|  | /* | 
|  | * Copyright (c) 2008-2011 Atheros Communications Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * DOC: Programming Atheros 802.11n analog front end radios | 
|  | * | 
|  | * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express | 
|  | * devices have either an external AR2133 analog front end radio for single | 
|  | * band 2.4 GHz communication or an AR5133 analog front end radio for dual | 
|  | * band 2.4 GHz / 5 GHz communication. | 
|  | * | 
|  | * All devices after the AR5416 and AR5418 family starting with the AR9280 | 
|  | * have their analog front radios, MAC/BB and host PCIe/USB interface embedded | 
|  | * into a single-chip and require less programming. | 
|  | * | 
|  | * The following single-chips exist with a respective embedded radio: | 
|  | * | 
|  | * AR9280 - 11n dual-band 2x2 MIMO for PCIe | 
|  | * AR9281 - 11n single-band 1x2 MIMO for PCIe | 
|  | * AR9285 - 11n single-band 1x1 for PCIe | 
|  | * AR9287 - 11n single-band 2x2 MIMO for PCIe | 
|  | * | 
|  | * AR9220 - 11n dual-band 2x2 MIMO for PCI | 
|  | * AR9223 - 11n single-band 2x2 MIMO for PCI | 
|  | * | 
|  | * AR9287 - 11n single-band 1x1 MIMO for USB | 
|  | */ | 
|  |  | 
|  | #include "hw.h" | 
|  | #include "ar9002_phy.h" | 
|  |  | 
|  | /** | 
|  | * ar9002_hw_set_channel - set channel on single-chip device | 
|  | * @ah: atheros hardware structure | 
|  | * @chan: | 
|  | * | 
|  | * This is the function to change channel on single-chip devices, that is | 
|  | * all devices after ar9280. | 
|  | * | 
|  | * This function takes the channel value in MHz and sets | 
|  | * hardware channel value. Assumes writes have been enabled to analog bus. | 
|  | * | 
|  | * Actual Expression, | 
|  | * | 
|  | * For 2GHz channel, | 
|  | * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) | 
|  | * (freq_ref = 40MHz) | 
|  | * | 
|  | * For 5GHz channel, | 
|  | * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) | 
|  | * (freq_ref = 40MHz/(24>>amodeRefSel)) | 
|  | */ | 
|  | static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) | 
|  | { | 
|  | u16 bMode, fracMode, aModeRefSel = 0; | 
|  | u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; | 
|  | struct chan_centers centers; | 
|  | u32 refDivA = 24; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  | freq = centers.synth_center; | 
|  |  | 
|  | reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); | 
|  | reg32 &= 0xc0000000; | 
|  |  | 
|  | if (freq < 4800) { /* 2 GHz, fractional mode */ | 
|  | u32 txctl; | 
|  | int regWrites = 0; | 
|  |  | 
|  | bMode = 1; | 
|  | fracMode = 1; | 
|  | aModeRefSel = 0; | 
|  | channelSel = CHANSEL_2G(freq); | 
|  |  | 
|  | if (AR_SREV_9287_11_OR_LATER(ah)) { | 
|  | if (freq == 2484) { | 
|  | /* Enable channel spreading for channel 14 */ | 
|  | REG_WRITE_ARRAY(&ah->iniCckfirJapan2484, | 
|  | 1, regWrites); | 
|  | } else { | 
|  | REG_WRITE_ARRAY(&ah->iniCckfirNormal, | 
|  | 1, regWrites); | 
|  | } | 
|  | } else { | 
|  | txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); | 
|  | if (freq == 2484) { | 
|  | /* Enable channel spreading for channel 14 */ | 
|  | REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, | 
|  | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); | 
|  | } else { | 
|  | REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, | 
|  | txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | bMode = 0; | 
|  | fracMode = 0; | 
|  |  | 
|  | switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { | 
|  | case 0: | 
|  | if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) | 
|  | aModeRefSel = 0; | 
|  | else if ((freq % 20) == 0) | 
|  | aModeRefSel = 3; | 
|  | else if ((freq % 10) == 0) | 
|  | aModeRefSel = 2; | 
|  | if (aModeRefSel) | 
|  | break; | 
|  | case 1: | 
|  | default: | 
|  | aModeRefSel = 0; | 
|  | /* | 
|  | * Enable 2G (fractional) mode for channels | 
|  | * which are 5MHz spaced. | 
|  | */ | 
|  | fracMode = 1; | 
|  | refDivA = 1; | 
|  | channelSel = CHANSEL_5G(freq); | 
|  |  | 
|  | /* RefDivA setting */ | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9, | 
