| /* |
| * linux/arch/unicore32/include/asm/cacheflush.h |
| * |
| * Code specific to PKUnity SoC and UniCore ISA |
| * |
| * Copyright (C) 2001-2010 GUAN Xue-tao |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef __UNICORE_CACHEFLUSH_H__ |
| #define __UNICORE_CACHEFLUSH_H__ |
| |
| #include <linux/mm.h> |
| |
| #include <asm/shmparam.h> |
| |
| #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) |
| |
| /* |
| * This flag is used to indicate that the page pointed to by a pte is clean |
| * and does not require cleaning before returning it to the user. |
| */ |
| #define PG_dcache_clean PG_arch_1 |
| |
| /* |
| * MM Cache Management |
| * =================== |
| * |
| * The arch/unicore32/mm/cache.S files implement these methods. |
| * |
| * Start addresses are inclusive and end addresses are exclusive; |
| * start addresses should be rounded down, end addresses up. |
| * |
| * See Documentation/cachetlb.txt for more information. |
| * Please note that the implementation of these, and the required |
| * effects are cache-type (VIVT/VIPT/PIPT) specific. |
| * |
| * flush_icache_all() |
| * |
| * Unconditionally clean and invalidate the entire icache. |
| * Currently only needed for cache-v6.S and cache-v7.S, see |
| * __flush_icache_all for the generic implementation. |
| * |
| * flush_kern_all() |
| * |
| * Unconditionally clean and invalidate the entire cache. |
| * |
| * flush_user_all() |
| * |
| * Clean and invalidate all user space cache entries |
| * before a change of page tables. |
| * |
| * flush_user_range(start, end, flags) |
| * |
| * Clean and invalidate a range of cache entries in the |
| * specified address space before a change of page tables. |
| * - start - user start address (inclusive, page aligned) |
| * - end - user end address (exclusive, page aligned) |
| * - flags - vma->vm_flags field |
| * |
| * coherent_kern_range(start, end) |
| * |
| * Ensure coherency between the Icache and the Dcache in the |
| * region described by start, end. If you have non-snooping |
| * Harvard caches, you need to implement this function. |
| * - start - virtual start address |
| * - end - virtual end address |
| * |
| * coherent_user_range(start, end) |
| * |
| * Ensure coherency between the Icache and the Dcache in the |
| * region described by start, end. If you have non-snooping |
| * Harvard caches, you need to implement this function. |
| * - start - virtual start address |
| * - end - virtual end address |
| * |
| * flush_kern_dcache_area(kaddr, size) |
| * |
| * Ensure that the data held in page is written back. |
| * - kaddr - page address |
| * - size - region size |
| * |
| * DMA Cache Coherency |
| * =================== |
| * |
| * dma_flush_range(start, end) |
| * |
| * Clean and invalidate the specified virtual address range. |
| * - start - virtual start address |
| * - end - virtual end address |
| */ |
| |
| extern void __cpuc_flush_icache_all(void); |
| extern void __cpuc_flush_kern_all(void); |
| extern void __cpuc_flush_user_all(void); |
| extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); |
| extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); |
| extern void __cpuc_coherent_user_range(unsigned long, unsigned long); |
| extern void __cpuc_flush_dcache_area(void *, size_t); |
| extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size); |
| |
| /* |
| * These are private to the dma-mapping API. Do not use directly. |
| * Their sole purpose is to ensure that data held in the cache |
| * is visible to DMA, or data written by DMA to system memory is |
| * visible to the CPU. |
| */ |
| extern void __cpuc_dma_clean_range(unsigned long, unsigned long); |
| extern void __cpuc_dma_flush_range(unsigned long, unsigned long); |
| |
| /* |
| * Copy user data from/to a page which is mapped into a different |
| * processes address space. Really, we want to allow our "user |
| * space" model to handle this. |
| */ |
| extern void copy_to_user_page(struct vm_area_struct *, struct page *, |
| unsigned long, void *, const void *, unsigned long); |
| #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ |
| do { \ |
| memcpy(dst, src, len); \ |
| } while (0) |
| |
| /* |
| * Convert calls to our calling convention. |
| */ |
| /* Invalidate I-cache */ |
| static inline void __flush_icache_all(void) |
| { |
| asm("movc p0.c5, %0, #20;\n" |
| "nop; nop; nop; nop; nop; nop; nop; nop\n" |
| : |
| : "r" (0)); |
| } |
| |
| #define flush_cache_all() __cpuc_flush_kern_all() |
| |
| extern void flush_cache_mm(struct mm_struct *mm); |
| extern void flush_cache_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| extern void flush_cache_page(struct vm_area_struct *vma, |
| unsigned long user_addr, unsigned long pfn); |
| |
| #define flush_cache_dup_mm(mm) flush_cache_mm(mm) |
| |
| /* |
| * flush_cache_user_range is used when we want to ensure that the |
| * Harvard caches are synchronised for the user space address range. |
| * This is used for the UniCore private sys_cacheflush system call. |
| */ |
| #define flush_cache_user_range(vma, start, end) \ |
| __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) |
| |
| /* |
| * Perform necessary cache operations to ensure that data previously |
| * stored within this range of addresses can be executed by the CPU. |
| */ |
| #define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e) |
| |
| /* |
| * Perform necessary cache operations to ensure that the TLB will |
| * see data written in the specified area. |
| */ |
| #define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size) |
| |
| /* |
| * flush_dcache_page is used when the kernel has written to the page |
| * cache page at virtual address page->virtual. |
| * |
| * If this page isn't mapped (ie, page_mapping == NULL), or it might |
| * have userspace mappings, then we _must_ always clean + invalidate |
| * the dcache entries associated with the kernel mapping. |
| * |
| * Otherwise we can defer the operation, and clean the cache when we are |
| * about to change to user space. This is the same method as used on SPARC64. |
| * See update_mmu_cache for the user space part. |
| */ |
| #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 |
| extern void flush_dcache_page(struct page *); |
| |
| #define flush_dcache_mmap_lock(mapping) \ |
| spin_lock_irq(&(mapping)->tree_lock) |
| #define flush_dcache_mmap_unlock(mapping) \ |
| spin_unlock_irq(&(mapping)->tree_lock) |
| |
| #define flush_icache_user_range(vma, page, addr, len) \ |
| flush_dcache_page(page) |
| |
| /* |
| * We don't appear to need to do anything here. In fact, if we did, we'd |
| * duplicate cache flushing elsewhere performed by flush_dcache_page(). |
| */ |
| #define flush_icache_page(vma, page) do { } while (0) |
| |
| /* |
| * flush_cache_vmap() is used when creating mappings (eg, via vmap, |
| * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT |
| * caches, since the direct-mappings of these pages may contain cached |
| * data, we need to do a full cache flush to ensure that writebacks |
| * don't corrupt data placed into these pages via the new mappings. |
| */ |
| static inline void flush_cache_vmap(unsigned long start, unsigned long end) |
| { |
| } |
| |
| static inline void flush_cache_vunmap(unsigned long start, unsigned long end) |
| { |
| } |
| |
| #endif |