|  | /* | 
|  | * Kernel Debug Core | 
|  | * | 
|  | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | 
|  | * | 
|  | * Copyright (C) 2000-2001 VERITAS Software Corporation. | 
|  | * Copyright (C) 2002-2004 Timesys Corporation | 
|  | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | 
|  | * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz> | 
|  | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | 
|  | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | 
|  | * Copyright (C) 2005-2009 Wind River Systems, Inc. | 
|  | * Copyright (C) 2007 MontaVista Software, Inc. | 
|  | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | * Contributors at various stages not listed above: | 
|  | *  Jason Wessel ( jason.wessel@windriver.com ) | 
|  | *  George Anzinger <george@mvista.com> | 
|  | *  Anurekh Saxena (anurekh.saxena@timesys.com) | 
|  | *  Lake Stevens Instrument Division (Glenn Engel) | 
|  | *  Jim Kingdon, Cygnus Support. | 
|  | * | 
|  | * Original KGDB stub: David Grothe <dave@gcom.com>, | 
|  | * Tigran Aivazian <tigran@sco.com> | 
|  | * | 
|  | * This file is licensed under the terms of the GNU General Public License | 
|  | * version 2. This program is licensed "as is" without any warranty of any | 
|  | * kind, whether express or implied. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kgdb.h> | 
|  | #include <linux/kdb.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include "debug_core.h" | 
|  |  | 
|  | #define KGDB_MAX_THREAD_QUERY 17 | 
|  |  | 
|  | /* Our I/O buffers. */ | 
|  | static char			remcom_in_buffer[BUFMAX]; | 
|  | static char			remcom_out_buffer[BUFMAX]; | 
|  |  | 
|  | /* Storage for the registers, in GDB format. */ | 
|  | static unsigned long		gdb_regs[(NUMREGBYTES + | 
|  | sizeof(unsigned long) - 1) / | 
|  | sizeof(unsigned long)]; | 
|  |  | 
|  | /* | 
|  | * GDB remote protocol parser: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | static int gdbstub_read_wait(void) | 
|  | { | 
|  | int ret = -1; | 
|  | int i; | 
|  |  | 
|  | /* poll any additional I/O interfaces that are defined */ | 
|  | while (ret < 0) | 
|  | for (i = 0; kdb_poll_funcs[i] != NULL; i++) { | 
|  | ret = kdb_poll_funcs[i](); | 
|  | if (ret > 0) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static int gdbstub_read_wait(void) | 
|  | { | 
|  | int ret = dbg_io_ops->read_char(); | 
|  | while (ret == NO_POLL_CHAR) | 
|  | ret = dbg_io_ops->read_char(); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  | /* scan for the sequence $<data>#<checksum> */ | 
|  | static void get_packet(char *buffer) | 
|  | { | 
|  | unsigned char checksum; | 
|  | unsigned char xmitcsum; | 
|  | int count; | 
|  | char ch; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Spin and wait around for the start character, ignore all | 
|  | * other characters: | 
|  | */ | 
|  | while ((ch = (gdbstub_read_wait())) != '$') | 
|  | /* nothing */; | 
|  |  | 
|  | kgdb_connected = 1; | 
|  | checksum = 0; | 
|  | xmitcsum = -1; | 
|  |  | 
|  | count = 0; | 
|  |  | 
|  | /* | 
|  | * now, read until a # or end of buffer is found: | 
|  | */ | 
|  | while (count < (BUFMAX - 1)) { | 
|  | ch = gdbstub_read_wait(); | 
|  | if (ch == '#') | 
|  | break; | 
|  | checksum = checksum + ch; | 
|  | buffer[count] = ch; | 
|  | count = count + 1; | 
|  | } | 
|  | buffer[count] = 0; | 
|  |  | 
|  | if (ch == '#') { | 
|  | xmitcsum = hex_to_bin(gdbstub_read_wait()) << 4; | 
|  | xmitcsum += hex_to_bin(gdbstub_read_wait()); | 
|  |  | 
|  | if (checksum != xmitcsum) | 
|  | /* failed checksum */ | 
|  | dbg_io_ops->write_char('-'); | 
|  | else | 
|  | /* successful transfer */ | 
|  | dbg_io_ops->write_char('+'); | 
|  | if (dbg_io_ops->flush) | 
|  | dbg_io_ops->flush(); | 
|  | } | 
|  | } while (checksum != xmitcsum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send the packet in buffer. | 
