|  | /* | 
|  | * Copyright (C) 2011 STRATO.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include "ctree.h" | 
|  | #include "volumes.h" | 
|  | #include "disk-io.h" | 
|  | #include "ordered-data.h" | 
|  | #include "transaction.h" | 
|  | #include "backref.h" | 
|  | #include "extent_io.h" | 
|  | #include "check-integrity.h" | 
|  | #include "rcu-string.h" | 
|  |  | 
|  | /* | 
|  | * This is only the first step towards a full-features scrub. It reads all | 
|  | * extent and super block and verifies the checksums. In case a bad checksum | 
|  | * is found or the extent cannot be read, good data will be written back if | 
|  | * any can be found. | 
|  | * | 
|  | * Future enhancements: | 
|  | *  - In case an unrepairable extent is encountered, track which files are | 
|  | *    affected and report them | 
|  | *  - track and record media errors, throw out bad devices | 
|  | *  - add a mode to also read unallocated space | 
|  | */ | 
|  |  | 
|  | struct scrub_block; | 
|  | struct scrub_dev; | 
|  |  | 
|  | #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */ | 
|  | #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */ | 
|  | #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */ | 
|  |  | 
|  | struct scrub_page { | 
|  | struct scrub_block	*sblock; | 
|  | struct page		*page; | 
|  | struct btrfs_device	*dev; | 
|  | u64			flags;  /* extent flags */ | 
|  | u64			generation; | 
|  | u64			logical; | 
|  | u64			physical; | 
|  | struct { | 
|  | unsigned int	mirror_num:8; | 
|  | unsigned int	have_csum:1; | 
|  | unsigned int	io_error:1; | 
|  | }; | 
|  | u8			csum[BTRFS_CSUM_SIZE]; | 
|  | }; | 
|  |  | 
|  | struct scrub_bio { | 
|  | int			index; | 
|  | struct scrub_dev	*sdev; | 
|  | struct bio		*bio; | 
|  | int			err; | 
|  | u64			logical; | 
|  | u64			physical; | 
|  | struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO]; | 
|  | int			page_count; | 
|  | int			next_free; | 
|  | struct btrfs_work	work; | 
|  | }; | 
|  |  | 
|  | struct scrub_block { | 
|  | struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK]; | 
|  | int			page_count; | 
|  | atomic_t		outstanding_pages; | 
|  | atomic_t		ref_count; /* free mem on transition to zero */ | 
|  | struct scrub_dev	*sdev; | 
|  | struct { | 
|  | unsigned int	header_error:1; | 
|  | unsigned int	checksum_error:1; | 
|  | unsigned int	no_io_error_seen:1; | 
|  | unsigned int	generation_error:1; /* also sets header_error */ | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct scrub_dev { | 
|  | struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV]; | 
|  | struct btrfs_device	*dev; | 
|  | int			first_free; | 
|  | int			curr; | 
|  | atomic_t		in_flight; | 
|  | atomic_t		fixup_cnt; | 
|  | spinlock_t		list_lock; | 
|  | wait_queue_head_t	list_wait; | 
|  | u16			csum_size; | 
|  | struct list_head	csum_list; | 
|  | atomic_t		cancel_req; | 
|  | int			readonly; | 
|  | int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */ | 
|  | u32			sectorsize; | 
|  | u32			nodesize; | 
|  | u32			leafsize; | 
|  | /* | 
|  | * statistics | 
|  | */ | 
|  | struct btrfs_scrub_progress stat; | 
|  | spinlock_t		stat_lock; | 
|  | }; | 
|  |  | 
|  | struct scrub_fixup_nodatasum { | 
|  | struct scrub_dev	*sdev; | 
|  | u64			logical; | 
|  | struct btrfs_root	*root; | 
|  | struct btrfs_work	work; | 
|  | int			mirror_num; | 
|  | }; | 
|  |  | 
|  | struct scrub_warning { | 
|  | struct btrfs_path	*path; | 
|  | u64			extent_item_size; | 
|  | char			*scratch_buf; | 
|  | char			*msg_buf; | 
|  | const char		*errstr; | 
|  | sector_t		sector; | 
|  | u64			logical; | 
|  | struct btrfs_device	*dev; | 
|  | int			msg_bufsize; | 
|  | int			scratch_bufsize; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); | 
|  | static int scrub_setup_recheck_block(struct scrub_dev *sdev, | 
|  | struct btrfs_mapping_tree *map_tree, | 
|  | u64 length, u64 logical, | 
|  | struct scrub_block *sblock); | 
|  | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, int is_metadata, | 
|  | int have_csum, u8 *csum, u64 generation, | 
|  | u16 csum_size); | 
|  | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, | 
|  | int is_metadata, int have_csum, | 
|  | const u8 *csum, u64 generation, | 
|  | u16 csum_size); | 
|  | static void scrub_complete_bio_end_io(struct bio *bio, int err); | 
|  | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int force_write); | 
|  | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int page_num, int force_write); | 
|  | static int scrub_checksum_data(struct scrub_block *sblock); | 
|  | static int scrub_checksum_tree_block(struct scrub_block *sblock); | 
|  | static int scrub_checksum_super(struct scrub_block *sblock); | 
|  | static void scrub_block_get(struct scrub_block *sblock); | 
|  | static void scrub_block_put(struct scrub_block *sblock); | 
|  | static int scrub_add_page_to_bio(struct scrub_dev *sdev, | 
|  | struct scrub_page *spage); | 
|  | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | 
|  | u64 physical, u64 flags, u64 gen, int mirror_num, | 
|  | u8 *csum, int force); | 
|  | static void scrub_bio_end_io(struct bio *bio, int err); | 
|  | static void scrub_bio_end_io_worker(struct btrfs_work *work); | 
|  | static void scrub_block_complete(struct scrub_block *sblock); | 
|  |  | 
|  |  | 
|  | static void scrub_free_csums(struct scrub_dev *sdev) | 
|  | { | 
|  | while (!list_empty(&sdev->csum_list)) { | 
|  | struct btrfs_ordered_sum *sum; | 
|  | sum = list_first_entry(&sdev->csum_list, | 
|  | struct btrfs_ordered_sum, list); | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!sdev) | 
|  | return; | 
|  |  | 
|  | /* this can happen when scrub is cancelled */ | 
|  | if (sdev->curr != -1) { | 
|  | struct scrub_bio *sbio = sdev->bios[sdev->curr]; | 
|  |  | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | BUG_ON(!sbio->pagev[i]); | 
|  | BUG_ON(!sbio->pagev[i]->page); | 
|  | scrub_block_put(sbio->pagev[i]->sblock); | 
|  | } | 
|  | bio_put(sbio->bio); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { | 
|  | struct scrub_bio *sbio = sdev->bios[i]; | 
|  |  | 
|  | if (!sbio) | 
|  | break; | 
|  | kfree(sbio); | 
|  | } | 
|  |  | 
|  | scrub_free_csums(sdev); | 
|  | kfree(sdev); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) | 
|  | { | 
|  | struct scrub_dev *sdev; | 
|  | int		i; | 
|  | struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; | 
|  | int pages_per_bio; | 
|  |  | 
|  | pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO, | 
|  | bio_get_nr_vecs(dev->bdev)); | 
|  | sdev = kzalloc(sizeof(*sdev), GFP_NOFS); | 
|  | if (!sdev) | 
|  | goto nomem; | 
|  | sdev->dev = dev; | 
|  | sdev->pages_per_bio = pages_per_bio; | 
|  | sdev->curr = -1; | 
|  | for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { | 
|  | struct scrub_bio *sbio; | 
|  |  | 
|  | sbio = kzalloc(sizeof(*sbio), GFP_NOFS); | 
|  | if (!sbio) | 
|  | goto nomem; | 
|  | sdev->bios[i] = sbio; | 
|  |  | 
|  | sbio->index = i; | 
|  | sbio->sdev = sdev; | 
|  | sbio->page_count = 0; | 
|  | sbio->work.func = scrub_bio_end_io_worker; | 
|  |  | 
|  | if (i != SCRUB_BIOS_PER_DEV-1) | 
|  | sdev->bios[i]->next_free = i + 1; | 
|  | else | 
|  | sdev->bios[i]->next_free = -1; | 
|  | } | 
|  | sdev->first_free = 0; | 
|  | sdev->nodesize = dev->dev_root->nodesize; | 
|  | sdev->leafsize = dev->dev_root->leafsize; | 
|  | sdev->sectorsize = dev->dev_root->sectorsize; | 
|  | atomic_set(&sdev->in_flight, 0); | 
|  | atomic_set(&sdev->fixup_cnt, 0); | 
|  | atomic_set(&sdev->cancel_req, 0); | 
|  | sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
|  | INIT_LIST_HEAD(&sdev->csum_list); | 
|  |  | 
|  | spin_lock_init(&sdev->list_lock); | 
|  | spin_lock_init(&sdev->stat_lock); | 
|  | init_waitqueue_head(&sdev->list_wait); | 
|  | return sdev; | 
|  |  | 
|  | nomem: | 
|  | scrub_free_dev(sdev); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx) | 
|  | { | 
|  | u64 isize; | 
|  | u32 nlink; | 
|  | int ret; | 
|  | int i; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct scrub_warning *swarn = ctx; | 
|  | struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; | 
|  | struct inode_fs_paths *ipath = NULL; | 
|  | struct btrfs_root *local_root; | 
|  | struct btrfs_key root_key; | 
|  |  | 
|  | root_key.objectid = root; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root_key.offset = (u64)-1; | 
|  | local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); | 
|  | if (IS_ERR(local_root)) { | 
|  | ret = PTR_ERR(local_root); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = inode_item_info(inum, 0, local_root, swarn->path); | 
|  | if (ret) { | 
|  | btrfs_release_path(swarn->path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | eb = swarn->path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | isize = btrfs_inode_size(eb, inode_item); | 
|  | nlink = btrfs_inode_nlink(eb, inode_item); | 
