| /* bpf_jit_comp.c: BPF JIT compiler for PPC64 |
| * |
| * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation |
| * |
| * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| #include <linux/moduleloader.h> |
| #include <asm/cacheflush.h> |
| #include <linux/netdevice.h> |
| #include <linux/filter.h> |
| #include <linux/if_vlan.h> |
| |
| #include "bpf_jit.h" |
| |
| int bpf_jit_enable __read_mostly; |
| |
| static inline void bpf_flush_icache(void *start, void *end) |
| { |
| smp_wmb(); |
| flush_icache_range((unsigned long)start, (unsigned long)end); |
| } |
| |
| static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image, |
| struct codegen_context *ctx) |
| { |
| int i; |
| const struct sock_filter *filter = fp->insns; |
| |
| if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { |
| /* Make stackframe */ |
| if (ctx->seen & SEEN_DATAREF) { |
| /* If we call any helpers (for loads), save LR */ |
| EMIT(PPC_INST_MFLR | __PPC_RT(R0)); |
| PPC_STD(0, 1, 16); |
| |
| /* Back up non-volatile regs. */ |
| PPC_STD(r_D, 1, -(8*(32-r_D))); |
| PPC_STD(r_HL, 1, -(8*(32-r_HL))); |
| } |
| if (ctx->seen & SEEN_MEM) { |
| /* |
| * Conditionally save regs r15-r31 as some will be used |
| * for M[] data. |
| */ |
| for (i = r_M; i < (r_M+16); i++) { |
| if (ctx->seen & (1 << (i-r_M))) |
| PPC_STD(i, 1, -(8*(32-i))); |
| } |
| } |
| EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) | |
| (-BPF_PPC_STACKFRAME & 0xfffc)); |
| } |
| |
| if (ctx->seen & SEEN_DATAREF) { |
| /* |
| * If this filter needs to access skb data, |
| * prepare r_D and r_HL: |
| * r_HL = skb->len - skb->data_len |
| * r_D = skb->data |
| */ |
| PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, |
| data_len)); |
| PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len)); |
| PPC_SUB(r_HL, r_HL, r_scratch1); |
| PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data)); |
| } |
| |
| if (ctx->seen & SEEN_XREG) { |
| /* |
| * TODO: Could also detect whether first instr. sets X and |
| * avoid this (as below, with A). |
| */ |
| PPC_LI(r_X, 0); |
| } |
| |
| switch (filter[0].code) { |
| case BPF_RET | BPF_K: |
| case BPF_LD | BPF_W | BPF_LEN: |
| case BPF_LD | BPF_W | BPF_ABS: |
| case BPF_LD | BPF_H | BPF_ABS: |
| case BPF_LD | BPF_B | BPF_ABS: |
| /* first instruction sets A register (or is RET 'constant') */ |
| break; |
| default: |
| /* make sure we dont leak kernel information to user */ |
| PPC_LI(r_A, 0); |
| } |
| } |
| |
| static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) |
| { |
| int i; |
| |
| if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { |
| PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); |
| if (ctx->seen & SEEN_DATAREF) { |
| PPC_LD(0, 1, 16); |
| PPC_MTLR(0); |
| PPC_LD(r_D, 1, -(8*(32-r_D))); |
| PPC_LD(r_HL, 1, -(8*(32-r_HL))); |
| } |
| if (ctx->seen & SEEN_MEM) { |
| /* Restore any saved non-vol registers */ |
| for (i = r_M; i < (r_M+16); i++) { |
| if (ctx->seen & (1 << (i-r_M))) |
| PPC_LD(i, 1, -(8*(32-i))); |
| } |
| } |
| } |
| /* The RETs have left a return value in R3. */ |
| |
| PPC_BLR(); |
| } |
| |
| #define CHOOSE_LOAD_FUNC(K, func) \ |
| ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) |
| |
| /* Assemble the body code between the prologue & epilogue. */ |
| static int bpf_jit_build_body(struct sk_filter *fp, u32 *image, |
| struct codegen_context *ctx, |
| unsigned int *addrs) |
| { |
| const struct sock_filter *filter = fp->insns; |
| int flen = fp->len; |
| u8 *func; |
| unsigned int true_cond; |
| int i; |
| |
| /* Start of epilogue code */ |
| unsigned int exit_addr = addrs[flen]; |
| |
| for (i = 0; i < flen; i++) { |
| unsigned int K = filter[i].k; |
| u16 code = bpf_anc_helper(&filter[i]); |
| |
| /* |
| * addrs[] maps a BPF bytecode address into a real offset from |
| * the start of the body code. |
| */ |
| addrs[i] = ctx->idx * 4; |
| |
| switch (code) { |
| /*** ALU ops ***/ |