|  | * Check for gdb connection if asked for. | 
|  | */ | 
|  | static void put_packet(char *buffer) | 
|  | { | 
|  | unsigned char checksum; | 
|  | int count; | 
|  | char ch; | 
|  |  | 
|  | /* | 
|  | * $<packet info>#<checksum>. | 
|  | */ | 
|  | while (1) { | 
|  | dbg_io_ops->write_char('$'); | 
|  | checksum = 0; | 
|  | count = 0; | 
|  |  | 
|  | while ((ch = buffer[count])) { | 
|  | dbg_io_ops->write_char(ch); | 
|  | checksum += ch; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | dbg_io_ops->write_char('#'); | 
|  | dbg_io_ops->write_char(hex_asc_hi(checksum)); | 
|  | dbg_io_ops->write_char(hex_asc_lo(checksum)); | 
|  | if (dbg_io_ops->flush) | 
|  | dbg_io_ops->flush(); | 
|  |  | 
|  | /* Now see what we get in reply. */ | 
|  | ch = gdbstub_read_wait(); | 
|  |  | 
|  | if (ch == 3) | 
|  | ch = gdbstub_read_wait(); | 
|  |  | 
|  | /* If we get an ACK, we are done. */ | 
|  | if (ch == '+') | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we get the start of another packet, this means | 
|  | * that GDB is attempting to reconnect.  We will NAK | 
|  | * the packet being sent, and stop trying to send this | 
|  | * packet. | 
|  | */ | 
|  | if (ch == '$') { | 
|  | dbg_io_ops->write_char('-'); | 
|  | if (dbg_io_ops->flush) | 
|  | dbg_io_ops->flush(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static char gdbmsgbuf[BUFMAX + 1]; | 
|  |  | 
|  | void gdbstub_msg_write(const char *s, int len) | 
|  | { | 
|  | char *bufptr; | 
|  | int wcount; | 
|  | int i; | 
|  |  | 
|  | if (len == 0) | 
|  | len = strlen(s); | 
|  |  | 
|  | /* 'O'utput */ | 
|  | gdbmsgbuf[0] = 'O'; | 
|  |  | 
|  | /* Fill and send buffers... */ | 
|  | while (len > 0) { | 
|  | bufptr = gdbmsgbuf + 1; | 
|  |  | 
|  | /* Calculate how many this time */ | 
|  | if ((len << 1) > (BUFMAX - 2)) | 
|  | wcount = (BUFMAX - 2) >> 1; | 
|  | else | 
|  | wcount = len; | 
|  |  | 
|  | /* Pack in hex chars */ | 
|  | for (i = 0; i < wcount; i++) | 
|  | bufptr = pack_hex_byte(bufptr, s[i]); | 
|  | *bufptr = '\0'; | 
|  |  | 
|  | /* Move up */ | 
|  | s += wcount; | 
|  | len -= wcount; | 
|  |  | 
|  | /* Write packet */ | 
|  | put_packet(gdbmsgbuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the memory pointed to by mem into hex, placing result in | 
|  | * buf.  Return a pointer to the last char put in buf (null). May | 
|  | * return an error. | 
|  | */ | 
|  | char *kgdb_mem2hex(char *mem, char *buf, int count) | 
|  | { | 
|  | char *tmp; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * We use the upper half of buf as an intermediate buffer for the | 
|  | * raw memory copy.  Hex conversion will work against this one. | 
|  | */ | 
|  | tmp = buf + count; | 
|  |  | 
|  | err = probe_kernel_read(tmp, mem, count); | 
|  | if (err) | 
|  | return NULL; | 
|  | while (count > 0) { | 
|  | buf = pack_hex_byte(buf, *tmp); | 
|  | tmp++; | 
|  | count--; | 
|  | } | 
|  | *buf = 0; | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the hex array pointed to by buf into binary to be placed in | 
|  | * mem.  Return a pointer to the character AFTER the last byte | 
|  | * written.  May return an error. | 
|  | */ | 
|  | int kgdb_hex2mem(char *buf, char *mem, int count) | 
|  | { | 
|  | char *tmp_raw; | 
|  | char *tmp_hex; | 
|  |  | 
|  | /* | 
|  | * We use the upper half of buf as an intermediate buffer for the | 
|  | * raw memory that is converted from hex. | 
|  | */ | 
|  | tmp_raw = buf + count * 2; | 
|  |  | 
|  | tmp_hex = tmp_raw - 1; | 
|  | while (tmp_hex >= buf) { | 
|  | tmp_raw--; | 
|  | *tmp_raw = hex_to_bin(*tmp_hex--); | 
|  | *tmp_raw |= hex_to_bin(*tmp_hex--) << 4; | 
|  | } | 
|  |  | 
|  | return probe_kernel_write(mem, tmp_raw, count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we find nice hex chars, build a long_val. | 
|  | * Return number of chars processed. | 
|  | */ | 