|  | btrfs_release_path(swarn->path); | 
|  |  | 
|  | ipath = init_ipath(4096, local_root, swarn->path); | 
|  | if (IS_ERR(ipath)) { | 
|  | ret = PTR_ERR(ipath); | 
|  | ipath = NULL; | 
|  | goto err; | 
|  | } | 
|  | ret = paths_from_inode(inum, ipath); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * we deliberately ignore the bit ipath might have been too small to | 
|  | * hold all of the paths here | 
|  | */ | 
|  | for (i = 0; i < ipath->fspath->elem_cnt; ++i) | 
|  | printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
|  | "%s, sector %llu, root %llu, inode %llu, offset %llu, " | 
|  | "length %llu, links %u (path: %s)\n", swarn->errstr, | 
|  | swarn->logical, rcu_str_deref(swarn->dev->name), | 
|  | (unsigned long long)swarn->sector, root, inum, offset, | 
|  | min(isize - offset, (u64)PAGE_SIZE), nlink, | 
|  | (char *)(unsigned long)ipath->fspath->val[i]); | 
|  |  | 
|  | free_ipath(ipath); | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
|  | "%s, sector %llu, root %llu, inode %llu, offset %llu: path " | 
|  | "resolving failed with ret=%d\n", swarn->errstr, | 
|  | swarn->logical, rcu_str_deref(swarn->dev->name), | 
|  | (unsigned long long)swarn->sector, root, inum, offset, ret); | 
|  |  | 
|  | free_ipath(ipath); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) | 
|  | { | 
|  | struct btrfs_device *dev = sblock->sdev->dev; | 
|  | struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct scrub_warning swarn; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | u64 ref_root; | 
|  | u8 ref_level; | 
|  | unsigned long ptr = 0; | 
|  | const int bufsize = 4096; | 
|  | u64 extent_item_pos; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  |  | 
|  | swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); | 
|  | swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | swarn.sector = (sblock->pagev[0].physical) >> 9; | 
|  | swarn.logical = sblock->pagev[0].logical; | 
|  | swarn.errstr = errstr; | 
|  | swarn.dev = dev; | 
|  | swarn.msg_bufsize = bufsize; | 
|  | swarn.scratch_bufsize = bufsize; | 
|  |  | 
|  | if (!path || !swarn.scratch_buf || !swarn.msg_buf) | 
|  | goto out; | 
|  |  | 
|  | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | extent_item_pos = swarn.logical - found_key.objectid; | 
|  | swarn.extent_item_size = found_key.offset; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
|  | item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | do { | 
|  | ret = tree_backref_for_extent(&ptr, eb, ei, item_size, | 
|  | &ref_root, &ref_level); | 
|  | printk_in_rcu(KERN_WARNING | 
|  | "btrfs: %s at logical %llu on dev %s, " | 
|  | "sector %llu: metadata %s (level %d) in tree " | 
|  | "%llu\n", errstr, swarn.logical, | 
|  | rcu_str_deref(dev->name), | 
|  | (unsigned long long)swarn.sector, | 
|  | ref_level ? "node" : "leaf", | 
|  | ret < 0 ? -1 : ref_level, | 
|  | ret < 0 ? -1 : ref_root); | 
|  | } while (ret != 1); | 
|  | } else { | 
|  | swarn.path = path; | 
|  | iterate_extent_inodes(fs_info, found_key.objectid, | 
|  | extent_item_pos, 1, | 
|  | scrub_print_warning_inode, &swarn); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | kfree(swarn.scratch_buf); | 
|  | kfree(swarn.msg_buf); | 
|  | } | 
|  |  | 
|  | static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | unsigned long index; | 
|  | struct scrub_fixup_nodatasum *fixup = ctx; | 
|  | int ret; | 
|  | int corrected = 0; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode = NULL; | 
|  | u64 end = offset + PAGE_SIZE - 1; | 
|  | struct btrfs_root *local_root; | 
|  |  | 
|  | key.objectid = root; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key); | 
|  | if (IS_ERR(local_root)) | 
|  | return PTR_ERR(local_root); | 
|  |  | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.objectid = inum; | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | index = offset >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (PageUptodate(page)) { | 
|  | struct btrfs_mapping_tree *map_tree; | 
|  | if (PageDirty(page)) { | 
|  | /* | 
|  | * we need to write the data to the defect sector. the | 
|  | * data that was in that sector is not in memory, | 
|  | * because the page was modified. we must not write the | 
|  | * modified page to that sector. | 
|  | * | 
|  | * TODO: what could be done here: wait for the delalloc | 
|  | *       runner to write out that page (might involve | 
|  | *       COW) and see whether the sector is still | 
|  | *       referenced afterwards. | 
|  | * | 
|  | * For the meantime, we'll treat this error | 
|  | * incorrectable, although there is a chance that a | 
|  | * later scrub will find the bad sector again and that | 
|  | * there's no dirty page in memory, then. | 
|  | */ | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; | 
|  | ret = repair_io_failure(map_tree, offset, PAGE_SIZE, | 
|  | fixup->logical, page, | 
|  | fixup->mirror_num); | 
|  | unlock_page(page); | 
|  | corrected = !ret; | 
|  | } else { | 
|  | /* | 
|  | * we need to get good data first. the general readpage path | 
|  | * will call repair_io_failure for us, we just have to make | 
|  | * sure we read the bad mirror. | 
|  | */ | 
|  | ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
|  | EXTENT_DAMAGED, GFP_NOFS); | 
|  | if (ret) { | 
|  | /* set_extent_bits should give proper error */ | 
|  | WARN_ON(ret > 0); | 
|  | if (ret > 0) | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, | 
|  | btrfs_get_extent, | 
|  | fixup->mirror_num); | 
|  | wait_on_page_locked(page); | 
|  |  | 
|  | corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, | 
|  | end, EXTENT_DAMAGED, 0, NULL); | 
|  | if (!corrected) | 
|  | clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
|  | EXTENT_DAMAGED, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (page) | 
|  | put_page(page); | 
|  | if (inode) | 
|  | iput(inode); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0 && corrected) { | 
|  | /* | 
|  | * we only need to call readpage for one of the inodes belonging | 
|  | * to this extent. so make iterate_extent_inodes stop | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void scrub_fixup_nodatasum(struct btrfs_work *work) | 
|  | { | 
|  | int ret; | 
|  | struct scrub_fixup_nodatasum *fixup; | 
|  | struct scrub_dev *sdev; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_path *path; | 
|  | int uncorrectable = 0; | 
|  |  | 
|  | fixup = container_of(work, struct scrub_fixup_nodatasum, work); | 
|  | sdev = fixup->sdev; | 
|  | fs_info = fixup->root->fs_info; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | ++sdev->stat.malloc_errors; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(fixup->root); | 
|  | if (IS_ERR(trans)) { | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the idea is to trigger a regular read through the standard path. we | 
|  | * read a page from the (failed) logical address by specifying the | 
|  | * corresponding copynum of the failed sector. thus, that readpage is | 
|  | * expected to fail. | 
|  | * that is the point where on-the-fly error correction will kick in | 
|  | * (once it's finished) and rewrite the failed sector if a good copy | 
|  | * can be found. | 
|  | */ | 
|  | ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, | 
|  | path, scrub_fixup_readpage, | 
|  | fixup); | 
|  | if (ret < 0) { | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  | WARN_ON(ret != 1); | 
|  |  | 
|  | spin_lock(&sdev->stat_lock); | 
|  | ++sdev->stat.corrected_errors; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  |  | 
|  | out: | 
|  | if (trans && !IS_ERR(trans)) | 
|  | btrfs_end_transaction(trans, fixup->root); | 
|  | if (uncorrectable) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | ++sdev->stat.uncorrectable_errors; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  |  | 
|  | printk_ratelimited_in_rcu(KERN_ERR | 
|  | "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", | 
|  | (unsigned long long)fixup->logical, | 
|  | rcu_str_deref(sdev->dev->name)); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | kfree(fixup); | 
|  |  | 
|  | /* see caller why we're pretending to be paused in the scrub counters */ | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_dec(&fs_info->scrubs_running); | 
|  | atomic_dec(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | atomic_dec(&sdev->fixup_cnt); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | wake_up(&sdev->list_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scrub_handle_errored_block gets called when either verification of the | 
|  | * pages failed or the bio failed to read, e.g. with EIO. In the latter | 
|  | * case, this function handles all pages in the bio, even though only one | 
|  | * may be bad. | 
|  | * The goal of this function is to repair the errored block by using the | 
|  | * contents of one of the mirrors. | 
|  | */ | 
|  | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) | 
