| /* |
| * Initialize MMU support. |
| * |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| |
| #include <linux/bootmem.h> |
| #include <linux/efi.h> |
| #include <linux/elf.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/module.h> |
| #include <linux/personality.h> |
| #include <linux/reboot.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/proc_fs.h> |
| #include <linux/bitops.h> |
| #include <linux/kexec.h> |
| |
| #include <asm/dma.h> |
| #include <asm/ia32.h> |
| #include <asm/io.h> |
| #include <asm/machvec.h> |
| #include <asm/numa.h> |
| #include <asm/patch.h> |
| #include <asm/pgalloc.h> |
| #include <asm/sal.h> |
| #include <asm/sections.h> |
| #include <asm/system.h> |
| #include <asm/tlb.h> |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| #include <asm/mca.h> |
| #include <asm/paravirt.h> |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| extern void ia64_tlb_init (void); |
| |
| unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; |
| |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| unsigned long vmalloc_end = VMALLOC_END_INIT; |
| EXPORT_SYMBOL(vmalloc_end); |
| struct page *vmem_map; |
| EXPORT_SYMBOL(vmem_map); |
| #endif |
| |
| struct page *zero_page_memmap_ptr; /* map entry for zero page */ |
| EXPORT_SYMBOL(zero_page_memmap_ptr); |
| |
| void |
| __ia64_sync_icache_dcache (pte_t pte) |
| { |
| unsigned long addr; |
| struct page *page; |
| |
| page = pte_page(pte); |
| addr = (unsigned long) page_address(page); |
| |
| if (test_bit(PG_arch_1, &page->flags)) |
| return; /* i-cache is already coherent with d-cache */ |
| |
| flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); |
| set_bit(PG_arch_1, &page->flags); /* mark page as clean */ |
| } |
| |
| /* |
| * Since DMA is i-cache coherent, any (complete) pages that were written via |
| * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to |
| * flush them when they get mapped into an executable vm-area. |
| */ |
| void |
| dma_mark_clean(void *addr, size_t size) |
| { |
| unsigned long pg_addr, end; |
| |
| pg_addr = PAGE_ALIGN((unsigned long) addr); |
| end = (unsigned long) addr + size; |
| while (pg_addr + PAGE_SIZE <= end) { |
| struct page *page = virt_to_page(pg_addr); |
| set_bit(PG_arch_1, &page->flags); |
| pg_addr += PAGE_SIZE; |
| } |
| } |
| |
| inline void |
| ia64_set_rbs_bot (void) |
| { |
| unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; |
| |
| if (stack_size > MAX_USER_STACK_SIZE) |
| stack_size = MAX_USER_STACK_SIZE; |
| current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); |
| } |
| |
| /* |
| * This performs some platform-dependent address space initialization. |
| * On IA-64, we want to setup the VM area for the register backing |
| * store (which grows upwards) and install the gateway page which is |
| * used for signal trampolines, etc. |
| */ |
| void |
| ia64_init_addr_space (void) |
| { |
| struct vm_area_struct *vma; |
| |
| ia64_set_rbs_bot(); |
| |
| /* |
| * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore |
| * the problem. When the process attempts to write to the register backing store |
| * for the first time, it will get a SEGFAULT in this case. |
| */ |
| vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
| if (vma) { |
| vma->vm_mm = current->mm; |
| vma->vm_start = current->thread.rbs_bot & PAGE_MASK; |
| vma->vm_end = vma->vm_start + PAGE_SIZE; |
| vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; |
| vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| down_write(¤t->mm->mmap_sem); |
| if (insert_vm_struct(current->mm, vma)) { |
| up_write(¤t->mm->mmap_sem); |
| kmem_cache_free(vm_area_cachep, vma); |
| return; |
| } |
| up_write(¤t->mm->mmap_sem); |
| } |
| |
| /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ |
| if (!(current->personality & MMAP_PAGE_ZERO)) { |
| vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
| if (vma) { |
| vma->vm_mm = current->mm; |
| vma->vm_end = PAGE_SIZE; |
| vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); |
| vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; |
| down_write(¤t->mm->mmap_sem); |
| if (insert_vm_struct(current->mm, vma)) { |
| up_write(¤t->mm->mmap_sem); |