|  | int kgdb_hex2long(char **ptr, unsigned long *long_val) | 
|  | { | 
|  | int hex_val; | 
|  | int num = 0; | 
|  | int negate = 0; | 
|  |  | 
|  | *long_val = 0; | 
|  |  | 
|  | if (**ptr == '-') { | 
|  | negate = 1; | 
|  | (*ptr)++; | 
|  | } | 
|  | while (**ptr) { | 
|  | hex_val = hex_to_bin(**ptr); | 
|  | if (hex_val < 0) | 
|  | break; | 
|  |  | 
|  | *long_val = (*long_val << 4) | hex_val; | 
|  | num++; | 
|  | (*ptr)++; | 
|  | } | 
|  |  | 
|  | if (negate) | 
|  | *long_val = -*long_val; | 
|  |  | 
|  | return num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the binary array pointed to by buf into mem.  Fix $, #, and | 
|  | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. | 
|  | * The input buf is overwitten with the result to write to mem. | 
|  | */ | 
|  | static int kgdb_ebin2mem(char *buf, char *mem, int count) | 
|  | { | 
|  | int size = 0; | 
|  | char *c = buf; | 
|  |  | 
|  | while (count-- > 0) { | 
|  | c[size] = *buf++; | 
|  | if (c[size] == 0x7d) | 
|  | c[size] = *buf++ ^ 0x20; | 
|  | size++; | 
|  | } | 
|  |  | 
|  | return probe_kernel_write(mem, c, size); | 
|  | } | 
|  |  | 
|  | #if DBG_MAX_REG_NUM > 0 | 
|  | void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | int idx = 0; | 
|  | char *ptr = (char *)gdb_regs; | 
|  |  | 
|  | for (i = 0; i < DBG_MAX_REG_NUM; i++) { | 
|  | dbg_get_reg(i, ptr + idx, regs); | 
|  | idx += dbg_reg_def[i].size; | 
|  | } | 
|  | } | 
|  |  | 
|  | void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | int idx = 0; | 
|  | char *ptr = (char *)gdb_regs; | 
|  |  | 
|  | for (i = 0; i < DBG_MAX_REG_NUM; i++) { | 
|  | dbg_set_reg(i, ptr + idx, regs); | 
|  | idx += dbg_reg_def[i].size; | 
|  | } | 
|  | } | 
|  | #endif /* DBG_MAX_REG_NUM > 0 */ | 
|  |  | 
|  | /* Write memory due to an 'M' or 'X' packet. */ | 
|  | static int write_mem_msg(int binary) | 
|  | { | 
|  | char *ptr = &remcom_in_buffer[1]; | 
|  | unsigned long addr; | 
|  | unsigned long length; | 
|  | int err; | 
|  |  | 
|  | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | 
|  | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | 
|  | if (binary) | 
|  | err = kgdb_ebin2mem(ptr, (char *)addr, length); | 
|  | else | 
|  | err = kgdb_hex2mem(ptr, (char *)addr, length); | 
|  | if (err) | 
|  | return err; | 
|  | if (CACHE_FLUSH_IS_SAFE) | 
|  | flush_icache_range(addr, addr + length); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void error_packet(char *pkt, int error) | 
|  | { | 
|  | error = -error; | 
|  | pkt[0] = 'E'; | 
|  | pkt[1] = hex_asc[(error / 10)]; | 
|  | pkt[2] = hex_asc[(error % 10)]; | 
|  | pkt[3] = '\0'; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thread ID accessors. We represent a flat TID space to GDB, where | 
|  | * the per CPU idle threads (which under Linux all have PID 0) are | 
|  | * remapped to negative TIDs. | 
|  | */ | 
|  |  | 
|  | #define BUF_THREAD_ID_SIZE	8 | 
|  |  | 
|  | static char *pack_threadid(char *pkt, unsigned char *id) | 
|  | { | 
|  | unsigned char *limit; | 
|  | int lzero = 1; | 
|  |  | 
|  | limit = id + (BUF_THREAD_ID_SIZE / 2); | 
|  | while (id < limit) { | 
|  | if (!lzero || *id != 0) { | 
|  | pkt = pack_hex_byte(pkt, *id); | 
|  | lzero = 0; | 
|  | } | 
|  | id++; | 
|  | } | 
|  |  | 
|  | if (lzero) | 
|  | pkt = pack_hex_byte(pkt, 0); | 
|  |  | 
|  | return pkt; | 
|  | } | 
|  |  | 
|  | static void int_to_threadref(unsigned char *id, int value) | 
|  | { | 
|  | put_unaligned_be32(value, id); | 
|  | } | 
|  |  | 
|  | static struct task_struct *getthread(struct pt_regs *regs, int tid) | 
|  | { | 
|  | /* | 
|  | * Non-positive TIDs are remapped to the cpu shadow information | 
|  | */ | 
|  | if (tid == 0 || tid == -1) | 
|  | tid = -atomic_read(&kgdb_active) - 2; | 
|  | if (tid < -1 && tid > -NR_CPUS - 2) { | 
|  | if (kgdb_info[-tid - 2].task) | 