|  | AR_AN_SYNTH9_REFDIVA, | 
|  | AR_AN_SYNTH9_REFDIVA_S, refDivA); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (!fracMode) { | 
|  | ndiv = (freq * (refDivA >> aModeRefSel)) / 60; | 
|  | channelSel = ndiv & 0x1ff; | 
|  | channelFrac = (ndiv & 0xfffffe00) * 2; | 
|  | channelSel = (channelSel << 17) | channelFrac; | 
|  | } | 
|  | } | 
|  |  | 
|  | reg32 = reg32 | | 
|  | (bMode << 29) | | 
|  | (fracMode << 28) | (aModeRefSel << 26) | (channelSel); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); | 
|  |  | 
|  | ah->curchan = chan; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ar9002_hw_spur_mitigate - convert baseband spur frequency | 
|  | * @ah: atheros hardware structure | 
|  | * @chan: | 
|  | * | 
|  | * For single-chip solutions. Converts to baseband spur frequency given the | 
|  | * input channel frequency and compute register settings below. | 
|  | */ | 
|  | static void ar9002_hw_spur_mitigate(struct ath_hw *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | int bb_spur = AR_NO_SPUR; | 
|  | int freq; | 
|  | int bin, cur_bin; | 
|  | int bb_spur_off, spur_subchannel_sd; | 
|  | int spur_freq_sd; | 
|  | int spur_delta_phase; | 
|  | int denominator; | 
|  | int upper, lower, cur_vit_mask; | 
|  | int tmp, newVal; | 
|  | int i; | 
|  | static const int pilot_mask_reg[4] = { | 
|  | AR_PHY_TIMING7, AR_PHY_TIMING8, | 
|  | AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 | 
|  | }; | 
|  | static const int chan_mask_reg[4] = { | 
|  | AR_PHY_TIMING9, AR_PHY_TIMING10, | 
|  | AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 | 
|  | }; | 
|  | static const int inc[4] = { 0, 100, 0, 0 }; | 
|  | struct chan_centers centers; | 
|  |  | 
|  | int8_t mask_m[123]; | 
|  | int8_t mask_p[123]; | 
|  | int8_t mask_amt; | 
|  | int tmp_mask; | 
|  | int cur_bb_spur; | 
|  | bool is2GHz = IS_CHAN_2GHZ(chan); | 
|  |  | 
|  | memset(&mask_m, 0, sizeof(int8_t) * 123); | 
|  | memset(&mask_p, 0, sizeof(int8_t) * 123); | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  | freq = centers.synth_center; | 
|  |  | 
|  | for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { | 
|  | cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); | 
|  |  | 
|  | if (AR_NO_SPUR == cur_bb_spur) | 
|  | break; | 
|  |  | 
|  | if (is2GHz) | 
|  | cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; | 
|  | else | 
|  | cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; | 
|  |  | 
|  | cur_bb_spur = cur_bb_spur - freq; | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && | 
|  | (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { | 
|  | bb_spur = cur_bb_spur; | 
|  | break; | 
|  | } | 
|  | } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && | 
|  | (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { | 
|  | bb_spur = cur_bb_spur; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AR_NO_SPUR == bb_spur) { | 
|  | REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, | 
|  | AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); | 
|  | return; | 
|  | } else { | 
|  | REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, | 
|  | AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); | 
|  | } | 
|  |  | 
|  | bin = bb_spur * 320; | 
|  |  | 
|  | tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); | 
|  |  | 
|  | ENABLE_REGWRITE_BUFFER(ah); | 
|  |  | 
|  | newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | | 
|  | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | | 
|  | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | | 
|  | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); | 
|  | REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); | 
|  |  | 
|  | newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | | 
|  | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | | 
|  | AR_PHY_SPUR_REG_MASK_RATE_SELECT | | 
|  | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | | 
|  | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); | 
|  | REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | if (bb_spur < 0) { | 
|  | spur_subchannel_sd = 1; | 