|  | { | 
|  | struct scrub_dev *sdev = sblock_to_check->sdev; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | u64 length; | 
|  | u64 logical; | 
|  | u64 generation; | 
|  | unsigned int failed_mirror_index; | 
|  | unsigned int is_metadata; | 
|  | unsigned int have_csum; | 
|  | u8 *csum; | 
|  | struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ | 
|  | struct scrub_block *sblock_bad; | 
|  | int ret; | 
|  | int mirror_index; | 
|  | int page_num; | 
|  | int success; | 
|  | static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | BUG_ON(sblock_to_check->page_count < 1); | 
|  | fs_info = sdev->dev->dev_root->fs_info; | 
|  | length = sblock_to_check->page_count * PAGE_SIZE; | 
|  | logical = sblock_to_check->pagev[0].logical; | 
|  | generation = sblock_to_check->pagev[0].generation; | 
|  | BUG_ON(sblock_to_check->pagev[0].mirror_num < 1); | 
|  | failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1; | 
|  | is_metadata = !(sblock_to_check->pagev[0].flags & | 
|  | BTRFS_EXTENT_FLAG_DATA); | 
|  | have_csum = sblock_to_check->pagev[0].have_csum; | 
|  | csum = sblock_to_check->pagev[0].csum; | 
|  |  | 
|  | /* | 
|  | * read all mirrors one after the other. This includes to | 
|  | * re-read the extent or metadata block that failed (that was | 
|  | * the cause that this fixup code is called) another time, | 
|  | * page by page this time in order to know which pages | 
|  | * caused I/O errors and which ones are good (for all mirrors). | 
|  | * It is the goal to handle the situation when more than one | 
|  | * mirror contains I/O errors, but the errors do not | 
|  | * overlap, i.e. the data can be repaired by selecting the | 
|  | * pages from those mirrors without I/O error on the | 
|  | * particular pages. One example (with blocks >= 2 * PAGE_SIZE) | 
|  | * would be that mirror #1 has an I/O error on the first page, | 
|  | * the second page is good, and mirror #2 has an I/O error on | 
|  | * the second page, but the first page is good. | 
|  | * Then the first page of the first mirror can be repaired by | 
|  | * taking the first page of the second mirror, and the | 
|  | * second page of the second mirror can be repaired by | 
|  | * copying the contents of the 2nd page of the 1st mirror. | 
|  | * One more note: if the pages of one mirror contain I/O | 
|  | * errors, the checksum cannot be verified. In order to get | 
|  | * the best data for repairing, the first attempt is to find | 
|  | * a mirror without I/O errors and with a validated checksum. | 
|  | * Only if this is not possible, the pages are picked from | 
|  | * mirrors with I/O errors without considering the checksum. | 
|  | * If the latter is the case, at the end, the checksum of the | 
|  | * repaired area is verified in order to correctly maintain | 
|  | * the statistics. | 
|  | */ | 
|  |  | 
|  | sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * | 
|  | sizeof(*sblocks_for_recheck), | 
|  | GFP_NOFS); | 
|  | if (!sblocks_for_recheck) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.malloc_errors++; | 
|  | sdev->stat.read_errors++; | 
|  | sdev->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_READ_ERRS); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* setup the context, map the logical blocks and alloc the pages */ | 
|  | ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length, | 
|  | logical, sblocks_for_recheck); | 
|  | if (ret) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.read_errors++; | 
|  | sdev->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_READ_ERRS); | 
|  | goto out; | 
|  | } | 
|  | BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); | 
|  | sblock_bad = sblocks_for_recheck + failed_mirror_index; | 
|  |  | 
|  | /* build and submit the bios for the failed mirror, check checksums */ | 
|  | ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, | 
|  | csum, generation, sdev->csum_size); | 
|  | if (ret) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.read_errors++; | 
|  | sdev->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_READ_ERRS); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!sblock_bad->header_error && !sblock_bad->checksum_error && | 
|  | sblock_bad->no_io_error_seen) { | 
|  | /* | 
|  | * the error disappeared after reading page by page, or | 
|  | * the area was part of a huge bio and other parts of the | 
|  | * bio caused I/O errors, or the block layer merged several | 
|  | * read requests into one and the error is caused by a | 
|  | * different bio (usually one of the two latter cases is | 
|  | * the cause) | 
|  | */ | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.unverified_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!sblock_bad->no_io_error_seen) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.read_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("i/o error", sblock_to_check); | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_READ_ERRS); | 
|  | } else if (sblock_bad->checksum_error) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.csum_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("checksum error", sblock_to_check); | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | } else if (sblock_bad->header_error) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.verify_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("checksum/header error", | 
|  | sblock_to_check); | 
|  | if (sblock_bad->generation_error) | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_GENERATION_ERRS); | 
|  | else | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | } | 
|  |  | 
|  | if (sdev->readonly) | 
|  | goto did_not_correct_error; | 
|  |  | 
|  | if (!is_metadata && !have_csum) { | 
|  | struct scrub_fixup_nodatasum *fixup_nodatasum; | 
|  |  | 
|  | /* | 
|  | * !is_metadata and !have_csum, this means that the data | 
|  | * might not be COW'ed, that it might be modified | 
|  | * concurrently. The general strategy to work on the | 
|  | * commit root does not help in the case when COW is not | 
|  | * used. | 
|  | */ | 
|  | fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); | 
|  | if (!fixup_nodatasum) | 
|  | goto did_not_correct_error; | 
|  | fixup_nodatasum->sdev = sdev; | 
|  | fixup_nodatasum->logical = logical; | 
|  | fixup_nodatasum->root = fs_info->extent_root; | 
|  | fixup_nodatasum->mirror_num = failed_mirror_index + 1; | 
|  | /* | 
|  | * increment scrubs_running to prevent cancel requests from | 
|  | * completing as long as a fixup worker is running. we must also | 
|  | * increment scrubs_paused to prevent deadlocking on pause | 
|  | * requests used for transactions commits (as the worker uses a | 
|  | * transaction context). it is safe to regard the fixup worker | 
|  | * as paused for all matters practical. effectively, we only | 
|  | * avoid cancellation requests from completing. | 
|  | */ | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_inc(&fs_info->scrubs_running); | 
|  | atomic_inc(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | atomic_inc(&sdev->fixup_cnt); | 
|  | fixup_nodatasum->work.func = scrub_fixup_nodatasum; | 
|  | btrfs_queue_worker(&fs_info->scrub_workers, | 
|  | &fixup_nodatasum->work); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now build and submit the bios for the other mirrors, check | 
|  | * checksums | 
|  | */ | 
|  | for (mirror_index = 0; | 
|  | mirror_index < BTRFS_MAX_MIRRORS && | 
|  | sblocks_for_recheck[mirror_index].page_count > 0; | 
|  | mirror_index++) { | 
|  | if (mirror_index == failed_mirror_index) | 
|  | continue; | 
|  |  | 
|  | /* build and submit the bios, check checksums */ | 
|  | ret = scrub_recheck_block(fs_info, | 
|  | sblocks_for_recheck + mirror_index, | 
|  | is_metadata, have_csum, csum, | 
|  | generation, sdev->csum_size); | 
|  | if (ret) | 
|  | goto did_not_correct_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * first try to pick the mirror which is completely without I/O | 
|  | * errors and also does not have a checksum error. | 
|  | * If one is found, and if a checksum is present, the full block | 
|  | * that is known to contain an error is rewritten. Afterwards | 
|  | * the block is known to be corrected. | 
|  | * If a mirror is found which is completely correct, and no | 
|  | * checksum is present, only those pages are rewritten that had | 
|  | * an I/O error in the block to be repaired, since it cannot be | 
|  | * determined, which copy of the other pages is better (and it | 
|  | * could happen otherwise that a correct page would be | 
|  | * overwritten by a bad one). | 
|  | */ | 
|  | for (mirror_index = 0; | 
|  | mirror_index < BTRFS_MAX_MIRRORS && | 
|  | sblocks_for_recheck[mirror_index].page_count > 0; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock_other = sblocks_for_recheck + | 
|  | mirror_index; | 
|  |  | 
|  | if (!sblock_other->header_error && | 
|  | !sblock_other->checksum_error && | 
