| /* | 
 |  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 | 
 |  * | 
 |  * Copyright © 2006 Red Hat, Inc. | 
 |  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org> | 
 |  */ | 
 |  | 
 | #define DEBUG | 
 |  | 
 | #include <linux/device.h> | 
 | #undef DEBUG | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/rslib.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #define CAFE_NAND_CTRL1		0x00 | 
 | #define CAFE_NAND_CTRL2		0x04 | 
 | #define CAFE_NAND_CTRL3		0x08 | 
 | #define CAFE_NAND_STATUS	0x0c | 
 | #define CAFE_NAND_IRQ		0x10 | 
 | #define CAFE_NAND_IRQ_MASK	0x14 | 
 | #define CAFE_NAND_DATA_LEN	0x18 | 
 | #define CAFE_NAND_ADDR1		0x1c | 
 | #define CAFE_NAND_ADDR2		0x20 | 
 | #define CAFE_NAND_TIMING1	0x24 | 
 | #define CAFE_NAND_TIMING2	0x28 | 
 | #define CAFE_NAND_TIMING3	0x2c | 
 | #define CAFE_NAND_NONMEM	0x30 | 
 | #define CAFE_NAND_ECC_RESULT	0x3C | 
 | #define CAFE_NAND_DMA_CTRL	0x40 | 
 | #define CAFE_NAND_DMA_ADDR0	0x44 | 
 | #define CAFE_NAND_DMA_ADDR1	0x48 | 
 | #define CAFE_NAND_ECC_SYN01	0x50 | 
 | #define CAFE_NAND_ECC_SYN23	0x54 | 
 | #define CAFE_NAND_ECC_SYN45	0x58 | 
 | #define CAFE_NAND_ECC_SYN67	0x5c | 
 | #define CAFE_NAND_READ_DATA	0x1000 | 
 | #define CAFE_NAND_WRITE_DATA	0x2000 | 
 |  | 
 | #define CAFE_GLOBAL_CTRL	0x3004 | 
 | #define CAFE_GLOBAL_IRQ		0x3008 | 
 | #define CAFE_GLOBAL_IRQ_MASK	0x300c | 
 | #define CAFE_NAND_RESET		0x3034 | 
 |  | 
 | /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ | 
 | #define CTRL1_CHIPSELECT	(1<<19) | 
 |  | 
 | struct cafe_priv { | 
 | 	struct nand_chip nand; | 
 | 	struct pci_dev *pdev; | 
 | 	void __iomem *mmio; | 
 | 	struct rs_control *rs; | 
 | 	uint32_t ctl1; | 
 | 	uint32_t ctl2; | 
 | 	int datalen; | 
 | 	int nr_data; | 
 | 	int data_pos; | 
 | 	int page_addr; | 
 | 	dma_addr_t dmaaddr; | 
 | 	unsigned char *dmabuf; | 
 | }; | 
 |  | 
 | static int usedma = 1; | 
 | module_param(usedma, int, 0644); | 
 |  | 
 | static int skipbbt = 0; | 
 | module_param(skipbbt, int, 0644); | 
 |  | 
 | static int debug = 0; | 
 | module_param(debug, int, 0644); | 
 |  | 
 | static int regdebug = 0; | 
 | module_param(regdebug, int, 0644); | 
 |  | 
 | static int checkecc = 1; | 
 | module_param(checkecc, int, 0644); | 
 |  | 
 | static int numtimings; | 
 | static int timing[3]; | 
 | module_param_array(timing, int, &numtimings, 0644); | 
 |  | 
 | /* Hrm. Why isn't this already conditional on something in the struct device? */ | 
 | #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) | 
 |  | 
 | /* Make it easier to switch to PIO if we need to */ | 
 | #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr) | 
 | #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr) | 
 |  | 
 | static int cafe_device_ready(struct mtd_info *mtd) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 | 	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000); | 
 | 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ); | 
 |  | 
 | 	cafe_writel(cafe, irqs, NAND_IRQ); | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", | 
 | 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), | 
 | 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 |  | 
 | static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	if (usedma) | 
 | 		memcpy(cafe->dmabuf + cafe->datalen, buf, len); | 
 | 	else | 
 | 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); | 
 |  | 
 | 	cafe->datalen += len; | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", | 
 | 		len, cafe->datalen); | 
 | } | 
 |  | 
 | static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	if (usedma) | 
 | 		memcpy(buf, cafe->dmabuf + cafe->datalen, len); | 