|  | bb_spur_off = bb_spur + 10; | 
|  | } else { | 
|  | spur_subchannel_sd = 0; | 
|  | bb_spur_off = bb_spur - 10; | 
|  | } | 
|  | } else { | 
|  | spur_subchannel_sd = 0; | 
|  | bb_spur_off = bb_spur; | 
|  | } | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) | 
|  | spur_delta_phase = | 
|  | ((bb_spur * 262144) / | 
|  | 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; | 
|  | else | 
|  | spur_delta_phase = | 
|  | ((bb_spur * 524288) / | 
|  | 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; | 
|  |  | 
|  | denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; | 
|  | spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; | 
|  |  | 
|  | newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | | 
|  | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | | 
|  | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); | 
|  | REG_WRITE(ah, AR_PHY_TIMING11, newVal); | 
|  |  | 
|  | newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; | 
|  | REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); | 
|  |  | 
|  | cur_bin = -6000; | 
|  | upper = bin + 100; | 
|  | lower = bin - 100; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | int pilot_mask = 0; | 
|  | int chan_mask = 0; | 
|  | int bp = 0; | 
|  | for (bp = 0; bp < 30; bp++) { | 
|  | if ((cur_bin > lower) && (cur_bin < upper)) { | 
|  | pilot_mask = pilot_mask | 0x1 << bp; | 
|  | chan_mask = chan_mask | 0x1 << bp; | 
|  | } | 
|  | cur_bin += 100; | 
|  | } | 
|  | cur_bin += inc[i]; | 
|  | REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); | 
|  | REG_WRITE(ah, chan_mask_reg[i], chan_mask); | 
|  | } | 
|  |  | 
|  | cur_vit_mask = 6100; | 
|  | upper = bin + 120; | 
|  | lower = bin - 120; | 
|  |  | 
|  | for (i = 0; i < 123; i++) { | 
|  | if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { | 
|  |  | 
|  | /* workaround for gcc bug #37014 */ | 
|  | volatile int tmp_v = abs(cur_vit_mask - bin); | 
|  |  | 
|  | if (tmp_v < 75) | 
|  | mask_amt = 1; | 
|  | else | 
|  | mask_amt = 0; | 
|  | if (cur_vit_mask < 0) | 
|  | mask_m[abs(cur_vit_mask / 100)] = mask_amt; | 
|  | else | 
|  | mask_p[cur_vit_mask / 100] = mask_amt; | 
|  | } | 
|  | cur_vit_mask -= 100; | 
|  | } | 
|  |  | 
|  | tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | 
|  | | (mask_m[48] << 26) | (mask_m[49] << 24) | 
|  | | (mask_m[50] << 22) | (mask_m[51] << 20) | 
|  | | (mask_m[52] << 18) | (mask_m[53] << 16) | 
|  | | (mask_m[54] << 14) | (mask_m[55] << 12) | 
|  | | (mask_m[56] << 10) | (mask_m[57] << 8) | 
|  | | (mask_m[58] << 6) | (mask_m[59] << 4) | 
|  | | (mask_m[60] << 2) | (mask_m[61] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_m[31] << 28) | 
|  | | (mask_m[32] << 26) | (mask_m[33] << 24) | 
|  | | (mask_m[34] << 22) | (mask_m[35] << 20) | 
|  | | (mask_m[36] << 18) | (mask_m[37] << 16) | 
|  | | (mask_m[48] << 14) | (mask_m[39] << 12) | 
|  | | (mask_m[40] << 10) | (mask_m[41] << 8) | 
|  | | (mask_m[42] << 6) | (mask_m[43] << 4) | 
|  | | (mask_m[44] << 2) | (mask_m[45] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | 
|  | | (mask_m[18] << 26) | (mask_m[18] << 24) | 
|  | | (mask_m[20] << 22) | (mask_m[20] << 20) | 
|  | | (mask_m[22] << 18) | (mask_m[22] << 16) | 
|  | | (mask_m[24] << 14) | (mask_m[24] << 12) | 
|  | | (mask_m[25] << 10) | (mask_m[26] << 8) | 
|  | | (mask_m[27] << 6) | (mask_m[28] << 4) | 
|  | | (mask_m[29] << 2) | (mask_m[30] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | 
|  | | (mask_m[2] << 26) | (mask_m[3] << 24) | 
|  | | (mask_m[4] << 22) | (mask_m[5] << 20) | 
|  | | (mask_m[6] << 18) | (mask_m[7] << 16) | 
|  | | (mask_m[8] << 14) | (mask_m[9] << 12) | 
|  | | (mask_m[10] << 10) | (mask_m[11] << 8) | 
|  | | (mask_m[12] << 6) | (mask_m[13] << 4) | 
|  | | (mask_m[14] << 2) | (mask_m[15] << 0); | 
|  | REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_p[15] << 28) | 
|  | | (mask_p[14] << 26) | (mask_p[13] << 24) | 
|  | | (mask_p[12] << 22) | (mask_p[11] << 20) | 
|  | | (mask_p[10] << 18) | (mask_p[9] << 16) | 
|  | | (mask_p[8] << 14) | (mask_p[7] << 12) | 