| case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_ADD(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ |
| if (!K) |
| break; |
| PPC_ADDI(r_A, r_A, IMM_L(K)); |
| if (K >= 32768) |
| PPC_ADDIS(r_A, r_A, IMM_HA(K)); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_SUB(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ |
| if (!K) |
| break; |
| PPC_ADDI(r_A, r_A, IMM_L(-K)); |
| if (K >= 32768) |
| PPC_ADDIS(r_A, r_A, IMM_HA(-K)); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_MUL(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ |
| if (K < 32768) |
| PPC_MULI(r_A, r_A, K); |
| else { |
| PPC_LI32(r_scratch1, K); |
| PPC_MUL(r_A, r_A, r_scratch1); |
| } |
| break; |
| case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_CMPWI(r_X, 0); |
| if (ctx->pc_ret0 != -1) { |
| PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); |
| } else { |
| PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); |
| PPC_LI(r_ret, 0); |
| PPC_JMP(exit_addr); |
| } |
| PPC_DIVWU(r_scratch1, r_A, r_X); |
| PPC_MUL(r_scratch1, r_X, r_scratch1); |
| PPC_SUB(r_A, r_A, r_scratch1); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */ |
| PPC_LI32(r_scratch2, K); |
| PPC_DIVWU(r_scratch1, r_A, r_scratch2); |
| PPC_MUL(r_scratch1, r_scratch2, r_scratch1); |
| PPC_SUB(r_A, r_A, r_scratch1); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_CMPWI(r_X, 0); |
| if (ctx->pc_ret0 != -1) { |
| PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); |
| } else { |
| /* |
| * Exit, returning 0; first pass hits here |
| * (longer worst-case code size). |
| */ |
| PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); |
| PPC_LI(r_ret, 0); |
| PPC_JMP(exit_addr); |
| } |
| PPC_DIVWU(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */ |
| if (K == 1) |
| break; |
| PPC_LI32(r_scratch1, K); |
| PPC_DIVWU(r_A, r_A, r_scratch1); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: |
| ctx->seen |= SEEN_XREG; |
| PPC_AND(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: |
| if (!IMM_H(K)) |
| PPC_ANDI(r_A, r_A, K); |
| else { |
| PPC_LI32(r_scratch1, K); |
| PPC_AND(r_A, r_A, r_scratch1); |
| } |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: |
| ctx->seen |= SEEN_XREG; |
| PPC_OR(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: |
| if (IMM_L(K)) |
| PPC_ORI(r_A, r_A, IMM_L(K)); |
| if (K >= 65536) |
| PPC_ORIS(r_A, r_A, IMM_H(K)); |
| break; |
| case BPF_ANC | SKF_AD_ALU_XOR_X: |
| case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */ |
| ctx->seen |= SEEN_XREG; |
| PPC_XOR(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ |
| if (IMM_L(K)) |
| PPC_XORI(r_A, r_A, IMM_L(K)); |
| if (K >= 65536) |
| PPC_XORIS(r_A, r_A, IMM_H(K)); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_SLW(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: |
| if (K == 0) |
| break; |
| else |
| PPC_SLWI(r_A, r_A, K); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */ |
| ctx->seen |= SEEN_XREG; |
| PPC_SRW(r_A, r_A, r_X); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */ |
| if (K == 0) |
| break; |
| else |
| PPC_SRWI(r_A, r_A, K); |
| break; |
| case BPF_ALU | BPF_NEG: |
| PPC_NEG(r_A, r_A); |
| break; |
| case BPF_RET | BPF_K: |
| PPC_LI32(r_ret, K); |
| if (!K) { |
| if (ctx->pc_ret0 == -1) |
| ctx->pc_ret0 = i; |
| } |
| /* |
| * If this isn't the very last instruction, branch to |
| * the epilogue if we've stuff to clean up. Otherwise, |
| * if there's nothing to tidy, just return. If we /are/ |
| * the last instruction, we're about to fall through to |
| * the epilogue to return. |
| */ |
| if (i != flen - 1) { |
| /* |
| * Note: 'seen' is properly valid only on pass |
| * #2. Both parts of this conditional are the |
| * same instruction size though, meaning the |
| * first pass will still correctly determine the |
| * code size/addresses. |
| */ |
| if (ctx->seen) |
| PPC_JMP(exit_addr); |
| else |
| PPC_BLR(); |
| } |
| break; |
| case BPF_RET | BPF_A: |
| PPC_MR(r_ret, r_A); |
| if (i != flen - 1) { |
| if (ctx->seen) |