 | 	else | 
 | 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", | 
 | 		  len, cafe->datalen); | 
 | 	cafe->datalen += len; | 
 | } | 
 |  | 
 | static uint8_t cafe_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 | 	uint8_t d; | 
 |  | 
 | 	cafe_read_buf(mtd, &d, 1); | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); | 
 |  | 
 | 	return d; | 
 | } | 
 |  | 
 | static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, | 
 | 			      int column, int page_addr) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 | 	int adrbytes = 0; | 
 | 	uint32_t ctl1; | 
 | 	uint32_t doneint = 0x80000000; | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", | 
 | 		command, column, page_addr); | 
 |  | 
 | 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { | 
 | 		/* Second half of a command we already calculated */ | 
 | 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); | 
 | 		ctl1 = cafe->ctl1; | 
 | 		cafe->ctl2 &= ~(1<<30); | 
 | 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", | 
 | 			  cafe->ctl1, cafe->nr_data); | 
 | 		goto do_command; | 
 | 	} | 
 | 	/* Reset ECC engine */ | 
 | 	cafe_writel(cafe, 0, NAND_CTRL2); | 
 |  | 
 | 	/* Emulate NAND_CMD_READOOB on large-page chips */ | 
 | 	if (mtd->writesize > 512 && | 
 | 	    command == NAND_CMD_READOOB) { | 
 | 		column += mtd->writesize; | 
 | 		command = NAND_CMD_READ0; | 
 | 	} | 
 |  | 
 | 	/* FIXME: Do we need to send read command before sending data | 
 | 	   for small-page chips, to position the buffer correctly? */ | 
 |  | 
 | 	if (column != -1) { | 
 | 		cafe_writel(cafe, column, NAND_ADDR1); | 
 | 		adrbytes = 2; | 
 | 		if (page_addr != -1) | 
 | 			goto write_adr2; | 
 | 	} else if (page_addr != -1) { | 
 | 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); | 
 | 		page_addr >>= 16; | 
 | 	write_adr2: | 
 | 		cafe_writel(cafe, page_addr, NAND_ADDR2); | 
 | 		adrbytes += 2; | 
 | 		if (mtd->size > mtd->writesize << 16) | 
 | 			adrbytes++; | 
 | 	} | 
 |  | 
 | 	cafe->data_pos = cafe->datalen = 0; | 
 |  | 
 | 	/* Set command valid bit, mask in the chip select bit  */ | 
 | 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); | 
 |  | 
 | 	/* Set RD or WR bits as appropriate */ | 
 | 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { | 
 | 		ctl1 |= (1<<26); /* rd */ | 
 | 		/* Always 5 bytes, for now */ | 
 | 		cafe->datalen = 4; | 
 | 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */ | 
 | 		adrbytes = 1; | 
 | 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || | 
 | 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { | 
 | 		ctl1 |= 1<<26; /* rd */ | 
 | 		/* For now, assume just read to end of page */ | 
 | 		cafe->datalen = mtd->writesize + mtd->oobsize - column; | 
 | 	} else if (command == NAND_CMD_SEQIN) | 
 | 		ctl1 |= 1<<25; /* wr */ | 
 |  | 
 | 	/* Set number of address bytes */ | 
 | 	if (adrbytes) | 
 | 		ctl1 |= ((adrbytes-1)|8) << 27; | 
 |  | 
 | 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { | 
 | 		/* Ignore the first command of a pair; the hardware | 
 | 		   deals with them both at once, later */ | 
 | 		cafe->ctl1 = ctl1; | 
 | 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", | 
 | 			  cafe->ctl1, cafe->datalen); | 
 | 		return; | 
 | 	} | 
 | 	/* RNDOUT and READ0 commands need a following byte */ | 
 | 	if (command == NAND_CMD_RNDOUT) | 
 | 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); | 
 | 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512) | 
 | 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); | 
 |  | 
 |  do_command: | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", | 
 | 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); | 