|  | | (mask_p[6] << 10) | (mask_p[5] << 8) | 
|  | | (mask_p[4] << 6) | (mask_p[3] << 4) | 
|  | | (mask_p[2] << 2) | (mask_p[1] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_p[30] << 28) | 
|  | | (mask_p[29] << 26) | (mask_p[28] << 24) | 
|  | | (mask_p[27] << 22) | (mask_p[26] << 20) | 
|  | | (mask_p[25] << 18) | (mask_p[24] << 16) | 
|  | | (mask_p[23] << 14) | (mask_p[22] << 12) | 
|  | | (mask_p[21] << 10) | (mask_p[20] << 8) | 
|  | | (mask_p[19] << 6) | (mask_p[18] << 4) | 
|  | | (mask_p[17] << 2) | (mask_p[16] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_p[45] << 28) | 
|  | | (mask_p[44] << 26) | (mask_p[43] << 24) | 
|  | | (mask_p[42] << 22) | (mask_p[41] << 20) | 
|  | | (mask_p[40] << 18) | (mask_p[39] << 16) | 
|  | | (mask_p[38] << 14) | (mask_p[37] << 12) | 
|  | | (mask_p[36] << 10) | (mask_p[35] << 8) | 
|  | | (mask_p[34] << 6) | (mask_p[33] << 4) | 
|  | | (mask_p[32] << 2) | (mask_p[31] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); | 
|  |  | 
|  | tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | 
|  | | (mask_p[59] << 26) | (mask_p[58] << 24) | 
|  | | (mask_p[57] << 22) | (mask_p[56] << 20) | 
|  | | (mask_p[55] << 18) | (mask_p[54] << 16) | 
|  | | (mask_p[53] << 14) | (mask_p[52] << 12) | 
|  | | (mask_p[51] << 10) | (mask_p[50] << 8) | 
|  | | (mask_p[49] << 6) | (mask_p[48] << 4) | 
|  | | (mask_p[47] << 2) | (mask_p[46] << 0); | 
|  | REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); | 
|  | REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); | 
|  |  | 
|  | REGWRITE_BUFFER_FLUSH(ah); | 
|  | } | 
|  |  | 
|  | static void ar9002_olc_init(struct ath_hw *ah) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | if (!OLC_FOR_AR9280_20_LATER) | 
|  | return; | 
|  |  | 
|  | if (OLC_FOR_AR9287_10_LATER) { | 
|  | REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, | 
|  | AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, | 
|  | AR9287_AN_TXPC0_TXPCMODE, | 
|  | AR9287_AN_TXPC0_TXPCMODE_S, | 
|  | AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); | 
|  | udelay(100); | 
|  | } else { | 
|  | for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) | 
|  | ah->originalGain[i] = | 
|  | MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), | 
|  | AR_PHY_TX_GAIN); | 
|  | ah->PDADCdelta = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | int ref_div = 5; | 
|  | int pll_div = 0x2c; | 
|  | u32 pll; | 
|  |  | 
|  | if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) { | 
|  | if (AR_SREV_9280_20(ah)) { | 
|  | ref_div = 10; | 
|  | pll_div = 0x50; | 
|  | } else { | 
|  | pll_div = 0x28; | 
|  | } | 
|  | } | 
|  |  | 
|  | pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV); | 
|  | pll |= SM(pll_div, AR_RTC_9160_PLL_DIV); | 
|  |  | 
|  | if (chan && IS_CHAN_HALF_RATE(chan)) | 
|  | pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); | 
|  | else if (chan && IS_CHAN_QUARTER_RATE(chan)) | 
|  | pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); | 
|  |  | 
|  | return pll; | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_do_getnf(struct ath_hw *ah, | 
|  | int16_t nfarray[NUM_NF_READINGS]) | 
|  | { | 
|  | int16_t nf; | 
|  |  | 
|  | nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); | 
|  | nfarray[0] = sign_extend32(nf, 8); | 
|  |  | 
|  | nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); | 
|  | if (IS_CHAN_HT40(ah->curchan)) | 
|  | nfarray[3] = sign_extend32(nf, 8); | 
|  |  | 
|  | if (!(ah->rxchainmask & BIT(1))) | 
|  | return; | 
|  |  | 
|  | nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); | 
|  | nfarray[1] = sign_extend32(nf, 8); | 
|  |  | 
|  | nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); | 
|  | if (IS_CHAN_HT40(ah->curchan)) | 
|  | nfarray[4] = sign_extend32(nf, 8); | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_set_nf_limits(struct ath_hw *ah) | 
|  | { | 
|  | if (AR_SREV_9285(ah)) { | 
|  | ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; | 
|  | ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; | 
|  | ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; | 