| kmem_cache_free(vm_area_cachep, vma); |
| return; |
| } |
| up_write(¤t->mm->mmap_sem); |
| } |
| } |
| } |
| |
| void |
| free_initmem (void) |
| { |
| unsigned long addr, eaddr; |
| |
| addr = (unsigned long) ia64_imva(__init_begin); |
| eaddr = (unsigned long) ia64_imva(__init_end); |
| while (addr < eaddr) { |
| ClearPageReserved(virt_to_page(addr)); |
| init_page_count(virt_to_page(addr)); |
| free_page(addr); |
| ++totalram_pages; |
| addr += PAGE_SIZE; |
| } |
| printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", |
| (__init_end - __init_begin) >> 10); |
| } |
| |
| void __init |
| free_initrd_mem (unsigned long start, unsigned long end) |
| { |
| struct page *page; |
| /* |
| * EFI uses 4KB pages while the kernel can use 4KB or bigger. |
| * Thus EFI and the kernel may have different page sizes. It is |
| * therefore possible to have the initrd share the same page as |
| * the end of the kernel (given current setup). |
| * |
| * To avoid freeing/using the wrong page (kernel sized) we: |
| * - align up the beginning of initrd |
| * - align down the end of initrd |
| * |
| * | | |
| * |=============| a000 |
| * | | |
| * | | |
| * | | 9000 |
| * |/////////////| |
| * |/////////////| |
| * |=============| 8000 |
| * |///INITRD////| |
| * |/////////////| |
| * |/////////////| 7000 |
| * | | |
| * |KKKKKKKKKKKKK| |
| * |=============| 6000 |
| * |KKKKKKKKKKKKK| |
| * |KKKKKKKKKKKKK| |
| * K=kernel using 8KB pages |
| * |
| * In this example, we must free page 8000 ONLY. So we must align up |
| * initrd_start and keep initrd_end as is. |
| */ |
| start = PAGE_ALIGN(start); |
| end = end & PAGE_MASK; |
| |
| if (start < end) |
| printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); |
| |
| for (; start < end; start += PAGE_SIZE) { |
| if (!virt_addr_valid(start)) |
| continue; |
| page = virt_to_page(start); |
| ClearPageReserved(page); |
| init_page_count(page); |
| free_page(start); |
| ++totalram_pages; |
| } |
| } |
| |
| /* |
| * This installs a clean page in the kernel's page table. |
| */ |
| static struct page * __init |
| put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (!PageReserved(page)) |
| printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", |
| page_address(page)); |
| |
| pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ |
| |
| { |
| pud = pud_alloc(&init_mm, pgd, address); |
| if (!pud) |
| goto out; |
| pmd = pmd_alloc(&init_mm, pud, address); |
| if (!pmd) |
| goto out; |
| pte = pte_alloc_kernel(pmd, address); |
| if (!pte) |
| goto out; |
| if (!pte_none(*pte)) |
| goto out; |
| set_pte(pte, mk_pte(page, pgprot)); |
| } |
| out: |
| /* no need for flush_tlb */ |
| return page; |
| } |
| |
| static void __init |
| setup_gate (void) |
| { |
| void *gate_section; |
| struct page *page; |
| |
| /* |
| * Map the gate page twice: once read-only to export the ELF |
| * headers etc. and once execute-only page to enable |
| * privilege-promotion via "epc": |
| */ |
| gate_section = paravirt_get_gate_section(); |
| page = virt_to_page(ia64_imva(gate_section)); |
| put_kernel_page(page, GATE_ADDR, PAGE_READONLY); |
| #ifdef HAVE_BUGGY_SEGREL |
| page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); |
| put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); |
| #else |
| put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); |
| /* Fill in the holes (if any) with read-only zero pages: */ |
| { |
| unsigned long addr; |
| |
| for (addr = GATE_ADDR + PAGE_SIZE; |
| addr < GATE_ADDR + PERCPU_PAGE_SIZE; |
| addr += PAGE_SIZE) |
| { |
| put_kernel_page(ZERO_PAGE(0), addr, |
| PAGE_READONLY); |
| put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, |
| PAGE_READONLY); |
| } |
| } |
| #endif |
| ia64_patch_gate(); |
| } |
| |
| void __devinit |
| ia64_mmu_init (void *my_cpu_data) |
| { |
| unsigned long pta, impl_va_bits; |
| extern void __devinit tlb_init (void); |
| |
| #ifdef CONFIG_DISABLE_VHPT |
| # define VHPT_ENABLE_BIT 0 |
| #else |
| # define VHPT_ENABLE_BIT 1 |
| #endif |
| |
| /* |
| * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped |
| * address space. The IA-64 architecture guarantees that at least 50 bits of |