 |  | 
 | 	/* NB: The datasheet lies -- we really should be subtracting 1 here */ | 
 | 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); | 
 | 	cafe_writel(cafe, 0x90000000, NAND_IRQ); | 
 | 	if (usedma && (ctl1 & (3<<25))) { | 
 | 		uint32_t dmactl = 0xc0000000 + cafe->datalen; | 
 | 		/* If WR or RD bits set, set up DMA */ | 
 | 		if (ctl1 & (1<<26)) { | 
 | 			/* It's a read */ | 
 | 			dmactl |= (1<<29); | 
 | 			/* ... so it's done when the DMA is done, not just | 
 | 			   the command. */ | 
 | 			doneint = 0x10000000; | 
 | 		} | 
 | 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL); | 
 | 	} | 
 | 	cafe->datalen = 0; | 
 |  | 
 | 	if (unlikely(regdebug)) { | 
 | 		int i; | 
 | 		printk("About to write command %08x to register 0\n", ctl1); | 
 | 		for (i=4; i< 0x5c; i+=4) | 
 | 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); | 
 | 	} | 
 |  | 
 | 	cafe_writel(cafe, ctl1, NAND_CTRL1); | 
 | 	/* Apply this short delay always to ensure that we do wait tWB in | 
 | 	 * any case on any machine. */ | 
 | 	ndelay(100); | 
 |  | 
 | 	if (1) { | 
 | 		int c; | 
 | 		uint32_t irqs; | 
 |  | 
 | 		for (c = 500000; c != 0; c--) { | 
 | 			irqs = cafe_readl(cafe, NAND_IRQ); | 
 | 			if (irqs & doneint) | 
 | 				break; | 
 | 			udelay(1); | 
 | 			if (!(c % 100000)) | 
 | 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); | 
 | 			cpu_relax(); | 
 | 		} | 
 | 		cafe_writel(cafe, doneint, NAND_IRQ); | 
 | 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", | 
 | 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); | 
 | 	} | 
 |  | 
 | 	WARN_ON(cafe->ctl2 & (1<<30)); | 
 |  | 
 | 	switch (command) { | 
 |  | 
 | 	case NAND_CMD_CACHEDPROG: | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 	case NAND_CMD_ERASE1: | 
 | 	case NAND_CMD_ERASE2: | 
 | 	case NAND_CMD_SEQIN: | 
 | 	case NAND_CMD_RNDIN: | 
 | 	case NAND_CMD_STATUS: | 
 | 	case NAND_CMD_DEPLETE1: | 
 | 	case NAND_CMD_RNDOUT: | 
 | 	case NAND_CMD_STATUS_ERROR: | 
 | 	case NAND_CMD_STATUS_ERROR0: | 
 | 	case NAND_CMD_STATUS_ERROR1: | 
 | 	case NAND_CMD_STATUS_ERROR2: | 
 | 	case NAND_CMD_STATUS_ERROR3: | 
 | 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); | 
 | 		return; | 
 | 	} | 
 | 	nand_wait_ready(mtd); | 
 | 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); | 
 | } | 
 |  | 
 | static void cafe_select_chip(struct mtd_info *mtd, int chipnr) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); | 
 |  | 
 | 	/* Mask the appropriate bit into the stored value of ctl1 | 
 | 	   which will be used by cafe_nand_cmdfunc() */ | 
 | 	if (chipnr) | 
 | 		cafe->ctl1 |= CTRL1_CHIPSELECT; | 
 | 	else | 
 | 		cafe->ctl1 &= ~CTRL1_CHIPSELECT; | 
 | } | 
 |  | 
 | static int cafe_nand_interrupt(int irq, void *id) | 
 | { | 
 | 	struct mtd_info *mtd = id; | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 | 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ); | 
 | 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); | 
 | 	if (!irqs) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void cafe_nand_bug(struct mtd_info *mtd) | 
 | { | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static int cafe_nand_write_oob(struct mtd_info *mtd, | 
 | 			       struct nand_chip *chip, int page) | 
 | { | 
 | 	int status = 0; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | 
 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 | 	status = chip->waitfunc(mtd, chip); | 
 |  | 
 | 	return status & NAND_STATUS_FAIL ? -EIO : 0; | 
 | } | 
 |  | 
 | /* Don't use -- use nand_read_oob_std for now */ | 
 | static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			      int page, int sndcmd) | 
 | { | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	return 1; | 
 | } | 
 | /** | 
 |  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read | 
 |  * @mtd:	mtd info structure | 
 |  * @chip:	nand chip info structure | 
 |  * @buf:	buffer to store read data | 
 |  * | 
 |  * The hw generator calculates the error syndrome automatically. Therefor | 
 |  * we need a special oob layout and handling. | 
 |  */ | 
 | static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			       uint8_t *buf) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", | 
 | 		     cafe_readl(cafe, NAND_ECC_RESULT), | 
 | 		     cafe_readl(cafe, NAND_ECC_SYN01)); | 
 |  | 
 | 	chip->read_buf(mtd, buf, mtd->writesize); | 
 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { | 
 | 		unsigned short syn[8], pat[4]; | 
 | 		int pos[4]; | 
 | 		u8 *oob = chip->oob_poi; | 
 | 		int i, n; | 
 |  | 
 | 		for (i=0; i<8; i+=2) { | 
 | 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); | 
 | 			syn[i] = cafe->rs->index_of[tmp & 0xfff]; | 
 | 			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff]; | 
 | 		} | 
 |  | 
 | 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, | 
 | 		                pat); | 
 |  | 
 | 		for (i = 0; i < n; i++) { | 
 | 			int p = pos[i]; | 
 |  | 
 | 			/* The 12-bit symbols are mapped to bytes here */ | 
 |  | 
 | 			if (p > 1374) { | 
 | 				/* out of range */ | 
 | 				n = -1374; | 
 | 			} else if (p == 0) { | 
 | 				/* high four bits do not correspond to data */ | 
 | 				if (pat[i] > 0xff) | 
 | 					n = -2048; | 
 | 				else | 
 | 					buf[0] ^= pat[i]; | 
 | 			} else if (p == 1365) { | 
 | 				buf[2047] ^= pat[i] >> 4; | 
 | 				oob[0] ^= pat[i] << 4; | 
 | 			} else if (p > 1365) { | 
 | 				if ((p & 1) == 1) { | 
 | 					oob[3*p/2 - 2048] ^= pat[i] >> 4; | 
 | 					oob[3*p/2 - 2047] ^= pat[i] << 4; | 
 | 				} else { | 
 | 					oob[3*p/2 - 2049] ^= pat[i] >> 8; | 
 | 					oob[3*p/2 - 2048] ^= pat[i]; | 
 | 				} | 
 | 			} else if ((p & 1) == 1) { | 
 | 				buf[3*p/2] ^= pat[i] >> 4; | 
 | 				buf[3*p/2 + 1] ^= pat[i] << 4; | 
 | 			} else { | 
 | 				buf[3*p/2 - 1] ^= pat[i] >> 8; | 
 | 				buf[3*p/2] ^= pat[i]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (n < 0) { | 
 | 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", | 
 | 				cafe_readl(cafe, NAND_ADDR2) * 2048); | 
 | 			for (i = 0; i < 0x5c; i += 4) | 
 | 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); | 
 | 			mtd->ecc_stats.corrected += n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct nand_ecclayout cafe_oobinfo_2048 = { | 
 | 	.eccbytes = 14, | 
 | 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, | 
 | 	.oobfree = {{14, 50}} | 
 | }; | 
 |  | 
 | /* Ick. The BBT code really ought to be able to work this bit out | 
 |    for itself from the above, at least for the 2KiB case */ | 
 | static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; | 
 | static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; | 
 |  | 
 | static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; | 
 | static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; | 
 |  | 
 |  | 
 | static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION, | 
 | 	.offs =	14, | 
 | 	.len = 4, | 
 | 	.veroffs = 18, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = cafe_bbt_pattern_2048 | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION, | 
 | 	.offs =	14, | 
 | 	.len = 4, | 
 | 	.veroffs = 18, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = cafe_mirror_pattern_2048 | 
 | }; | 
 |  | 
 | static struct nand_ecclayout cafe_oobinfo_512 = { | 
 | 	.eccbytes = 14, | 