|  | sblock_other->no_io_error_seen) { | 
|  | int force_write = is_metadata || have_csum; | 
|  |  | 
|  | ret = scrub_repair_block_from_good_copy(sblock_bad, | 
|  | sblock_other, | 
|  | force_write); | 
|  | if (0 == ret) | 
|  | goto corrected_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * in case of I/O errors in the area that is supposed to be | 
|  | * repaired, continue by picking good copies of those pages. | 
|  | * Select the good pages from mirrors to rewrite bad pages from | 
|  | * the area to fix. Afterwards verify the checksum of the block | 
|  | * that is supposed to be repaired. This verification step is | 
|  | * only done for the purpose of statistic counting and for the | 
|  | * final scrub report, whether errors remain. | 
|  | * A perfect algorithm could make use of the checksum and try | 
|  | * all possible combinations of pages from the different mirrors | 
|  | * until the checksum verification succeeds. For example, when | 
|  | * the 2nd page of mirror #1 faces I/O errors, and the 2nd page | 
|  | * of mirror #2 is readable but the final checksum test fails, | 
|  | * then the 2nd page of mirror #3 could be tried, whether now | 
|  | * the final checksum succeedes. But this would be a rare | 
|  | * exception and is therefore not implemented. At least it is | 
|  | * avoided that the good copy is overwritten. | 
|  | * A more useful improvement would be to pick the sectors | 
|  | * without I/O error based on sector sizes (512 bytes on legacy | 
|  | * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one | 
|  | * mirror could be repaired by taking 512 byte of a different | 
|  | * mirror, even if other 512 byte sectors in the same PAGE_SIZE | 
|  | * area are unreadable. | 
|  | */ | 
|  |  | 
|  | /* can only fix I/O errors from here on */ | 
|  | if (sblock_bad->no_io_error_seen) | 
|  | goto did_not_correct_error; | 
|  |  | 
|  | success = 1; | 
|  | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
|  | struct scrub_page *page_bad = sblock_bad->pagev + page_num; | 
|  |  | 
|  | if (!page_bad->io_error) | 
|  | continue; | 
|  |  | 
|  | for (mirror_index = 0; | 
|  | mirror_index < BTRFS_MAX_MIRRORS && | 
|  | sblocks_for_recheck[mirror_index].page_count > 0; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock_other = sblocks_for_recheck + | 
|  | mirror_index; | 
|  | struct scrub_page *page_other = sblock_other->pagev + | 
|  | page_num; | 
|  |  | 
|  | if (!page_other->io_error) { | 
|  | ret = scrub_repair_page_from_good_copy( | 
|  | sblock_bad, sblock_other, page_num, 0); | 
|  | if (0 == ret) { | 
|  | page_bad->io_error = 0; | 
|  | break; /* succeeded for this page */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (page_bad->io_error) { | 
|  | /* did not find a mirror to copy the page from */ | 
|  | success = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (success) { | 
|  | if (is_metadata || have_csum) { | 
|  | /* | 
|  | * need to verify the checksum now that all | 
|  | * sectors on disk are repaired (the write | 
|  | * request for data to be repaired is on its way). | 
|  | * Just be lazy and use scrub_recheck_block() | 
|  | * which re-reads the data before the checksum | 
|  | * is verified, but most likely the data comes out | 
|  | * of the page cache. | 
|  | */ | 
|  | ret = scrub_recheck_block(fs_info, sblock_bad, | 
|  | is_metadata, have_csum, csum, | 
|  | generation, sdev->csum_size); | 
|  | if (!ret && !sblock_bad->header_error && | 
|  | !sblock_bad->checksum_error && | 
|  | sblock_bad->no_io_error_seen) | 
|  | goto corrected_error; | 
|  | else | 
|  | goto did_not_correct_error; | 
|  | } else { | 
|  | corrected_error: | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.corrected_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | printk_ratelimited_in_rcu(KERN_ERR | 
|  | "btrfs: fixed up error at logical %llu on dev %s\n", | 
|  | (unsigned long long)logical, | 
|  | rcu_str_deref(sdev->dev->name)); | 
|  | } | 
|  | } else { | 
|  | did_not_correct_error: | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | printk_ratelimited_in_rcu(KERN_ERR | 
|  | "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", | 
|  | (unsigned long long)logical, | 
|  | rcu_str_deref(sdev->dev->name)); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (sblocks_for_recheck) { | 
|  | for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock = sblocks_for_recheck + | 
|  | mirror_index; | 
|  | int page_index; | 
|  |  | 
|  | for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO; | 
|  | page_index++) | 
|  | if (sblock->pagev[page_index].page) | 
|  | __free_page( | 
|  | sblock->pagev[page_index].page); | 
|  | } | 
|  | kfree(sblocks_for_recheck); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int scrub_setup_recheck_block(struct scrub_dev *sdev, | 
|  | struct btrfs_mapping_tree *map_tree, | 
|  | u64 length, u64 logical, | 
|  | struct scrub_block *sblocks_for_recheck) | 
|  | { | 
|  | int page_index; | 
|  | int mirror_index; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * note: the three members sdev, ref_count and outstanding_pages | 
|  | * are not used (and not set) in the blocks that are used for | 
|  | * the recheck procedure | 
|  | */ | 
|  |  | 
|  | page_index = 0; | 
|  | while (length > 0) { | 
|  | u64 sublen = min_t(u64, length, PAGE_SIZE); | 
|  | u64 mapped_length = sublen; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  |  | 
|  | /* | 
|  | * with a length of PAGE_SIZE, each returned stripe | 
|  | * represents one mirror | 
|  | */ | 
|  | ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length, | 
|  | &bbio, 0); | 
|  | if (ret || !bbio || mapped_length < sublen) { | 
|  | kfree(bbio); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | BUG_ON(page_index >= SCRUB_PAGES_PER_BIO); | 
|  | for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock; | 
|  | struct scrub_page *page; | 
|  |  | 
|  | if (mirror_index >= BTRFS_MAX_MIRRORS) | 
|  | continue; | 
|  |  | 
|  | sblock = sblocks_for_recheck + mirror_index; | 
|  | page = sblock->pagev + page_index; | 
|  | page->logical = logical; | 
|  | page->physical = bbio->stripes[mirror_index].physical; | 
|  | /* for missing devices, dev->bdev is NULL */ | 
|  | page->dev = bbio->stripes[mirror_index].dev; | 
|  | page->mirror_num = mirror_index + 1; | 
|  | page->page = alloc_page(GFP_NOFS); | 
|  | if (!page->page) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.malloc_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sblock->page_count++; | 
|  | } | 
|  | kfree(bbio); | 
|  | length -= sublen; | 
|  | logical += sublen; | 
|  | page_index++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function will check the on disk data for checksum errors, header | 
|  | * errors and read I/O errors. If any I/O errors happen, the exact pages | 
|  | * which are errored are marked as being bad. The goal is to enable scrub | 
|  | * to take those pages that are not errored from all the mirrors so that | 
|  | * the pages that are errored in the just handled mirror can be repaired. | 
|  | */ | 
|  | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, int is_metadata, | 
|  | int have_csum, u8 *csum, u64 generation, | 
|  | u16 csum_size) | 
|  | { | 
|  | int page_num; | 
|  |  | 
|  | sblock->no_io_error_seen = 1; | 
|  | sblock->header_error = 0; | 
|  | sblock->checksum_error = 0; | 
|  |  | 
|  | for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
|  | struct bio *bio; | 
|  | int ret; | 
|  | struct scrub_page *page = sblock->pagev + page_num; | 
|  | DECLARE_COMPLETION_ONSTACK(complete); | 
|  |  | 
|  | if (page->dev->bdev == NULL) { | 
|  | page->io_error = 1; | 
|  | sblock->no_io_error_seen = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(!page->page); | 
|  | bio = bio_alloc(GFP_NOFS, 1); | 
|  | if (!bio) | 
|  | return -EIO; | 
|  | bio->bi_bdev = page->dev->bdev; | 
|  | bio->bi_sector = page->physical >> 9; | 
|  | bio->bi_end_io = scrub_complete_bio_end_io; | 
|  | bio->bi_private = &complete; | 
|  |  | 
|  | ret = bio_add_page(bio, page->page, PAGE_SIZE, 0); | 
|  | if (PAGE_SIZE != ret) { | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | btrfsic_submit_bio(READ, bio); | 
|  |  | 
|  | /* this will also unplug the queue */ | 
|  | wait_for_completion(&complete); | 
|  |  | 
|  | page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | sblock->no_io_error_seen = 0; | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | if (sblock->no_io_error_seen) | 
|  | scrub_recheck_block_checksum(fs_info, sblock, is_metadata, | 
|  | have_csum, csum, generation, | 
|  | csum_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, | 
|  | int is_metadata, int have_csum, | 
|  | const u8 *csum, u64 generation, | 
|  | u16 csum_size) | 
|  | { | 
|  | int page_num; | 
|  | u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
|  | u32 crc = ~(u32)0; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | void *mapped_buffer; | 