|  | } else if (AR_SREV_9287(ah)) { | 
|  | ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ; | 
|  | ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ; | 
|  | ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ; | 
|  | } else if (AR_SREV_9271(ah)) { | 
|  | ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ; | 
|  | ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ; | 
|  | ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ; | 
|  | } else { | 
|  | ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; | 
|  | ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; | 
|  | ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; | 
|  | ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; | 
|  | ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; | 
|  | ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah, | 
|  | struct ath_hw_antcomb_conf *antconf) | 
|  | { | 
|  | u32 regval; | 
|  |  | 
|  | regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); | 
|  | antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >> | 
|  | AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S; | 
|  | antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >> | 
|  | AR_PHY_9285_ANT_DIV_ALT_LNACONF_S; | 
|  | antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >> | 
|  | AR_PHY_9285_FAST_DIV_BIAS_S; | 
|  | antconf->lna1_lna2_switch_delta = -1; | 
|  | antconf->lna1_lna2_delta = -3; | 
|  | antconf->div_group = 0; | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah, | 
|  | struct ath_hw_antcomb_conf *antconf) | 
|  | { | 
|  | u32 regval; | 
|  |  | 
|  | regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); | 
|  | regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | | 
|  | AR_PHY_9285_ANT_DIV_ALT_LNACONF | | 
|  | AR_PHY_9285_FAST_DIV_BIAS); | 
|  | regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S) | 
|  | & AR_PHY_9285_ANT_DIV_MAIN_LNACONF); | 
|  | regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S) | 
|  | & AR_PHY_9285_ANT_DIV_ALT_LNACONF); | 
|  | regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S) | 
|  | & AR_PHY_9285_FAST_DIV_BIAS); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT | 
|  |  | 
|  | static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable) | 
|  | { | 
|  | struct ath_btcoex_hw *btcoex = &ah->btcoex_hw; | 
|  | u8 antdiv_ctrl1, antdiv_ctrl2; | 
|  | u32 regval; | 
|  |  | 
|  | if (enable) { | 
|  | antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE; | 
|  | antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE; | 
|  |  | 
|  | /* | 
|  | * Don't disable BT ant to allow BB to control SWCOM. | 
|  | */ | 
|  | btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT)); | 
|  | REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM); | 
|  | REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); | 
|  | } else { | 
|  | /* | 
|  | * Disable antenna diversity, use LNA1 only. | 
|  | */ | 
|  | antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A; | 
|  | antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A; | 
|  |  | 
|  | /* | 
|  | * Disable BT Ant. to allow concurrent BT and WLAN receive. | 
|  | */ | 
|  | btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT; | 
|  | REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); | 
|  |  | 
|  | /* | 
|  | * Program SWCOM table to make sure RF switch always parks | 
|  | * at BT side. | 
|  | */ | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_COM, 0); | 
|  | REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); | 
|  | } | 
|  |  | 
|  | regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); | 
|  | regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); | 
|  | /* | 
|  | * Clear ant_fast_div_bias [14:9] since for WB195, | 
|  | * the main LNA is always LNA1. | 
|  | */ | 
|  | regval &= (~(AR_PHY_9285_FAST_DIV_BIAS)); | 
|  | regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL); | 
|  | regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF); | 
|  | regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF); | 
|  | regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB); | 