|  | return kgdb_info[-tid - 2].task; | 
|  | else | 
|  | return idle_task(-tid - 2); | 
|  | } | 
|  | if (tid <= 0) { | 
|  | printk(KERN_ERR "KGDB: Internal thread select error\n"); | 
|  | dump_stack(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_task_by_pid_ns() does not take the tasklist lock anymore | 
|  | * but is nicely RCU locked - hence is a pretty resilient | 
|  | * thing to use: | 
|  | */ | 
|  | return find_task_by_pid_ns(tid, &init_pid_ns); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remap normal tasks to their real PID, | 
|  | * CPU shadow threads are mapped to -CPU - 2 | 
|  | */ | 
|  | static inline int shadow_pid(int realpid) | 
|  | { | 
|  | if (realpid) | 
|  | return realpid; | 
|  |  | 
|  | return -raw_smp_processor_id() - 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the functions that start with gdb_cmd are the various | 
|  | * operations to implement the handlers for the gdbserial protocol | 
|  | * where KGDB is communicating with an external debugger | 
|  | */ | 
|  |  | 
|  | /* Handle the '?' status packets */ | 
|  | static void gdb_cmd_status(struct kgdb_state *ks) | 
|  | { | 
|  | /* | 
|  | * We know that this packet is only sent | 
|  | * during initial connect.  So to be safe, | 
|  | * we clear out our breakpoints now in case | 
|  | * GDB is reconnecting. | 
|  | */ | 
|  | dbg_remove_all_break(); | 
|  |  | 
|  | remcom_out_buffer[0] = 'S'; | 
|  | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | 
|  | } | 
|  |  | 
|  | static void gdb_get_regs_helper(struct kgdb_state *ks) | 
|  | { | 
|  | struct task_struct *thread; | 
|  | void *local_debuggerinfo; | 
|  | int i; | 
|  |  | 
|  | thread = kgdb_usethread; | 
|  | if (!thread) { | 
|  | thread = kgdb_info[ks->cpu].task; | 
|  | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | 
|  | } else { | 
|  | local_debuggerinfo = NULL; | 
|  | for_each_online_cpu(i) { | 
|  | /* | 
|  | * Try to find the task on some other | 
|  | * or possibly this node if we do not | 
|  | * find the matching task then we try | 
|  | * to approximate the results. | 
|  | */ | 
|  | if (thread == kgdb_info[i].task) | 
|  | local_debuggerinfo = kgdb_info[i].debuggerinfo; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All threads that don't have debuggerinfo should be | 
|  | * in schedule() sleeping, since all other CPUs | 
|  | * are in kgdb_wait, and thus have debuggerinfo. | 
|  | */ | 
|  | if (local_debuggerinfo) { | 
|  | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | 
|  | } else { | 
|  | /* | 
|  | * Pull stuff saved during switch_to; nothing | 
|  | * else is accessible (or even particularly | 
|  | * relevant). | 
|  | * | 
|  | * This should be enough for a stack trace. | 
|  | */ | 
|  | sleeping_thread_to_gdb_regs(gdb_regs, thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'g' get registers request */ | 
|  | static void gdb_cmd_getregs(struct kgdb_state *ks) | 
|  | { | 
|  | gdb_get_regs_helper(ks); | 
|  | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | 
|  | } | 
|  |  | 
|  | /* Handle the 'G' set registers request */ | 
|  | static void gdb_cmd_setregs(struct kgdb_state *ks) | 
|  | { | 
|  | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | 
|  |  | 
|  | if (kgdb_usethread && kgdb_usethread != current) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | } else { | 
|  | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'm' memory read bytes */ | 
|  | static void gdb_cmd_memread(struct kgdb_state *ks) | 
|  | { | 
|  | char *ptr = &remcom_in_buffer[1]; | 
|  | unsigned long length; | 
|  | unsigned long addr; | 
|  | char *err; | 
|  |  | 
|  | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | 
|  | kgdb_hex2long(&ptr, &length) > 0) { | 
|  | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | 
|  | if (!err) | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | } else { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'M' memory write bytes */ | 