| * virtual address space are implemented but if we pick a large enough page size |
| * (e.g., 64KB), the mapped address space is big enough that it will overlap with |
| * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, |
| * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a |
| * problem in practice. Alternatively, we could truncate the top of the mapped |
| * address space to not permit mappings that would overlap with the VMLPT. |
| * --davidm 00/12/06 |
| */ |
| # define pte_bits 3 |
| # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) |
| /* |
| * The virtual page table has to cover the entire implemented address space within |
| * a region even though not all of this space may be mappable. The reason for |
| * this is that the Access bit and Dirty bit fault handlers perform |
| * non-speculative accesses to the virtual page table, so the address range of the |
| * virtual page table itself needs to be covered by virtual page table. |
| */ |
| # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) |
| # define POW2(n) (1ULL << (n)) |
| |
| impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); |
| |
| if (impl_va_bits < 51 || impl_va_bits > 61) |
| panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); |
| /* |
| * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, |
| * which must fit into "vmlpt_bits - pte_bits" slots. Second half of |
| * the test makes sure that our mapped space doesn't overlap the |
| * unimplemented hole in the middle of the region. |
| */ |
| if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || |
| (mapped_space_bits > impl_va_bits - 1)) |
| panic("Cannot build a big enough virtual-linear page table" |
| " to cover mapped address space.\n" |
| " Try using a smaller page size.\n"); |
| |
| |
| /* place the VMLPT at the end of each page-table mapped region: */ |
| pta = POW2(61) - POW2(vmlpt_bits); |
| |
| /* |
| * Set the (virtually mapped linear) page table address. Bit |
| * 8 selects between the short and long format, bits 2-7 the |
| * size of the table, and bit 0 whether the VHPT walker is |
| * enabled. |
| */ |
| ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); |
| |
| ia64_tlb_init(); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); |
| ia64_srlz_d(); |
| #endif |
| } |
| |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| int vmemmap_find_next_valid_pfn(int node, int i) |
| { |
| unsigned long end_address, hole_next_pfn; |
| unsigned long stop_address; |
| pg_data_t *pgdat = NODE_DATA(node); |
| |
| end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; |
| end_address = PAGE_ALIGN(end_address); |
| |
| stop_address = (unsigned long) &vmem_map[ |
| pgdat->node_start_pfn + pgdat->node_spanned_pages]; |
| |
| do { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = pgd_offset_k(end_address); |
| if (pgd_none(*pgd)) { |
| end_address += PGDIR_SIZE; |
| continue; |
| } |
| |
| pud = pud_offset(pgd, end_address); |
| if (pud_none(*pud)) { |
| end_address += PUD_SIZE; |
| continue; |
| } |
| |
| pmd = pmd_offset(pud, end_address); |
| if (pmd_none(*pmd)) { |
| end_address += PMD_SIZE; |
| continue; |
| } |
| |
| pte = pte_offset_kernel(pmd, end_address); |
| retry_pte: |
| if (pte_none(*pte)) { |
| end_address += PAGE_SIZE; |
| pte++; |
| if ((end_address < stop_address) && |
| (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) |
| goto retry_pte; |
| continue; |
| } |
| /* Found next valid vmem_map page */ |
| break; |
| } while (end_address < stop_address); |
| |
| end_address = min(end_address, stop_address); |
| end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; |
| hole_next_pfn = end_address / sizeof(struct page); |
| return hole_next_pfn - pgdat->node_start_pfn; |
| } |
| |
| int __init |
| create_mem_map_page_table (u64 start, u64 end, void *arg) |
| { |
| unsigned long address, start_page, end_page; |
| struct page *map_start, *map_end; |
| int node; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); |
| map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); |
| |
| start_page = (unsigned long) map_start & PAGE_MASK; |
| end_page = PAGE_ALIGN((unsigned long) map_end); |
