 | 		dimm->nr_pages = 1; | 
 | 		dimm->grain = 128; | 
 | 		dimm->mtype = MEM_UNKNOWN; | 
 | 		dimm->dtype = DEV_UNKNOWN; | 
 | 		dimm->edac_mode = EDAC_SECDED; | 
 | 	} | 
 |  | 
 | 	rc = edac_mc_add_mc(mci); | 
 | 	if (rc < 0) { | 
 | 		pr_info("Can't register at EDAC core\n"); | 
 | 		edac_mc_free(mci); | 
 | 		mutex_unlock(&ghes_edac_lock); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ghes_edac_mc_num++; | 
 | 	mutex_unlock(&ghes_edac_lock); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ghes_edac_register); | 
 |  | 
 | void ghes_edac_unregister(struct ghes *ghes) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct ghes_edac_pvt *pvt, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(pvt, tmp, &ghes_reglist, list) { | 
 | 		if (ghes == pvt->ghes) { | 
 | 			mci = pvt->mci; | 
 | 			edac_mc_del_mc(mci->pdev); | 
 | 			edac_mc_free(mci); | 
 | 			list_del(&pvt->list); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ghes_edac_unregister); |