| PPC_JMP(exit_addr); |
| else |
| PPC_BLR(); |
| } |
| break; |
| case BPF_MISC | BPF_TAX: /* X = A */ |
| PPC_MR(r_X, r_A); |
| break; |
| case BPF_MISC | BPF_TXA: /* A = X */ |
| ctx->seen |= SEEN_XREG; |
| PPC_MR(r_A, r_X); |
| break; |
| |
| /*** Constant loads/M[] access ***/ |
| case BPF_LD | BPF_IMM: /* A = K */ |
| PPC_LI32(r_A, K); |
| break; |
| case BPF_LDX | BPF_IMM: /* X = K */ |
| PPC_LI32(r_X, K); |
| break; |
| case BPF_LD | BPF_MEM: /* A = mem[K] */ |
| PPC_MR(r_A, r_M + (K & 0xf)); |
| ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| break; |
| case BPF_LDX | BPF_MEM: /* X = mem[K] */ |
| PPC_MR(r_X, r_M + (K & 0xf)); |
| ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| break; |
| case BPF_ST: /* mem[K] = A */ |
| PPC_MR(r_M + (K & 0xf), r_A); |
| ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| break; |
| case BPF_STX: /* mem[K] = X */ |
| PPC_MR(r_M + (K & 0xf), r_X); |
| ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); |
| break; |
| case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */ |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); |
| PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); |
| break; |
| case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */ |
| PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); |
| break; |
| |
| /*** Ancillary info loads ***/ |
| case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */ |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| protocol) != 2); |
| PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| protocol)); |
| break; |
| case BPF_ANC | SKF_AD_IFINDEX: |
| PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, |
| dev)); |
| PPC_CMPDI(r_scratch1, 0); |
| if (ctx->pc_ret0 != -1) { |
| PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); |
| } else { |
| /* Exit, returning 0; first pass hits here. */ |
| PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); |
| PPC_LI(r_ret, 0); |
| PPC_JMP(exit_addr); |
| } |
| BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, |
| ifindex) != 4); |
| PPC_LWZ_OFFS(r_A, r_scratch1, |
| offsetof(struct net_device, ifindex)); |
| break; |
| case BPF_ANC | SKF_AD_MARK: |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); |
| PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| mark)); |
| break; |
| case BPF_ANC | SKF_AD_RXHASH: |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); |
| PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| hash)); |
| break; |
| case BPF_ANC | SKF_AD_VLAN_TAG: |
| case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); |
| PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| vlan_tci)); |
| if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) |
| PPC_ANDI(r_A, r_A, VLAN_VID_MASK); |
| else |
| PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT); |
| break; |
| case BPF_ANC | SKF_AD_QUEUE: |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| queue_mapping) != 2); |
| PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| queue_mapping)); |
| break; |
| case BPF_ANC | SKF_AD_CPU: |
| #ifdef CONFIG_SMP |
| /* |
| * PACA ptr is r13: |
| * raw_smp_processor_id() = local_paca->paca_index |
| */ |
| BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct, |
| paca_index) != 2); |
| PPC_LHZ_OFFS(r_A, 13, |
| offsetof(struct paca_struct, paca_index)); |
| #else |
| PPC_LI(r_A, 0); |
| #endif |
| break; |
| |
| /*** Absolute loads from packet header/data ***/ |
| case BPF_LD | BPF_W | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, sk_load_word); |
| goto common_load; |
| case BPF_LD | BPF_H | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, sk_load_half); |
| goto common_load; |
| case BPF_LD | BPF_B | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, sk_load_byte); |
| common_load: |
| /* Load from [K]. */ |
| ctx->seen |= SEEN_DATAREF; |
| PPC_LI64(r_scratch1, func); |
| PPC_MTLR(r_scratch1); |
| PPC_LI32(r_addr, K); |
| PPC_BLRL(); |
| /* |