 | 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, | 
 | 	.oobfree = {{14, 2}} | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr cafe_bbt_main_descr_512 = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION, | 
 | 	.offs =	14, | 
 | 	.len = 1, | 
 | 	.veroffs = 15, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = cafe_bbt_pattern_512 | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION, | 
 | 	.offs =	14, | 
 | 	.len = 1, | 
 | 	.veroffs = 15, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = cafe_mirror_pattern_512 | 
 | }; | 
 |  | 
 |  | 
 | static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, | 
 | 					  struct nand_chip *chip, const uint8_t *buf) | 
 | { | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	chip->write_buf(mtd, buf, mtd->writesize); | 
 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	/* Set up ECC autogeneration */ | 
 | 	cafe->ctl2 |= (1<<30); | 
 | } | 
 |  | 
 | static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				const uint8_t *buf, int page, int cached, int raw) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 
 |  | 
 | 	if (unlikely(raw)) | 
 | 		chip->ecc.write_page_raw(mtd, chip, buf); | 
 | 	else | 
 | 		chip->ecc.write_page(mtd, chip, buf); | 
 |  | 
 | 	/* | 
 | 	 * Cached progamming disabled for now, Not sure if its worth the | 
 | 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) | 
 | 	 */ | 
 | 	cached = 0; | 
 |  | 
 | 	if (!cached || !(chip->options & NAND_CACHEPRG)) { | 
 |  | 
 | 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 | 		status = chip->waitfunc(mtd, chip); | 
 | 		/* | 
 | 		 * See if operation failed and additional status checks are | 
 | 		 * available | 
 | 		 */ | 
 | 		if ((status & NAND_STATUS_FAIL) && (chip->errstat)) | 
 | 			status = chip->errstat(mtd, chip, FL_WRITING, status, | 
 | 					       page); | 
 |  | 
 | 		if (status & NAND_STATUS_FAIL) | 
 | 			return -EIO; | 
 | 	} else { | 
 | 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); | 
 | 		status = chip->waitfunc(mtd, chip); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
 | 	/* Send command to read back the data */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
 |  | 
 | 	if (chip->verify_buf(mtd, buf, mtd->writesize)) | 
 | 		return -EIO; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* F_2[X]/(X**6+X+1)  */ | 
 | static unsigned short __devinit gf64_mul(u8 a, u8 b) | 
 | { | 
 | 	u8 c; | 
 | 	unsigned int i; | 
 |  | 
 | 	c = 0; | 
 | 	for (i = 0; i < 6; i++) { | 
 | 		if (a & 1) | 
 | 			c ^= b; | 
 | 		a >>= 1; | 
 | 		b <<= 1; | 
 | 		if ((b & 0x40) != 0) | 
 | 			b ^= 0x43; | 
 | 	} | 
 |  | 
 | 	return c; | 
 | } | 
 |  | 
 | /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */ | 
 | static u16 __devinit gf4096_mul(u16 a, u16 b) | 
 | { | 
 | 	u8 ah, al, bh, bl, ch, cl; | 
 |  | 
 | 	ah = a >> 6; | 
 | 	al = a & 0x3f; | 
 | 	bh = b >> 6; | 
 | 	bl = b & 0x3f; | 
 |  | 
 | 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); | 
 | 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); | 
 |  | 
 | 	return (ch << 6) ^ cl; | 
 | } | 
 |  | 
 | static int __devinit cafe_mul(int x) | 
 | { | 
 | 	if (x == 0) | 
 | 		return 1; | 
 | 	return gf4096_mul(x, 0xe01); | 
 | } | 
 |  | 
 | static int __devinit cafe_nand_probe(struct pci_dev *pdev, | 
 | 				     const struct pci_device_id *ent) | 
 | { | 
 | 	struct mtd_info *mtd; | 
 | 	struct cafe_priv *cafe; | 
 | 	uint32_t ctrl; | 
 | 	int err = 0; | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL); | 
 | 	if (!mtd) { | 
 | 		dev_warn(&pdev->dev, "failed to alloc mtd_info\n"); | 
 | 		return  -ENOMEM; | 
 | 	} | 
 | 	cafe = (void *)(&mtd[1]); | 
 |  | 