|  |  | 
|  | BUG_ON(!sblock->pagev[0].page); | 
|  | if (is_metadata) { | 
|  | struct btrfs_header *h; | 
|  |  | 
|  | mapped_buffer = kmap_atomic(sblock->pagev[0].page); | 
|  | h = (struct btrfs_header *)mapped_buffer; | 
|  |  | 
|  | if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) || | 
|  | memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || | 
|  | memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
|  | BTRFS_UUID_SIZE)) { | 
|  | sblock->header_error = 1; | 
|  | } else if (generation != le64_to_cpu(h->generation)) { | 
|  | sblock->header_error = 1; | 
|  | sblock->generation_error = 1; | 
|  | } | 
|  | csum = h->csum; | 
|  | } else { | 
|  | if (!have_csum) | 
|  | return; | 
|  |  | 
|  | mapped_buffer = kmap_atomic(sblock->pagev[0].page); | 
|  | } | 
|  |  | 
|  | for (page_num = 0;;) { | 
|  | if (page_num == 0 && is_metadata) | 
|  | crc = btrfs_csum_data(root, | 
|  | ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, | 
|  | crc, PAGE_SIZE - BTRFS_CSUM_SIZE); | 
|  | else | 
|  | crc = btrfs_csum_data(root, mapped_buffer, crc, | 
|  | PAGE_SIZE); | 
|  |  | 
|  | kunmap_atomic(mapped_buffer); | 
|  | page_num++; | 
|  | if (page_num >= sblock->page_count) | 
|  | break; | 
|  | BUG_ON(!sblock->pagev[page_num].page); | 
|  |  | 
|  | mapped_buffer = kmap_atomic(sblock->pagev[page_num].page); | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, calculated_csum); | 
|  | if (memcmp(calculated_csum, csum, csum_size)) | 
|  | sblock->checksum_error = 1; | 
|  | } | 
|  |  | 
|  | static void scrub_complete_bio_end_io(struct bio *bio, int err) | 
|  | { | 
|  | complete((struct completion *)bio->bi_private); | 
|  | } | 
|  |  | 
|  | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int force_write) | 
|  | { | 
|  | int page_num; | 
|  | int ret = 0; | 
|  |  | 
|  | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
|  | int ret_sub; | 
|  |  | 
|  | ret_sub = scrub_repair_page_from_good_copy(sblock_bad, | 
|  | sblock_good, | 
|  | page_num, | 
|  | force_write); | 
|  | if (ret_sub) | 
|  | ret = ret_sub; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int page_num, int force_write) | 
|  | { | 
|  | struct scrub_page *page_bad = sblock_bad->pagev + page_num; | 
|  | struct scrub_page *page_good = sblock_good->pagev + page_num; | 
|  |  | 
|  | BUG_ON(sblock_bad->pagev[page_num].page == NULL); | 
|  | BUG_ON(sblock_good->pagev[page_num].page == NULL); | 
|  | if (force_write || sblock_bad->header_error || | 
|  | sblock_bad->checksum_error || page_bad->io_error) { | 
|  | struct bio *bio; | 
|  | int ret; | 
|  | DECLARE_COMPLETION_ONSTACK(complete); | 
|  |  | 
|  | bio = bio_alloc(GFP_NOFS, 1); | 
|  | if (!bio) | 
|  | return -EIO; | 
|  | bio->bi_bdev = page_bad->dev->bdev; | 
|  | bio->bi_sector = page_bad->physical >> 9; | 
|  | bio->bi_end_io = scrub_complete_bio_end_io; | 
|  | bio->bi_private = &complete; | 
|  |  | 
|  | ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); | 
|  | if (PAGE_SIZE != ret) { | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | btrfsic_submit_bio(WRITE, bio); | 
|  |  | 
|  | /* this will also unplug the queue */ | 
|  | wait_for_completion(&complete); | 
|  | if (!bio_flagged(bio, BIO_UPTODATE)) { | 
|  | btrfs_dev_stat_inc_and_print(page_bad->dev, | 
|  | BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_checksum(struct scrub_block *sblock) | 
|  | { | 
|  | u64 flags; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | flags = sblock->pagev[0].flags; | 
|  | ret = 0; | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | ret = scrub_checksum_data(sblock); | 
|  | else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | ret = scrub_checksum_tree_block(sblock); | 
|  | else if (flags & BTRFS_EXTENT_FLAG_SUPER) | 
|  | (void)scrub_checksum_super(sblock); | 
|  | else | 
|  | WARN_ON(1); | 
|  | if (ret) | 
|  | scrub_handle_errored_block(sblock); | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_data(struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_dev *sdev = sblock->sdev; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  | u8 *on_disk_csum; | 
|  | struct page *page; | 
|  | void *buffer; | 
|  | u32 crc = ~(u32)0; | 
|  | int fail = 0; | 
|  | struct btrfs_root *root = sdev->dev->dev_root; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | if (!sblock->pagev[0].have_csum) | 
|  | return 0; | 
|  |  | 
|  | on_disk_csum = sblock->pagev[0].csum; | 
|  | page = sblock->pagev[0].page; | 
|  | buffer = kmap_atomic(page); | 
|  |  | 
|  | len = sdev->sectorsize; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, PAGE_SIZE); | 
|  |  | 
|  | crc = btrfs_csum_data(root, buffer, crc, l); | 
|  | kunmap_atomic(buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index].page); | 
|  | page = sblock->pagev[index].page; | 
|  | buffer = kmap_atomic(page); | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, csum); | 
|  | if (memcmp(csum, on_disk_csum, sdev->csum_size)) | 
|  | fail = 1; | 
|  |  | 
|  | return fail; | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_tree_block(struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_dev *sdev = sblock->sdev; | 
|  | struct btrfs_header *h; | 
|  | struct btrfs_root *root = sdev->dev->dev_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
|  | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
|  | struct page *page; | 
|  | void *mapped_buffer; | 
|  | u64 mapped_size; | 
|  | void *p; | 
|  | u32 crc = ~(u32)0; | 
|  | int fail = 0; | 
|  | int crc_fail = 0; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | page = sblock->pagev[0].page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | h = (struct btrfs_header *)mapped_buffer; | 
|  | memcpy(on_disk_csum, h->csum, sdev->csum_size); | 
|  |  | 
|  | /* | 
|  | * we don't use the getter functions here, as we | 
|  | * a) don't have an extent buffer and | 
|  | * b) the page is already kmapped | 
|  | */ | 
|  |  | 
|  | if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr)) | 
|  | ++fail; | 
|  |  | 
|  | if (sblock->pagev[0].generation != le64_to_cpu(h->generation)) | 
|  | ++fail; | 
|  |  | 
|  | if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
|  | ++fail; | 
|  |  | 
|  | if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
|  | BTRFS_UUID_SIZE)) | 
|  | ++fail; | 
|  |  | 
|  | BUG_ON(sdev->nodesize != sdev->leafsize); | 
|  | len = sdev->nodesize - BTRFS_CSUM_SIZE; | 
|  | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
|  | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, mapped_size); | 
|  |  | 
|  | crc = btrfs_csum_data(root, p, crc, l); | 
|  | kunmap_atomic(mapped_buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index].page); | 
|  | page = sblock->pagev[index].page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | mapped_size = PAGE_SIZE; | 
|  | p = mapped_buffer; | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, calculated_csum); | 
|  | if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | 
|  | ++crc_fail; | 
|  |  | 
|  | return fail || crc_fail; | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_super(struct scrub_block *sblock) | 
|  | { | 
|  | struct btrfs_super_block *s; | 
|  | struct scrub_dev *sdev = sblock->sdev; | 
|  | struct btrfs_root *root = sdev->dev->dev_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
|  | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
|  | struct page *page; | 
|  | void *mapped_buffer; | 
|  | u64 mapped_size; | 
|  | void *p; | 
|  | u32 crc = ~(u32)0; | 
|  | int fail_gen = 0; | 
|  | int fail_cor = 0; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | page = sblock->pagev[0].page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | s = (struct btrfs_super_block *)mapped_buffer; | 
|  | memcpy(on_disk_csum, s->csum, sdev->csum_size); | 
|  |  | 
|  | if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr)) | 
|  | ++fail_cor; | 
|  |  | 
|  | if (sblock->pagev[0].generation != le64_to_cpu(s->generation)) | 
|  | ++fail_gen; | 
|  |  | 
|  | if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
|  | ++fail_cor; | 
|  |  | 
|  | len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; | 
|  | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
|  | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, mapped_size); | 
|  |  | 
|  | crc = btrfs_csum_data(root, p, crc, l); | 
|  | kunmap_atomic(mapped_buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index].page); | 
|  | page = sblock->pagev[index].page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | mapped_size = PAGE_SIZE; | 
|  | p = mapped_buffer; | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, calculated_csum); | 
|  | if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | 
|  | ++fail_cor; | 
|  |  | 
|  | if (fail_cor + fail_gen) { | 
|  | /* | 
|  | * if we find an error in a super block, we just report it. | 