|  | static void gdb_cmd_memwrite(struct kgdb_state *ks) | 
|  | { | 
|  | int err = write_mem_msg(0); | 
|  |  | 
|  | if (err) | 
|  | error_packet(remcom_out_buffer, err); | 
|  | else | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | } | 
|  |  | 
|  | #if DBG_MAX_REG_NUM > 0 | 
|  | static char *gdb_hex_reg_helper(int regnum, char *out) | 
|  | { | 
|  | int i; | 
|  | int offset = 0; | 
|  |  | 
|  | for (i = 0; i < regnum; i++) | 
|  | offset += dbg_reg_def[i].size; | 
|  | return kgdb_mem2hex((char *)gdb_regs + offset, out, | 
|  | dbg_reg_def[i].size); | 
|  | } | 
|  |  | 
|  | /* Handle the 'p' individual regster get */ | 
|  | static void gdb_cmd_reg_get(struct kgdb_state *ks) | 
|  | { | 
|  | unsigned long regnum; | 
|  | char *ptr = &remcom_in_buffer[1]; | 
|  |  | 
|  | kgdb_hex2long(&ptr, ®num); | 
|  | if (regnum >= DBG_MAX_REG_NUM) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | return; | 
|  | } | 
|  | gdb_get_regs_helper(ks); | 
|  | gdb_hex_reg_helper(regnum, remcom_out_buffer); | 
|  | } | 
|  |  | 
|  | /* Handle the 'P' individual regster set */ | 
|  | static void gdb_cmd_reg_set(struct kgdb_state *ks) | 
|  | { | 
|  | unsigned long regnum; | 
|  | char *ptr = &remcom_in_buffer[1]; | 
|  | int i = 0; | 
|  |  | 
|  | kgdb_hex2long(&ptr, ®num); | 
|  | if (*ptr++ != '=' || | 
|  | !(!kgdb_usethread || kgdb_usethread == current) || | 
|  | !dbg_get_reg(regnum, gdb_regs, ks->linux_regs)) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | return; | 
|  | } | 
|  | memset(gdb_regs, 0, sizeof(gdb_regs)); | 
|  | while (i < sizeof(gdb_regs) * 2) | 
|  | if (hex_to_bin(ptr[i]) >= 0) | 
|  | i++; | 
|  | else | 
|  | break; | 
|  | i = i / 2; | 
|  | kgdb_hex2mem(ptr, (char *)gdb_regs, i); | 
|  | dbg_set_reg(regnum, gdb_regs, ks->linux_regs); | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | } | 
|  | #endif /* DBG_MAX_REG_NUM > 0 */ | 
|  |  | 
|  | /* Handle the 'X' memory binary write bytes */ | 
|  | static void gdb_cmd_binwrite(struct kgdb_state *ks) | 
|  | { | 
|  | int err = write_mem_msg(1); | 
|  |  | 
|  | if (err) | 
|  | error_packet(remcom_out_buffer, err); | 
|  | else | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | } | 
|  |  | 
|  | /* Handle the 'D' or 'k', detach or kill packets */ | 
|  | static void gdb_cmd_detachkill(struct kgdb_state *ks) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* The detach case */ | 
|  | if (remcom_in_buffer[0] == 'D') { | 
|  | error = dbg_remove_all_break(); | 
|  | if (error < 0) { | 
|  | error_packet(remcom_out_buffer, error); | 
|  | } else { | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | kgdb_connected = 0; | 
|  | } | 
|  | put_packet(remcom_out_buffer); | 
|  | } else { | 
|  | /* | 
|  | * Assume the kill case, with no exit code checking, | 
|  | * trying to force detach the debugger: | 
|  | */ | 
|  | dbg_remove_all_break(); | 
|  | kgdb_connected = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'R' reboot packets */ | 
|  | static int gdb_cmd_reboot(struct kgdb_state *ks) | 
|  | { | 
|  | /* For now, only honor R0 */ | 
|  | if (strcmp(remcom_in_buffer, "R0") == 0) { | 
|  | printk(KERN_CRIT "Executing emergency reboot\n"); | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | put_packet(remcom_out_buffer); | 
|  |  | 
|  | /* | 
|  | * Execution should not return from | 
|  | * machine_emergency_restart() | 
|  | */ | 
|  | machine_emergency_restart(); | 
|  | kgdb_connected = 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handle the 'q' query packets */ | 
|  | static void gdb_cmd_query(struct kgdb_state *ks) | 
|  | { | 
|  | struct task_struct *g; | 
|  | struct task_struct *p; | 
|  | unsigned char thref[BUF_THREAD_ID_SIZE]; | 
|  | char *ptr; | 
|  | int i; | 
|  | int cpu; | 
|  | int finished = 0; | 