| * Helper returns 'lt' condition on error, and an |
| * appropriate return value in r3 |
| */ |
| PPC_BCC(COND_LT, exit_addr); |
| break; |
| |
| /*** Indirect loads from packet header/data ***/ |
| case BPF_LD | BPF_W | BPF_IND: |
| func = sk_load_word; |
| goto common_load_ind; |
| case BPF_LD | BPF_H | BPF_IND: |
| func = sk_load_half; |
| goto common_load_ind; |
| case BPF_LD | BPF_B | BPF_IND: |
| func = sk_load_byte; |
| common_load_ind: |
| /* |
| * Load from [X + K]. Negative offsets are tested for |
| * in the helper functions. |
| */ |
| ctx->seen |= SEEN_DATAREF | SEEN_XREG; |
| PPC_LI64(r_scratch1, func); |
| PPC_MTLR(r_scratch1); |
| PPC_ADDI(r_addr, r_X, IMM_L(K)); |
| if (K >= 32768) |
| PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); |
| PPC_BLRL(); |
| /* If error, cr0.LT set */ |
| PPC_BCC(COND_LT, exit_addr); |
| break; |
| |
| case BPF_LDX | BPF_B | BPF_MSH: |
| func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); |
| goto common_load; |
| break; |
| |
| /*** Jump and branches ***/ |
| case BPF_JMP | BPF_JA: |
| if (K != 0) |
| PPC_JMP(addrs[i + 1 + K]); |
| break; |
| |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| true_cond = COND_GT; |
| goto cond_branch; |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| true_cond = COND_GE; |
| goto cond_branch; |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| true_cond = COND_EQ; |
| goto cond_branch; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP | BPF_JSET | BPF_X: |
| true_cond = COND_NE; |
| /* Fall through */ |
| cond_branch: |
| /* same targets, can avoid doing the test :) */ |
| if (filter[i].jt == filter[i].jf) { |
| if (filter[i].jt > 0) |
| PPC_JMP(addrs[i + 1 + filter[i].jt]); |
| break; |
| } |
| |
| switch (code) { |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| ctx->seen |= SEEN_XREG; |
| PPC_CMPLW(r_A, r_X); |
| break; |
| case BPF_JMP | BPF_JSET | BPF_X: |
| ctx->seen |= SEEN_XREG; |
| PPC_AND_DOT(r_scratch1, r_A, r_X); |
| break; |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| if (K < 32768) |
| PPC_CMPLWI(r_A, K); |
| else { |
| PPC_LI32(r_scratch1, K); |
| PPC_CMPLW(r_A, r_scratch1); |
| } |
| break; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| if (K < 32768) |
| /* PPC_ANDI is /only/ dot-form */ |
| PPC_ANDI(r_scratch1, r_A, K); |
| else { |
| PPC_LI32(r_scratch1, K); |
| PPC_AND_DOT(r_scratch1, r_A, |
| r_scratch1); |
| } |
| break; |
| } |
| /* Sometimes branches are constructed "backward", with |
| * the false path being the branch and true path being |
| * a fallthrough to the next instruction. |
| */ |
| if (filter[i].jt == 0) |
| /* Swap the sense of the branch */ |
| PPC_BCC(true_cond ^ COND_CMP_TRUE, |
| addrs[i + 1 + filter[i].jf]); |
| else { |
| PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); |
| if (filter[i].jf != 0) |
| PPC_JMP(addrs[i + 1 + filter[i].jf]); |
| } |
| break; |
| default: |
| /* The filter contains something cruel & unusual. |
| * We don't handle it, but also there shouldn't be |
| * anything missing from our list. |
| */ |
| if (printk_ratelimit()) |
| pr_err("BPF filter opcode %04x (@%d) unsupported\n", |
| filter[i].code, i); |
| return -ENOTSUPP; |
| } |
| |
| } |
| /* Set end-of-body-code address for exit. */ |
| addrs[i] = ctx->idx * 4; |
| |
| return 0; |
| } |
| |
| void bpf_jit_compile(struct sk_filter *fp) |
| { |
| unsigned int proglen; |
| unsigned int alloclen; |
| u32 *image = NULL; |
| u32 *code_base; |
| unsigned int *addrs; |
| struct codegen_context cgctx; |
| int pass; |
| int flen = fp->len; |
| |
| if (!bpf_jit_enable) |
| return; |
| |
| addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL); |
| if (addrs == NULL) |
| return; |
| |
| /* |
| * There are multiple assembly passes as the generated code will change |
| * size as it settles down, figuring out the max branch offsets/exit |
| * paths required. |
| * |
| * The range of standard conditional branches is +/- 32Kbytes. Since |
| * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to |