|  | * They will get written with the next transaction commit | 
|  | * anyway | 
|  | */ | 
|  | spin_lock(&sdev->stat_lock); | 
|  | ++sdev->stat.super_errors; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | if (fail_cor) | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | else | 
|  | btrfs_dev_stat_inc_and_print(sdev->dev, | 
|  | BTRFS_DEV_STAT_GENERATION_ERRS); | 
|  | } | 
|  |  | 
|  | return fail_cor + fail_gen; | 
|  | } | 
|  |  | 
|  | static void scrub_block_get(struct scrub_block *sblock) | 
|  | { | 
|  | atomic_inc(&sblock->ref_count); | 
|  | } | 
|  |  | 
|  | static void scrub_block_put(struct scrub_block *sblock) | 
|  | { | 
|  | if (atomic_dec_and_test(&sblock->ref_count)) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sblock->page_count; i++) | 
|  | if (sblock->pagev[i].page) | 
|  | __free_page(sblock->pagev[i].page); | 
|  | kfree(sblock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scrub_submit(struct scrub_dev *sdev) | 
|  | { | 
|  | struct scrub_bio *sbio; | 
|  |  | 
|  | if (sdev->curr == -1) | 
|  | return; | 
|  |  | 
|  | sbio = sdev->bios[sdev->curr]; | 
|  | sdev->curr = -1; | 
|  | atomic_inc(&sdev->in_flight); | 
|  |  | 
|  | btrfsic_submit_bio(READ, sbio->bio); | 
|  | } | 
|  |  | 
|  | static int scrub_add_page_to_bio(struct scrub_dev *sdev, | 
|  | struct scrub_page *spage) | 
|  | { | 
|  | struct scrub_block *sblock = spage->sblock; | 
|  | struct scrub_bio *sbio; | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * grab a fresh bio or wait for one to become available | 
|  | */ | 
|  | while (sdev->curr == -1) { | 
|  | spin_lock(&sdev->list_lock); | 
|  | sdev->curr = sdev->first_free; | 
|  | if (sdev->curr != -1) { | 
|  | sdev->first_free = sdev->bios[sdev->curr]->next_free; | 
|  | sdev->bios[sdev->curr]->next_free = -1; | 
|  | sdev->bios[sdev->curr]->page_count = 0; | 
|  | spin_unlock(&sdev->list_lock); | 
|  | } else { | 
|  | spin_unlock(&sdev->list_lock); | 
|  | wait_event(sdev->list_wait, sdev->first_free != -1); | 
|  | } | 
|  | } | 
|  | sbio = sdev->bios[sdev->curr]; | 
|  | if (sbio->page_count == 0) { | 
|  | struct bio *bio; | 
|  |  | 
|  | sbio->physical = spage->physical; | 
|  | sbio->logical = spage->logical; | 
|  | bio = sbio->bio; | 
|  | if (!bio) { | 
|  | bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio); | 
|  | if (!bio) | 
|  | return -ENOMEM; | 
|  | sbio->bio = bio; | 
|  | } | 
|  |  | 
|  | bio->bi_private = sbio; | 
|  | bio->bi_end_io = scrub_bio_end_io; | 
|  | bio->bi_bdev = sdev->dev->bdev; | 
|  | bio->bi_sector = spage->physical >> 9; | 
|  | sbio->err = 0; | 
|  | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
|  | spage->physical || | 
|  | sbio->logical + sbio->page_count * PAGE_SIZE != | 
|  | spage->logical) { | 
|  | scrub_submit(sdev); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | sbio->pagev[sbio->page_count] = spage; | 
|  | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
|  | if (ret != PAGE_SIZE) { | 
|  | if (sbio->page_count < 1) { | 
|  | bio_put(sbio->bio); | 
|  | sbio->bio = NULL; | 
|  | return -EIO; | 
|  | } | 
|  | scrub_submit(sdev); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | scrub_block_get(sblock); /* one for the added page */ | 
|  | atomic_inc(&sblock->outstanding_pages); | 
|  | sbio->page_count++; | 
|  | if (sbio->page_count == sdev->pages_per_bio) | 
|  | scrub_submit(sdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | 
|  | u64 physical, u64 flags, u64 gen, int mirror_num, | 
|  | u8 *csum, int force) | 
|  | { | 
|  | struct scrub_block *sblock; | 
|  | int index; | 
|  |  | 
|  | sblock = kzalloc(sizeof(*sblock), GFP_NOFS); | 
|  | if (!sblock) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.malloc_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* one ref inside this function, plus one for each page later on */ | 
|  | atomic_set(&sblock->ref_count, 1); | 
|  | sblock->sdev = sdev; | 
|  | sblock->no_io_error_seen = 1; | 
|  |  | 
|  | for (index = 0; len > 0; index++) { | 
|  | struct scrub_page *spage = sblock->pagev + index; | 
|  | u64 l = min_t(u64, len, PAGE_SIZE); | 
|  |  | 
|  | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
|  | spage->page = alloc_page(GFP_NOFS); | 
|  | if (!spage->page) { | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.malloc_errors++; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | while (index > 0) { | 
|  | index--; | 
|  | __free_page(sblock->pagev[index].page); | 
|  | } | 
|  | kfree(sblock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | spage->sblock = sblock; | 
|  | spage->dev = sdev->dev; | 
|  | spage->flags = flags; | 
|  | spage->generation = gen; | 
|  | spage->logical = logical; | 
|  | spage->physical = physical; | 
|  | spage->mirror_num = mirror_num; | 
|  | if (csum) { | 
|  | spage->have_csum = 1; | 
|  | memcpy(spage->csum, csum, sdev->csum_size); | 
|  | } else { | 
|  | spage->have_csum = 0; | 
|  | } | 
|  | sblock->page_count++; | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | } | 
|  |  | 
|  | BUG_ON(sblock->page_count == 0); | 
|  | for (index = 0; index < sblock->page_count; index++) { | 
|  | struct scrub_page *spage = sblock->pagev + index; | 
|  | int ret; | 
|  |  | 
|  | ret = scrub_add_page_to_bio(sdev, spage); | 
|  | if (ret) { | 
|  | scrub_block_put(sblock); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (force) | 
|  | scrub_submit(sdev); | 
|  |  | 
|  | /* last one frees, either here or in bio completion for last page */ | 
|  | scrub_block_put(sblock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_bio_end_io(struct bio *bio, int err) | 
|  | { | 
|  | struct scrub_bio *sbio = bio->bi_private; | 
|  | struct scrub_dev *sdev = sbio->sdev; | 
|  | struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | 
|  |  | 
|  | sbio->err = err; | 
|  | sbio->bio = bio; | 
|  |  | 
|  | btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); | 
|  | } | 
|  |  | 
|  | static void scrub_bio_end_io_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
|  | struct scrub_dev *sdev = sbio->sdev; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO); | 
|  | if (sbio->err) { | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct scrub_page *spage = sbio->pagev[i]; | 
|  |  | 
|  | spage->io_error = 1; | 
|  | spage->sblock->no_io_error_seen = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now complete the scrub_block items that have all pages completed */ | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct scrub_page *spage = sbio->pagev[i]; | 
|  | struct scrub_block *sblock = spage->sblock; | 
|  |  | 
|  | if (atomic_dec_and_test(&sblock->outstanding_pages)) | 
|  | scrub_block_complete(sblock); | 
|  | scrub_block_put(sblock); | 
|  | } | 
|  |  | 
|  | if (sbio->err) { | 
|  | /* what is this good for??? */ | 
|  | sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
|  | sbio->bio->bi_flags |= 1 << BIO_UPTODATE; | 
|  | sbio->bio->bi_phys_segments = 0; | 
|  | sbio->bio->bi_idx = 0; | 
|  |  | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct bio_vec *bi; | 
|  | bi = &sbio->bio->bi_io_vec[i]; | 
|  | bi->bv_offset = 0; | 
|  | bi->bv_len = PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | bio_put(sbio->bio); | 
|  | sbio->bio = NULL; | 
|  | spin_lock(&sdev->list_lock); | 
|  | sbio->next_free = sdev->first_free; | 
|  | sdev->first_free = sbio->index; | 
|  | spin_unlock(&sdev->list_lock); | 
|  | atomic_dec(&sdev->in_flight); | 
|  | wake_up(&sdev->list_wait); | 
|  | } | 
|  |  | 
|  | static void scrub_block_complete(struct scrub_block *sblock) | 
|  | { | 
|  | if (!sblock->no_io_error_seen) | 
|  | scrub_handle_errored_block(sblock); | 
|  | else | 
|  | scrub_checksum(sblock); | 
|  | } | 
|  |  | 
|  | static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, | 
|  | u8 *csum) | 
|  | { | 
|  | struct btrfs_ordered_sum *sum = NULL; | 
|  | int ret = 0; | 
|  | unsigned long i; | 
|  | unsigned long num_sectors; | 
|  |  | 
|  | while (!list_empty(&sdev->csum_list)) { | 
|  | sum = list_first_entry(&sdev->csum_list, | 
|  | struct btrfs_ordered_sum, list); | 
|  | if (sum->bytenr > logical) | 
|  | return 0; | 
|  | if (sum->bytenr + sum->len > logical) | 
|  | break; | 
|  |  | 
|  | ++sdev->stat.csum_discards; | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | sum = NULL; | 
|  | } | 
|  | if (!sum) | 
|  | return 0; | 
|  |  | 
|  | num_sectors = sum->len / sdev->sectorsize; | 
|  | for (i = 0; i < num_sectors; ++i) { | 
|  | if (sum->sums[i].bytenr == logical) { | 
|  | memcpy(csum, &sum->sums[i].sum, sdev->csum_size); | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret && i == num_sectors - 1) { | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* scrub extent tries to collect up to 64 kB for each bio */ | 
|  | static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, | 
|  | u64 physical, u64 flags, u64 gen, int mirror_num) | 
|  | { | 