| node = paddr_to_nid(__pa(start)); |
| |
| for (address = start_page; address < end_page; address += PAGE_SIZE) { |
| pgd = pgd_offset_k(address); |
| if (pgd_none(*pgd)) |
| pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); |
| pud = pud_offset(pgd, address); |
| |
| if (pud_none(*pud)) |
| pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); |
| pmd = pmd_offset(pud, address); |
| |
| if (pmd_none(*pmd)) |
| pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); |
| pte = pte_offset_kernel(pmd, address); |
| |
| if (pte_none(*pte)) |
| set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, |
| PAGE_KERNEL)); |
| } |
| return 0; |
| } |
| |
| struct memmap_init_callback_data { |
| struct page *start; |
| struct page *end; |
| int nid; |
| unsigned long zone; |
| }; |
| |
| static int __meminit |
| virtual_memmap_init (u64 start, u64 end, void *arg) |
| { |
| struct memmap_init_callback_data *args; |
| struct page *map_start, *map_end; |
| |
| args = (struct memmap_init_callback_data *) arg; |
| map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); |
| map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); |
| |
| if (map_start < args->start) |
| map_start = args->start; |
| if (map_end > args->end) |
| map_end = args->end; |
| |
| /* |
| * We have to initialize "out of bounds" struct page elements that fit completely |
| * on the same pages that were allocated for the "in bounds" elements because they |
| * may be referenced later (and found to be "reserved"). |
| */ |
| map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); |
| map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) |
| / sizeof(struct page)); |
| |
| if (map_start < map_end) |
| memmap_init_zone((unsigned long)(map_end - map_start), |
| args->nid, args->zone, page_to_pfn(map_start), |
| MEMMAP_EARLY); |
| return 0; |
| } |
| |
| void __meminit |
| memmap_init (unsigned long size, int nid, unsigned long zone, |
| unsigned long start_pfn) |
| { |
| if (!vmem_map) |
| memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); |
| else { |
| struct page *start; |
| struct memmap_init_callback_data args; |
| |
| start = pfn_to_page(start_pfn); |
| args.start = start; |
| args.end = start + size; |
| args.nid = nid; |
| args.zone = zone; |
| |
| efi_memmap_walk(virtual_memmap_init, &args); |
| } |
| } |
| |
| int |
| ia64_pfn_valid (unsigned long pfn) |
| { |
| char byte; |
| struct page *pg = pfn_to_page(pfn); |
| |
| return (__get_user(byte, (char __user *) pg) == 0) |
| && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) |
| || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); |
| } |
| EXPORT_SYMBOL(ia64_pfn_valid); |
| |
| int __init |
| find_largest_hole (u64 start, u64 end, void *arg) |
| { |
| u64 *max_gap = arg; |
| |
| static u64 last_end = PAGE_OFFSET; |
| |
| /* NOTE: this algorithm assumes efi memmap table is ordered */ |
| |
| if (*max_gap < (start - last_end)) |
| *max_gap = start - last_end; |
| last_end = end; |
| return 0; |
| } |
| |
| #endif /* CONFIG_VIRTUAL_MEM_MAP */ |
| |
| int __init |
| register_active_ranges(u64 start, u64 len, int nid) |
| { |
| u64 end = start + len; |
| |
| #ifdef CONFIG_KEXEC |
| if (start > crashk_res.start && start < crashk_res.end) |
| start = crashk_res.end; |
| if (end > crashk_res.start && end < crashk_res.end) |
| end = crashk_res.start; |
| #endif |
| |
| if (start < end) |
| add_active_range(nid, __pa(start) >> PAGE_SHIFT, |
| __pa(end) >> PAGE_SHIFT); |
| return 0; |
| } |
| |
| static int __init |
| count_reserved_pages (u64 start, u64 end, void *arg) |
| { |
| unsigned long num_reserved = 0; |
| unsigned long *count = arg; |
| |
| for (; start < end; start += PAGE_SIZE) |
| if (PageReserved(virt_to_page(start))) |
| ++num_reserved; |
| *count += num_reserved; |
| return 0; |
| } |
| |
| int |
| find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg) |
| { |
| unsigned long pfn_start, pfn_end; |
| #ifdef CONFIG_FLATMEM |
| pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; |
| pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; |
| #else |
| pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; |
| pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; |