|  |  | 
|  | switch (remcom_in_buffer[1]) { | 
|  | case 's': | 
|  | case 'f': | 
|  | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) | 
|  | break; | 
|  |  | 
|  | i = 0; | 
|  | remcom_out_buffer[0] = 'm'; | 
|  | ptr = remcom_out_buffer + 1; | 
|  | if (remcom_in_buffer[1] == 'f') { | 
|  | /* Each cpu is a shadow thread */ | 
|  | for_each_online_cpu(cpu) { | 
|  | ks->thr_query = 0; | 
|  | int_to_threadref(thref, -cpu - 2); | 
|  | ptr = pack_threadid(ptr, thref); | 
|  | *(ptr++) = ','; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | if (i >= ks->thr_query && !finished) { | 
|  | int_to_threadref(thref, p->pid); | 
|  | ptr = pack_threadid(ptr, thref); | 
|  | *(ptr++) = ','; | 
|  | ks->thr_query++; | 
|  | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) | 
|  | finished = 1; | 
|  | } | 
|  | i++; | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | *(--ptr) = '\0'; | 
|  | break; | 
|  |  | 
|  | case 'C': | 
|  | /* Current thread id */ | 
|  | strcpy(remcom_out_buffer, "QC"); | 
|  | ks->threadid = shadow_pid(current->pid); | 
|  | int_to_threadref(thref, ks->threadid); | 
|  | pack_threadid(remcom_out_buffer + 2, thref); | 
|  | break; | 
|  | case 'T': | 
|  | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) | 
|  | break; | 
|  |  | 
|  | ks->threadid = 0; | 
|  | ptr = remcom_in_buffer + 17; | 
|  | kgdb_hex2long(&ptr, &ks->threadid); | 
|  | if (!getthread(ks->linux_regs, ks->threadid)) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | break; | 
|  | } | 
|  | if ((int)ks->threadid > 0) { | 
|  | kgdb_mem2hex(getthread(ks->linux_regs, | 
|  | ks->threadid)->comm, | 
|  | remcom_out_buffer, 16); | 
|  | } else { | 
|  | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | 
|  |  | 
|  | sprintf(tmpstr, "shadowCPU%d", | 
|  | (int)(-ks->threadid - 2)); | 
|  | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | 
|  | } | 
|  | break; | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | case 'R': | 
|  | if (strncmp(remcom_in_buffer, "qRcmd,", 6) == 0) { | 
|  | int len = strlen(remcom_in_buffer + 6); | 
|  |  | 
|  | if ((len % 2) != 0) { | 
|  | strcpy(remcom_out_buffer, "E01"); | 
|  | break; | 
|  | } | 
|  | kgdb_hex2mem(remcom_in_buffer + 6, | 
|  | remcom_out_buffer, len); | 
|  | len = len / 2; | 
|  | remcom_out_buffer[len++] = 0; | 
|  |  | 
|  | kdb_parse(remcom_out_buffer); | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'H' task query packets */ | 
|  | static void gdb_cmd_task(struct kgdb_state *ks) | 
|  | { | 
|  | struct task_struct *thread; | 
|  | char *ptr; | 
|  |  | 
|  | switch (remcom_in_buffer[1]) { | 
|  | case 'g': | 
|  | ptr = &remcom_in_buffer[2]; | 
|  | kgdb_hex2long(&ptr, &ks->threadid); | 
|  | thread = getthread(ks->linux_regs, ks->threadid); | 
|  | if (!thread && ks->threadid > 0) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | break; | 
|  | } | 
|  | kgdb_usethread = thread; | 
|  | ks->kgdb_usethreadid = ks->threadid; | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | break; | 
|  | case 'c': | 
|  | ptr = &remcom_in_buffer[2]; | 
|  | kgdb_hex2long(&ptr, &ks->threadid); | 
|  | if (!ks->threadid) { | 
|  | kgdb_contthread = NULL; | 
|  | } else { | 
|  | thread = getthread(ks->linux_regs, ks->threadid); | 
|  | if (!thread && ks->threadid > 0) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | break; | 
|  | } | 
|  | kgdb_contthread = thread; | 
|  | } | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle the 'T' thread query packets */ | 
|  | static void gdb_cmd_thread(struct kgdb_state *ks) | 
|  | { | 
|  | char *ptr = &remcom_in_buffer[1]; | 
|  | struct task_struct *thread; | 
|  |  | 
|  | kgdb_hex2long(&ptr, &ks->threadid); | 
|  | thread = getthread(ks->linux_regs, ks->threadid); | 
|  | if (thread) | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | else | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | } | 