 | 	mtd->priv = cafe; | 
 | 	mtd->owner = THIS_MODULE; | 
 |  | 
 | 	cafe->pdev = pdev; | 
 | 	cafe->mmio = pci_iomap(pdev, 0, 0); | 
 | 	if (!cafe->mmio) { | 
 | 		dev_warn(&pdev->dev, "failed to iomap\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto out_free_mtd; | 
 | 	} | 
 | 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers), | 
 | 					  &cafe->dmaaddr, GFP_KERNEL); | 
 | 	if (!cafe->dmabuf) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_ior; | 
 | 	} | 
 | 	cafe->nand.buffers = (void *)cafe->dmabuf + 2112; | 
 |  | 
 | 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); | 
 | 	if (!cafe->rs) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_ior; | 
 | 	} | 
 |  | 
 | 	cafe->nand.cmdfunc = cafe_nand_cmdfunc; | 
 | 	cafe->nand.dev_ready = cafe_device_ready; | 
 | 	cafe->nand.read_byte = cafe_read_byte; | 
 | 	cafe->nand.read_buf = cafe_read_buf; | 
 | 	cafe->nand.write_buf = cafe_write_buf; | 
 | 	cafe->nand.select_chip = cafe_select_chip; | 
 |  | 
 | 	cafe->nand.chip_delay = 0; | 
 |  | 
 | 	/* Enable the following for a flash based bad block table */ | 
 | 	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; | 
 |  | 
 | 	if (skipbbt) { | 
 | 		cafe->nand.options |= NAND_SKIP_BBTSCAN; | 
 | 		cafe->nand.block_bad = cafe_nand_block_bad; | 
 | 	} | 
 |  | 
 | 	if (numtimings && numtimings != 3) { | 
 | 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); | 
 | 	} | 
 |  | 
 | 	if (numtimings == 3) { | 
 | 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", | 
 | 			     timing[0], timing[1], timing[2]); | 
 | 	} else { | 
 | 		timing[0] = cafe_readl(cafe, NAND_TIMING1); | 
 | 		timing[1] = cafe_readl(cafe, NAND_TIMING2); | 
 | 		timing[2] = cafe_readl(cafe, NAND_TIMING3); | 
 |  | 
 | 		if (timing[0] | timing[1] | timing[2]) { | 
 | 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", | 
 | 				     timing[0], timing[1], timing[2]); | 
 | 		} else { | 
 | 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); | 
 | 			timing[0] = timing[1] = timing[2] = 0xffffffff; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Start off by resetting the NAND controller completely */ | 
 | 	cafe_writel(cafe, 1, NAND_RESET); | 
 | 	cafe_writel(cafe, 0, NAND_RESET); | 
 |  | 
 | 	cafe_writel(cafe, timing[0], NAND_TIMING1); | 
 | 	cafe_writel(cafe, timing[1], NAND_TIMING2); | 
 | 	cafe_writel(cafe, timing[2], NAND_TIMING3); | 
 |  | 
 | 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); | 
 | 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, | 
 | 			  "CAFE NAND", mtd); | 
 | 	if (err) { | 
 | 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); | 
 | 		goto out_free_dma; | 
 | 	} | 
 |  | 
 | 	/* Disable master reset, enable NAND clock */ | 
 | 	ctrl = cafe_readl(cafe, GLOBAL_CTRL); | 
 | 	ctrl &= 0xffffeff0; | 
 | 	ctrl |= 0x00007000; | 
 | 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); | 
 | 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); | 
 | 	cafe_writel(cafe, 0, NAND_DMA_CTRL); | 
 |  | 
 | 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL); | 
 | 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL); | 
 |  | 
 | 	/* Set up DMA address */ | 
 | 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); | 
 | 	if (sizeof(cafe->dmaaddr) > 4) | 
 | 		/* Shift in two parts to shut the compiler up */ | 
 | 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); | 
 | 	else | 
 | 		cafe_writel(cafe, 0, NAND_DMA_ADDR1); | 
 |  | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", | 
 | 		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); | 
 |  | 
 | 	/* Enable NAND IRQ in global IRQ mask register */ | 