| #endif |
| min_low_pfn = min(min_low_pfn, pfn_start); |
| max_low_pfn = max(max_low_pfn, pfn_end); |
| return 0; |
| } |
| |
| /* |
| * Boot command-line option "nolwsys" can be used to disable the use of any light-weight |
| * system call handler. When this option is in effect, all fsyscalls will end up bubbling |
| * down into the kernel and calling the normal (heavy-weight) syscall handler. This is |
| * useful for performance testing, but conceivably could also come in handy for debugging |
| * purposes. |
| */ |
| |
| static int nolwsys __initdata; |
| |
| static int __init |
| nolwsys_setup (char *s) |
| { |
| nolwsys = 1; |
| return 1; |
| } |
| |
| __setup("nolwsys", nolwsys_setup); |
| |
| void __init |
| mem_init (void) |
| { |
| long reserved_pages, codesize, datasize, initsize; |
| pg_data_t *pgdat; |
| int i; |
| static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; |
| |
| BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); |
| BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); |
| BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); |
| |
| #ifdef CONFIG_PCI |
| /* |
| * This needs to be called _after_ the command line has been parsed but _before_ |
| * any drivers that may need the PCI DMA interface are initialized or bootmem has |
| * been freed. |
| */ |
| platform_dma_init(); |
| #endif |
| |
| #ifdef CONFIG_FLATMEM |
| if (!mem_map) |
| BUG(); |
| max_mapnr = max_low_pfn; |
| #endif |
| |
| high_memory = __va(max_low_pfn * PAGE_SIZE); |
| |
| kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); |
| kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); |
| kclist_add(&kcore_kernel, _stext, _end - _stext); |
| |
| for_each_online_pgdat(pgdat) |
| if (pgdat->bdata->node_bootmem_map) |
| totalram_pages += free_all_bootmem_node(pgdat); |
| |
| reserved_pages = 0; |
| efi_memmap_walk(count_reserved_pages, &reserved_pages); |
| |
| codesize = (unsigned long) _etext - (unsigned long) _stext; |
| datasize = (unsigned long) _edata - (unsigned long) _etext; |
| initsize = (unsigned long) __init_end - (unsigned long) __init_begin; |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " |
| "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), |
| num_physpages << (PAGE_SHIFT - 10), codesize >> 10, |
| reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); |
| |
| |
| /* |
| * For fsyscall entrpoints with no light-weight handler, use the ordinary |
| * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry |
| * code can tell them apart. |
| */ |
| for (i = 0; i < NR_syscalls; ++i) { |
| extern unsigned long sys_call_table[NR_syscalls]; |
| unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); |
| |
| if (!fsyscall_table[i] || nolwsys) |
| fsyscall_table[i] = sys_call_table[i] | 1; |
| } |
| setup_gate(); |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| ia32_mem_init(); |
| #endif |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| int arch_add_memory(int nid, u64 start, u64 size) |
| { |
| pg_data_t *pgdat; |
| struct zone *zone; |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| int ret; |
| |
| pgdat = NODE_DATA(nid); |
| |
| zone = pgdat->node_zones + ZONE_NORMAL; |
| ret = __add_pages(nid, zone, start_pfn, nr_pages); |
| |
| if (ret) |
| printk("%s: Problem encountered in __add_pages() as ret=%d\n", |
| __func__, ret); |
| |
| return ret; |
| } |
| #endif |
| |
| /* |
| * Even when CONFIG_IA32_SUPPORT is not enabled it is |
| * useful to have the Linux/x86 domain registered to |
| * avoid an attempted module load when emulators call |
| * personality(PER_LINUX32). This saves several milliseconds |
| * on each such call. |
| */ |
| static struct exec_domain ia32_exec_domain; |
| |
| static int __init |
| per_linux32_init(void) |
| { |
| ia32_exec_domain.name = "Linux/x86"; |
| ia32_exec_domain.handler = NULL; |
| ia32_exec_domain.pers_low = PER_LINUX32; |
| ia32_exec_domain.pers_high = PER_LINUX32; |
| ia32_exec_domain.signal_map = default_exec_domain.signal_map; |
| ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; |
| register_exec_domain(&ia32_exec_domain); |
| |
| return 0; |
| } |
| |
| __initcall(per_linux32_init); |