|  | regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB); | 
|  | REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); | 
|  |  | 
|  | regval = REG_READ(ah, AR_PHY_CCK_DETECT); | 
|  | regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); | 
|  | regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); | 
|  | REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void ar9002_hw_spectral_scan_config(struct ath_hw *ah, | 
|  | struct ath_spec_scan *param) | 
|  | { | 
|  | u8 count; | 
|  |  | 
|  | if (!param->enabled) { | 
|  | REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_ENABLE); | 
|  | return; | 
|  | } | 
|  | REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA); | 
|  | REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); | 
|  |  | 
|  | if (param->short_repeat) | 
|  | REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); | 
|  | else | 
|  | REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); | 
|  |  | 
|  | /* on AR92xx, the highest bit of count will make the the chip send | 
|  | * spectral samples endlessly. Check if this really was intended, | 
|  | * and fix otherwise. | 
|  | */ | 
|  | count = param->count; | 
|  | if (param->endless) | 
|  | count = 0x80; | 
|  | else if (count & 0x80) | 
|  | count = 0x7f; | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_COUNT, count); | 
|  | REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_PERIOD, param->period); | 
|  | REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah) | 
|  | { | 
|  | REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); | 
|  | /* Activate spectral scan */ | 
|  | REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_ACTIVE); | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah) | 
|  | { | 
|  | struct ath_common *common = ath9k_hw_common(ah); | 
|  |  | 
|  | /* Poll for spectral scan complete */ | 
|  | if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN, | 
|  | AR_PHY_SPECTRAL_SCAN_ACTIVE, | 
|  | 0, AH_WAIT_TIMEOUT)) { | 
|  | ath_err(common, "spectral scan wait failed\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum) | 
|  | { | 
|  | REG_SET_BIT(ah, 0x9864, 0x7f000); | 
|  | REG_SET_BIT(ah, 0x9924, 0x7f00fe); | 
|  | REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); | 
|  | REG_WRITE(ah, AR_CR, AR_CR_RXD); | 
|  | REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); | 
|  | REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); | 
|  | REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20); | 
|  | REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum); | 
|  | REG_WRITE(ah, AR_TIME_OUT, 0x00000400); | 
|  | REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); | 
|  | REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ); | 
|  | } | 
|  |  | 
|  | static void ar9002_hw_tx99_stop(struct ath_hw *ah) | 
|  | { | 
|  | REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); | 
|  | } | 
|  |  | 
|  | void ar9002_hw_attach_phy_ops(struct ath_hw *ah) | 
|  | { | 
|  | struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); | 
|  | struct ath_hw_ops *ops = ath9k_hw_ops(ah); | 
|  |  | 
|  | priv_ops->set_rf_regs = NULL; | 
|  | priv_ops->rf_set_freq = ar9002_hw_set_channel; | 
|  | priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate; | 
|  | priv_ops->olc_init = ar9002_olc_init; | 
|  | priv_ops->compute_pll_control = ar9002_hw_compute_pll_control; | 
|  | priv_ops->do_getnf = ar9002_hw_do_getnf; | 
|  |  | 
|  | ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get; | 
|  | ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set; | 
|  | ops->spectral_scan_config = ar9002_hw_spectral_scan_config; | 
|  | ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger; | 
|  | ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait; | 
|  |  | 
|  | #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT | 
|  | ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity; | 
|  | #endif | 
|  | ops->tx99_start = ar9002_hw_tx99_start; | 
|  | ops->tx99_stop = ar9002_hw_tx99_stop; | 
|  |  | 
|  | ar9002_hw_set_nf_limits(ah); | 
|  | } |