|  | int ret; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  | u32 blocksize; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | blocksize = sdev->sectorsize; | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.data_extents_scrubbed++; | 
|  | sdev->stat.data_bytes_scrubbed += len; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | BUG_ON(sdev->nodesize != sdev->leafsize); | 
|  | blocksize = sdev->nodesize; | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.tree_extents_scrubbed++; | 
|  | sdev->stat.tree_bytes_scrubbed += len; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | } else { | 
|  | blocksize = sdev->sectorsize; | 
|  | BUG_ON(1); | 
|  | } | 
|  |  | 
|  | while (len) { | 
|  | u64 l = min_t(u64, len, blocksize); | 
|  | int have_csum = 0; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | /* push csums to sbio */ | 
|  | have_csum = scrub_find_csum(sdev, logical, l, csum); | 
|  | if (have_csum == 0) | 
|  | ++sdev->stat.no_csum; | 
|  | } | 
|  | ret = scrub_pages(sdev, logical, l, physical, flags, gen, | 
|  | mirror_num, have_csum ? csum : NULL, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, | 
|  | struct map_lookup *map, int num, u64 base, u64 length) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_root *csum_root = fs_info->csum_root; | 
|  | struct btrfs_extent_item *extent; | 
|  | struct blk_plug plug; | 
|  | u64 flags; | 
|  | int ret; | 
|  | int slot; | 
|  | int i; | 
|  | u64 nstripes; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | u64 physical; | 
|  | u64 logical; | 
|  | u64 generation; | 
|  | int mirror_num; | 
|  | struct reada_control *reada1; | 
|  | struct reada_control *reada2; | 
|  | struct btrfs_key key_start; | 
|  | struct btrfs_key key_end; | 
|  |  | 
|  | u64 increment = map->stripe_len; | 
|  | u64 offset; | 
|  |  | 
|  | nstripes = length; | 
|  | offset = 0; | 
|  | do_div(nstripes, map->stripe_len); | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
|  | offset = map->stripe_len * num; | 
|  | increment = map->stripe_len * map->num_stripes; | 
|  | mirror_num = 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | int factor = map->num_stripes / map->sub_stripes; | 
|  | offset = map->stripe_len * (num / map->sub_stripes); | 
|  | increment = map->stripe_len * factor; | 
|  | mirror_num = num % map->sub_stripes + 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = num % map->num_stripes + 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = num % map->num_stripes + 1; | 
|  | } else { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = 1; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * work on commit root. The related disk blocks are static as | 
|  | * long as COW is applied. This means, it is save to rewrite | 
|  | * them to repair disk errors without any race conditions | 
|  | */ | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * trigger the readahead for extent tree csum tree and wait for | 
|  | * completion. During readahead, the scrub is officially paused | 
|  | * to not hold off transaction commits | 
|  | */ | 
|  | logical = base + offset; | 
|  |  | 
|  | wait_event(sdev->list_wait, | 
|  | atomic_read(&sdev->in_flight) == 0); | 
|  | atomic_inc(&fs_info->scrubs_paused); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  |  | 
|  | /* FIXME it might be better to start readahead at commit root */ | 
|  | key_start.objectid = logical; | 
|  | key_start.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key_start.offset = (u64)0; | 
|  | key_end.objectid = base + offset + nstripes * increment; | 
|  | key_end.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key_end.offset = (u64)0; | 
|  | reada1 = btrfs_reada_add(root, &key_start, &key_end); | 
|  |  | 
|  | key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key_start.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | key_start.offset = logical; | 
|  | key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key_end.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | key_end.offset = base + offset + nstripes * increment; | 
|  | reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); | 
|  |  | 
|  | if (!IS_ERR(reada1)) | 
|  | btrfs_reada_wait(reada1); | 
|  | if (!IS_ERR(reada2)) | 
|  | btrfs_reada_wait(reada2); | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | while (atomic_read(&fs_info->scrub_pause_req)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrub_pause_req) == 0); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | atomic_dec(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  |  | 
|  | /* | 
|  | * collect all data csums for the stripe to avoid seeking during | 
|  | * the scrub. This might currently (crc32) end up to be about 1MB | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | /* | 
|  | * now find all extents for each stripe and scrub them | 
|  | */ | 
|  | logical = base + offset; | 
|  | physical = map->stripes[num].physical; | 
|  | ret = 0; | 
|  | for (i = 0; i < nstripes; ++i) { | 
|  | /* | 
|  | * canceled? | 
|  | */ | 
|  | if (atomic_read(&fs_info->scrub_cancel_req) || | 
|  | atomic_read(&sdev->cancel_req)) { | 
|  | ret = -ECANCELED; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * check to see if we have to pause | 
|  | */ | 
|  | if (atomic_read(&fs_info->scrub_pause_req)) { | 
|  | /* push queued extents */ | 
|  | scrub_submit(sdev); | 
|  | wait_event(sdev->list_wait, | 
|  | atomic_read(&sdev->in_flight) == 0); | 
|  | atomic_inc(&fs_info->scrubs_paused); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | while (atomic_read(&fs_info->scrub_pause_req)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrub_pause_req) == 0); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | atomic_dec(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(csum_root, logical, | 
|  | logical + map->stripe_len - 1, | 
|  | &sdev->csum_list, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | key.objectid = logical; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = (u64)0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, 0, | 
|  | BTRFS_EXTENT_ITEM_KEY); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | /* there's no smaller item, so stick with the | 
|  | * larger one */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &key, | 
|  | path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.objectid + key.offset <= logical) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid >= logical + map->stripe_len) | 
|  | break; | 
|  |  | 
|  | if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) | 
|  | goto next; | 
|  |  | 
|  | extent = btrfs_item_ptr(l, slot, | 
|  | struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(l, extent); | 
|  | generation = btrfs_extent_generation(l, extent); | 
|  |  | 
|  | if (key.objectid < logical && | 
|  | (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { | 
|  | printk(KERN_ERR | 
|  | "btrfs scrub: tree block %llu spanning " | 
|  | "stripes, ignored. logical=%llu\n", | 
|  | (unsigned long long)key.objectid, | 
|  | (unsigned long long)logical); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * trim extent to this stripe | 
|  | */ | 
|  | if (key.objectid < logical) { | 
|  | key.offset -= logical - key.objectid; | 
|  | key.objectid = logical; | 
|  | } | 
|  | if (key.objectid + key.offset > | 
|  | logical + map->stripe_len) { | 
|  | key.offset = logical + map->stripe_len - | 
|  | key.objectid; | 
|  | } | 
|  |  | 
|  | ret = scrub_extent(sdev, key.objectid, key.offset, | 
|  | key.objectid - logical + physical, | 
|  | flags, generation, mirror_num); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | logical += increment; | 
|  | physical += map->stripe_len; | 
|  | spin_lock(&sdev->stat_lock); | 
|  | sdev->stat.last_physical = physical; | 
|  | spin_unlock(&sdev->stat_lock); | 
|  | } | 
|  | /* push queued extents */ | 
|  | scrub_submit(sdev); | 
|  |  | 
|  | out: | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_free_path(path); | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev, | 
|  | u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length, | 
|  | u64 dev_offset) | 
|  | { | 
|  | struct btrfs_mapping_tree *map_tree = | 
|  | &sdev->dev->dev_root->fs_info->mapping_tree; | 
|  | struct map_lookup *map; | 
|  | struct extent_map *em; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | read_lock(&map_tree->map_tree.lock); | 
|  | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
|  | read_unlock(&map_tree->map_tree.lock); | 
|  |  | 
|  | if (!em) | 
|  | return -EINVAL; | 
|  |  | 
|  | map = (struct map_lookup *)em->bdev; | 
|  | if (em->start != chunk_offset) | 
|  | goto out; | 
|  |  | 
|  | if (em->len < length) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; ++i) { | 
|  | if (map->stripes[i].dev == sdev->dev && | 
|  | map->stripes[i].physical == dev_offset) { | 