| * finish with 8 bytes/instruction. Not feasible, so long jumps are |
| * used, distinct from short branches. |
| * |
| * Current: |
| * |
| * For now, both branch types assemble to 2 words (short branches padded |
| * with a NOP); this is less efficient, but assembly will always complete |
| * after exactly 3 passes: |
| * |
| * First pass: No code buffer; Program is "faux-generated" -- no code |
| * emitted but maximum size of output determined (and addrs[] filled |
| * in). Also, we note whether we use M[], whether we use skb data, etc. |
| * All generation choices assumed to be 'worst-case', e.g. branches all |
| * far (2 instructions), return path code reduction not available, etc. |
| * |
| * Second pass: Code buffer allocated with size determined previously. |
| * Prologue generated to support features we have seen used. Exit paths |
| * determined and addrs[] is filled in again, as code may be slightly |
| * smaller as a result. |
| * |
| * Third pass: Code generated 'for real', and branch destinations |
| * determined from now-accurate addrs[] map. |
| * |
| * Ideal: |
| * |
| * If we optimise this, near branches will be shorter. On the |
| * first assembly pass, we should err on the side of caution and |
| * generate the biggest code. On subsequent passes, branches will be |
| * generated short or long and code size will reduce. With smaller |
| * code, more branches may fall into the short category, and code will |
| * reduce more. |
| * |
| * Finally, if we see one pass generate code the same size as the |
| * previous pass we have converged and should now generate code for |
| * real. Allocating at the end will also save the memory that would |
| * otherwise be wasted by the (small) current code shrinkage. |
| * Preferably, we should do a small number of passes (e.g. 5) and if we |
| * haven't converged by then, get impatient and force code to generate |
| * as-is, even if the odd branch would be left long. The chances of a |
| * long jump are tiny with all but the most enormous of BPF filter |
| * inputs, so we should usually converge on the third pass. |
| */ |
| |
| cgctx.idx = 0; |
| cgctx.seen = 0; |
| cgctx.pc_ret0 = -1; |
| /* Scouting faux-generate pass 0 */ |
| if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) |
| /* We hit something illegal or unsupported. */ |
| goto out; |
| |
| /* |
| * Pretend to build prologue, given the features we've seen. This will |
| * update ctgtx.idx as it pretends to output instructions, then we can |
| * calculate total size from idx. |
| */ |
| bpf_jit_build_prologue(fp, 0, &cgctx); |
| bpf_jit_build_epilogue(0, &cgctx); |
| |
| proglen = cgctx.idx * 4; |
| alloclen = proglen + FUNCTION_DESCR_SIZE; |
| image = module_alloc(alloclen); |
| if (!image) |
| goto out; |
| |
| code_base = image + (FUNCTION_DESCR_SIZE/4); |
| |
| /* Code generation passes 1-2 */ |
| for (pass = 1; pass < 3; pass++) { |
| /* Now build the prologue, body code & epilogue for real. */ |
| cgctx.idx = 0; |
| bpf_jit_build_prologue(fp, code_base, &cgctx); |
| bpf_jit_build_body(fp, code_base, &cgctx, addrs); |
| bpf_jit_build_epilogue(code_base, &cgctx); |
| |
| if (bpf_jit_enable > 1) |
| pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, |
| proglen - (cgctx.idx * 4), cgctx.seen); |
| } |
| |
| if (bpf_jit_enable > 1) |
| /* Note that we output the base address of the code_base |
| * rather than image, since opcodes are in code_base. |
| */ |
| bpf_jit_dump(flen, proglen, pass, code_base); |
| |
| if (image) { |
| bpf_flush_icache(code_base, code_base + (proglen/4)); |
| /* Function descriptor nastiness: Address + TOC */ |
| ((u64 *)image)[0] = (u64)code_base; |
| ((u64 *)image)[1] = local_paca->kernel_toc; |
| fp->bpf_func = (void *)image; |
| fp->jited = 1; |
| } |
| out: |
| kfree(addrs); |
| return; |
| } |
| |
| void bpf_jit_free(struct sk_filter *fp) |
| { |
| if (fp->jited) |
| module_free(NULL, fp->bpf_func); |
| kfree(fp); |
| } |