 | 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); | 
 | 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", | 
 | 		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK)); | 
 |  | 
 | 	/* Scan to find existence of the device */ | 
 | 	if (nand_scan_ident(mtd, 2)) { | 
 | 		err = -ENXIO; | 
 | 		goto out_irq; | 
 | 	} | 
 |  | 
 | 	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ | 
 | 	if (mtd->writesize == 2048) | 
 | 		cafe->ctl2 |= 1<<29; /* 2KiB page size */ | 
 |  | 
 | 	/* Set up ECC according to the type of chip we found */ | 
 | 	if (mtd->writesize == 2048) { | 
 | 		cafe->nand.ecc.layout = &cafe_oobinfo_2048; | 
 | 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; | 
 | 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; | 
 | 	} else if (mtd->writesize == 512) { | 
 | 		cafe->nand.ecc.layout = &cafe_oobinfo_512; | 
 | 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512; | 
 | 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; | 
 | 	} else { | 
 | 		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", | 
 | 		       mtd->writesize); | 
 | 		goto out_irq; | 
 | 	} | 
 | 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; | 
 | 	cafe->nand.ecc.size = mtd->writesize; | 
 | 	cafe->nand.ecc.bytes = 14; | 
 | 	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug; | 
 | 	cafe->nand.ecc.calculate = (void *)cafe_nand_bug; | 
 | 	cafe->nand.ecc.correct  = (void *)cafe_nand_bug; | 
 | 	cafe->nand.write_page = cafe_nand_write_page; | 
 | 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; | 
 | 	cafe->nand.ecc.write_oob = cafe_nand_write_oob; | 
 | 	cafe->nand.ecc.read_page = cafe_nand_read_page; | 
 | 	cafe->nand.ecc.read_oob = cafe_nand_read_oob; | 
 |  | 
 | 	err = nand_scan_tail(mtd); | 
 | 	if (err) | 
 | 		goto out_irq; | 
 |  | 
 | 	pci_set_drvdata(pdev, mtd); | 
 | 	add_mtd_device(mtd); | 
 | 	goto out; | 
 |  | 
 |  out_irq: | 
 | 	/* Disable NAND IRQ in global IRQ mask register */ | 
 | 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); | 
 | 	free_irq(pdev->irq, mtd); | 
 |  out_free_dma: | 
 | 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); | 
 |  out_ior: | 
 | 	pci_iounmap(pdev, cafe->mmio); | 
 |  out_free_mtd: | 
 | 	kfree(mtd); | 
 |  out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __devexit cafe_nand_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct mtd_info *mtd = pci_get_drvdata(pdev); | 
 | 	struct cafe_priv *cafe = mtd->priv; | 
 |  | 
 | 	del_mtd_device(mtd); | 
 | 	/* Disable NAND IRQ in global IRQ mask register */ | 
 | 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); | 
 | 	free_irq(pdev->irq, mtd); | 
 | 	nand_release(mtd); | 
 | 	free_rs(cafe->rs); | 
 | 	pci_iounmap(pdev, cafe->mmio); | 
 | 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); | 
 | 	kfree(mtd); | 
 | } | 
 |  | 
 | static struct pci_device_id cafe_nand_tbl[] = { | 
 | 	{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); | 
 |  | 
 | static struct pci_driver cafe_nand_pci_driver = { | 
 | 	.name = "CAFÉ NAND", | 
 | 	.id_table = cafe_nand_tbl, | 
 | 	.probe = cafe_nand_probe, | 
 | 	.remove = __devexit_p(cafe_nand_remove), | 
 | #ifdef CONFIG_PMx | 
 | 	.suspend = cafe_nand_suspend, | 
 | 	.resume = cafe_nand_resume, | 
 | #endif | 
 | }; | 
 |  | 
 | static int cafe_nand_init(void) | 
 | { | 
 | 	return pci_register_driver(&cafe_nand_pci_driver); | 
 | } | 
 |  | 
 | static void cafe_nand_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&cafe_nand_pci_driver); | 
 | } | 
 | module_init(cafe_nand_init); | 
 | module_exit(cafe_nand_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | 
 | MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); |