|  | ret = scrub_stripe(sdev, map, i, chunk_offset, length); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | free_extent_map(em); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = sdev->dev->dev_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 length; | 
|  | u64 chunk_tree; | 
|  | u64 chunk_objectid; | 
|  | u64 chunk_offset; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 2; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | key.objectid = sdev->dev->devid; | 
|  | key.offset = 0ull; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] >= | 
|  | btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | btrfs_item_key_to_cpu(l, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != sdev->dev->devid) | 
|  | break; | 
|  |  | 
|  | if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) | 
|  | break; | 
|  |  | 
|  | if (found_key.offset >= end) | 
|  | break; | 
|  |  | 
|  | if (found_key.offset < key.offset) | 
|  | break; | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | length = btrfs_dev_extent_length(l, dev_extent); | 
|  |  | 
|  | if (found_key.offset + length <= start) { | 
|  | key.offset = found_key.offset + length; | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
|  | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
|  |  | 
|  | /* | 
|  | * get a reference on the corresponding block group to prevent | 
|  | * the chunk from going away while we scrub it | 
|  | */ | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | if (!cache) { | 
|  | ret = -ENOENT; | 
|  | break; | 
|  | } | 
|  | ret = scrub_chunk(sdev, chunk_tree, chunk_objectid, | 
|  | chunk_offset, length, found_key.offset); | 
|  | btrfs_put_block_group(cache); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | key.offset = found_key.offset + length; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | /* | 
|  | * ret can still be 1 from search_slot or next_leaf, | 
|  | * that's not an error | 
|  | */ | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_supers(struct scrub_dev *sdev) | 
|  | { | 
|  | int	i; | 
|  | u64	bytenr; | 
|  | u64	gen; | 
|  | int	ret; | 
|  | struct btrfs_device *device = sdev->dev; | 
|  | struct btrfs_root *root = device->dev_root; | 
|  |  | 
|  | if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) | 
|  | return -EIO; | 
|  |  | 
|  | gen = root->fs_info->last_trans_committed; | 
|  |  | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) | 
|  | break; | 
|  |  | 
|  | ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, | 
|  | BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get a reference count on fs_info->scrub_workers. start worker if necessary | 
|  | */ | 
|  | static noinline_for_stack int scrub_workers_get(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | if (fs_info->scrub_workers_refcnt == 0) { | 
|  | btrfs_init_workers(&fs_info->scrub_workers, "scrub", | 
|  | fs_info->thread_pool_size, &fs_info->generic_worker); | 
|  | fs_info->scrub_workers.idle_thresh = 4; | 
|  | ret = btrfs_start_workers(&fs_info->scrub_workers); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ++fs_info->scrub_workers_refcnt; | 
|  | out: | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void scrub_workers_put(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | if (--fs_info->scrub_workers_refcnt == 0) | 
|  | btrfs_stop_workers(&fs_info->scrub_workers); | 
|  | WARN_ON(fs_info->scrub_workers_refcnt < 0); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, | 
|  | struct btrfs_scrub_progress *progress, int readonly) | 
|  | { | 
|  | struct scrub_dev *sdev; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | if (btrfs_fs_closing(root->fs_info)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * check some assumptions | 
|  | */ | 
|  | if (root->nodesize != root->leafsize) { | 
|  | printk(KERN_ERR | 
|  | "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", | 
|  | root->nodesize, root->leafsize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (root->nodesize > BTRFS_STRIPE_LEN) { | 
|  | /* | 
|  | * in this case scrub is unable to calculate the checksum | 
|  | * the way scrub is implemented. Do not handle this | 
|  | * situation at all because it won't ever happen. | 
|  | */ | 
|  | printk(KERN_ERR | 
|  | "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", | 
|  | root->nodesize, BTRFS_STRIPE_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (root->sectorsize != PAGE_SIZE) { | 
|  | /* not supported for data w/o checksums */ | 
|  | printk(KERN_ERR | 
|  | "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", | 
|  | root->sectorsize, (unsigned long long)PAGE_SIZE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = scrub_workers_get(root); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(root, devid, NULL, NULL); | 
|  | if (!dev || dev->missing) { | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | scrub_workers_put(root); | 
|  | return -ENODEV; | 
|  | } | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  |  | 
|  | if (!dev->in_fs_metadata) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | scrub_workers_put(root); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (dev->scrub_device) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | scrub_workers_put(root); | 
|  | return -EINPROGRESS; | 
|  | } | 
|  | sdev = scrub_setup_dev(dev); | 
|  | if (IS_ERR(sdev)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | scrub_workers_put(root); | 
|  | return PTR_ERR(sdev); | 
|  | } | 
|  | sdev->readonly = readonly; | 
|  | dev->scrub_device = sdev; | 
|  |  | 
|  | atomic_inc(&fs_info->scrubs_running); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | down_read(&fs_info->scrub_super_lock); | 
|  | ret = scrub_supers(sdev); | 
|  | up_read(&fs_info->scrub_super_lock); | 
|  |  | 
|  | if (!ret) | 
|  | ret = scrub_enumerate_chunks(sdev, start, end); | 
|  |  | 
|  | wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | 
|  | atomic_dec(&fs_info->scrubs_running); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  |  | 
|  | wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0); | 
|  |  | 
|  | if (progress) | 
|  | memcpy(progress, &sdev->stat, sizeof(*progress)); | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | dev->scrub_device = NULL; | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | scrub_free_dev(sdev); | 
|  | scrub_workers_put(root); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_pause(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_inc(&fs_info->scrub_pause_req); | 
|  | while (atomic_read(&fs_info->scrubs_paused) != | 
|  | atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrubs_paused) == | 
|  | atomic_read(&fs_info->scrubs_running)); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_continue(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | atomic_dec(&fs_info->scrub_pause_req); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_pause_super(struct btrfs_root *root) | 
|  | { | 
|  | down_write(&root->fs_info->scrub_super_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_continue_super(struct btrfs_root *root) | 
|  | { | 
|  | up_write(&root->fs_info->scrub_super_lock); | 
|  | } | 
|  |  | 
|  | int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | if (!atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | atomic_inc(&fs_info->scrub_cancel_req); | 
|  | while (atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrubs_running) == 0); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | atomic_dec(&fs_info->scrub_cancel_req); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_cancel(struct btrfs_root *root) | 
|  | { | 
|  | return __btrfs_scrub_cancel(root->fs_info); | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct scrub_dev *sdev; | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | sdev = dev->scrub_device; | 
|  | if (!sdev) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | return -ENOTCONN; | 
|  | } | 
|  | atomic_inc(&sdev->cancel_req); | 
|  | while (dev->scrub_device) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | dev->scrub_device == NULL); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_device *dev; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * we have to hold the device_list_mutex here so the device | 
|  | * does not go away in cancel_dev. FIXME: find a better solution | 
|  | */ | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(root, devid, NULL, NULL); | 
|  | if (!dev) { | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  | ret = btrfs_scrub_cancel_dev(root, dev); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, | 
|  | struct btrfs_scrub_progress *progress) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct scrub_dev *sdev = NULL; | 
|  |  | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(root, devid, NULL, NULL); | 
|  | if (dev) | 
|  | sdev = dev->scrub_device; | 
|  | if (sdev) | 
|  | memcpy(progress, &sdev->stat, sizeof(*progress)); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV; | 
|  | } |