|  |  | 
|  | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | 
|  | static void gdb_cmd_break(struct kgdb_state *ks) | 
|  | { | 
|  | /* | 
|  | * Since GDB-5.3, it's been drafted that '0' is a software | 
|  | * breakpoint, '1' is a hardware breakpoint, so let's do that. | 
|  | */ | 
|  | char *bpt_type = &remcom_in_buffer[1]; | 
|  | char *ptr = &remcom_in_buffer[2]; | 
|  | unsigned long addr; | 
|  | unsigned long length; | 
|  | int error = 0; | 
|  |  | 
|  | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | 
|  | /* Unsupported */ | 
|  | if (*bpt_type > '4') | 
|  | return; | 
|  | } else { | 
|  | if (*bpt_type != '0' && *bpt_type != '1') | 
|  | /* Unsupported. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if this is a hardware breakpoint, and | 
|  | * if we support it: | 
|  | */ | 
|  | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | 
|  | /* Unsupported. */ | 
|  | return; | 
|  |  | 
|  | if (*(ptr++) != ',') { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | return; | 
|  | } | 
|  | if (!kgdb_hex2long(&ptr, &addr)) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | return; | 
|  | } | 
|  | if (*(ptr++) != ',' || | 
|  | !kgdb_hex2long(&ptr, &length)) { | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | 
|  | error = dbg_set_sw_break(addr); | 
|  | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | 
|  | error = dbg_remove_sw_break(addr); | 
|  | else if (remcom_in_buffer[0] == 'Z') | 
|  | error = arch_kgdb_ops.set_hw_breakpoint(addr, | 
|  | (int)length, *bpt_type - '0'); | 
|  | else if (remcom_in_buffer[0] == 'z') | 
|  | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | 
|  | (int) length, *bpt_type - '0'); | 
|  |  | 
|  | if (error == 0) | 
|  | strcpy(remcom_out_buffer, "OK"); | 
|  | else | 
|  | error_packet(remcom_out_buffer, error); | 
|  | } | 
|  |  | 
|  | /* Handle the 'C' signal / exception passing packets */ | 
|  | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | 
|  | { | 
|  | /* C09 == pass exception | 
|  | * C15 == detach kgdb, pass exception | 
|  | */ | 
|  | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | 
|  |  | 
|  | ks->pass_exception = 1; | 
|  | remcom_in_buffer[0] = 'c'; | 
|  |  | 
|  | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | 
|  |  | 
|  | ks->pass_exception = 1; | 
|  | remcom_in_buffer[0] = 'D'; | 
|  | dbg_remove_all_break(); | 
|  | kgdb_connected = 0; | 
|  | return 1; | 
|  |  | 
|  | } else { | 
|  | gdbstub_msg_write("KGDB only knows signal 9 (pass)" | 
|  | " and 15 (pass and disconnect)\n" | 
|  | "Executing a continue without signal passing\n", 0); | 
|  | remcom_in_buffer[0] = 'c'; | 
|  | } | 
|  |  | 
|  | /* Indicate fall through */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function performs all gdbserial command procesing | 
|  | */ | 
|  | int gdb_serial_stub(struct kgdb_state *ks) | 
|  | { | 
|  | int error = 0; | 
|  | int tmp; | 
|  |  | 
|  | /* Initialize comm buffer and globals. */ | 
|  | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | 
|  | kgdb_usethread = kgdb_info[ks->cpu].task; | 
|  | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | 
|  | ks->pass_exception = 0; | 
|  |  | 
|  | if (kgdb_connected) { | 
|  | unsigned char thref[BUF_THREAD_ID_SIZE]; | 
|  | char *ptr; | 
|  |  | 
|  | /* Reply to host that an exception has occurred */ | 
|  | ptr = remcom_out_buffer; | 
|  | *ptr++ = 'T'; | 
|  | ptr = pack_hex_byte(ptr, ks->signo); | 
|  | ptr += strlen(strcpy(ptr, "thread:")); | 
|  | int_to_threadref(thref, shadow_pid(current->pid)); | 
|  | ptr = pack_threadid(ptr, thref); | 
|  | *ptr++ = ';'; | 
|  | put_packet(remcom_out_buffer); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | error = 0; | 
|  |  | 
|  | /* Clear the out buffer. */ | 
|  | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | 
|  |  | 
|  | get_packet(remcom_in_buffer); | 
|  |  | 
|  | switch (remcom_in_buffer[0]) { | 
|  | case '?': /* gdbserial status */ | 
|  | gdb_cmd_status(ks); | 
|  | break; | 
|  | case 'g': /* return the value of the CPU registers */ | 
|  | gdb_cmd_getregs(ks); | 
|  | break; | 
|  | case 'G': /* set the value of the CPU registers - return OK */ | 
|  | gdb_cmd_setregs(ks); | 
|  | break; | 
|  | case 'm': /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */ | 
|  | gdb_cmd_memread(ks); | 
|  | break; | 
|  | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | 
|  | gdb_cmd_memwrite(ks); | 
|  | break; | 
|  | #if DBG_MAX_REG_NUM > 0 | 
|  | case 'p': /* pXX Return gdb register XX (in hex) */ | 
|  | gdb_cmd_reg_get(ks); | 
|  | break; | 
|  | case 'P': /* PXX=aaaa Set gdb register XX to aaaa (in hex) */ | 
|  | gdb_cmd_reg_set(ks); | 
|  | break; | 
|  | #endif /* DBG_MAX_REG_NUM > 0 */ | 
|  | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | 
|  | gdb_cmd_binwrite(ks); | 
|  | break; | 
|  | /* kill or detach. KGDB should treat this like a | 
|  | * continue. | 
|  | */ | 
|  | case 'D': /* Debugger detach */ | 
|  | case 'k': /* Debugger detach via kill */ | 
|  | gdb_cmd_detachkill(ks); | 
|  | goto default_handle; | 
|  | case 'R': /* Reboot */ | 
|  | if (gdb_cmd_reboot(ks)) | 
|  | goto default_handle; | 
|  | break; | 
|  | case 'q': /* query command */ | 
|  | gdb_cmd_query(ks); | 
|  | break; | 
|  | case 'H': /* task related */ | 
|  | gdb_cmd_task(ks); | 
|  | break; | 
|  | case 'T': /* Query thread status */ | 
|  | gdb_cmd_thread(ks); | 
|  | break; | 
|  | case 'z': /* Break point remove */ | 
|  | case 'Z': /* Break point set */ | 
|  | gdb_cmd_break(ks); | 
|  | break; | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | case '3': /* Escape into back into kdb */ | 
|  | if (remcom_in_buffer[1] == '\0') { | 
|  | gdb_cmd_detachkill(ks); | 
|  | return DBG_PASS_EVENT; | 
|  | } | 
|  | #endif | 
|  | case 'C': /* Exception passing */ | 
|  | tmp = gdb_cmd_exception_pass(ks); | 
|  | if (tmp > 0) | 
|  | goto default_handle; | 
|  | if (tmp == 0) | 
|  | break; | 
|  | /* Fall through on tmp < 0 */ | 
|  | case 'c': /* Continue packet */ | 
|  | case 's': /* Single step packet */ | 
|  | if (kgdb_contthread && kgdb_contthread != current) { | 
|  | /* Can't switch threads in kgdb */ | 
|  | error_packet(remcom_out_buffer, -EINVAL); | 
|  | break; | 
|  | } | 
|  | dbg_activate_sw_breakpoints(); | 
|  | /* Fall through to default processing */ | 
|  | default: | 
|  | default_handle: | 
|  | error = kgdb_arch_handle_exception(ks->ex_vector, | 
|  | ks->signo, | 
|  | ks->err_code, | 
|  | remcom_in_buffer, | 
|  | remcom_out_buffer, | 
|  | ks->linux_regs); | 
|  | /* | 
|  | * Leave cmd processing on error, detach, | 
|  | * kill, continue, or single step. | 
|  | */ | 
|  | if (error >= 0 || remcom_in_buffer[0] == 'D' || | 
|  | remcom_in_buffer[0] == 'k') { | 
|  | error = 0; | 
|  | goto kgdb_exit; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* reply to the request */ | 
|  | put_packet(remcom_out_buffer); | 
|  | } | 
|  |  | 
|  | kgdb_exit: | 
|  | if (ks->pass_exception) | 
|  | error = 1; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int gdbstub_state(struct kgdb_state *ks, char *cmd) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | switch (cmd[0]) { | 
|  | case 'e': | 
|  | error = kgdb_arch_handle_exception(ks->ex_vector, | 
|  | ks->signo, | 
|  | ks->err_code, | 
|  | remcom_in_buffer, | 
|  | remcom_out_buffer, | 
|  | ks->linux_regs); | 
|  | return error; | 
|  | case 's': | 
|  | case 'c': | 
|  | strcpy(remcom_in_buffer, cmd); | 
|  | return 0; | 
|  | case '?': | 
|  | gdb_cmd_status(ks); | 
|  | break; | 
|  | case '\0': | 
|  | strcpy(remcom_out_buffer, ""); | 
|  | break; | 
|  | } | 
|  | dbg_io_ops->write_char('+'); | 
|  | put_packet(remcom_out_buffer); | 
|  | return 0; | 
|  | } |