|  | #ifndef _LINUX_MMZONE_H | 
|  | #define _LINUX_MMZONE_H | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <asm/atomic.h> | 
|  |  | 
|  | /* Free memory management - zoned buddy allocator.  */ | 
|  | #ifndef CONFIG_FORCE_MAX_ZONEORDER | 
|  | #define MAX_ORDER 11 | 
|  | #else | 
|  | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | 
|  | #endif | 
|  | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) | 
|  |  | 
|  | struct free_area { | 
|  | struct list_head	free_list; | 
|  | unsigned long		nr_free; | 
|  | }; | 
|  |  | 
|  | struct pglist_data; | 
|  |  | 
|  | /* | 
|  | * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. | 
|  | * So add a wild amount of padding here to ensure that they fall into separate | 
|  | * cachelines.  There are very few zone structures in the machine, so space | 
|  | * consumption is not a concern here. | 
|  | */ | 
|  | #if defined(CONFIG_SMP) | 
|  | struct zone_padding { | 
|  | char x[0]; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  | #define ZONE_PADDING(name)	struct zone_padding name; | 
|  | #else | 
|  | #define ZONE_PADDING(name) | 
|  | #endif | 
|  |  | 
|  | struct per_cpu_pages { | 
|  | int count;		/* number of pages in the list */ | 
|  | int high;		/* high watermark, emptying needed */ | 
|  | int batch;		/* chunk size for buddy add/remove */ | 
|  | struct list_head list;	/* the list of pages */ | 
|  | }; | 
|  |  | 
|  | struct per_cpu_pageset { | 
|  | struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */ | 
|  | #ifdef CONFIG_NUMA | 
|  | unsigned long numa_hit;		/* allocated in intended node */ | 
|  | unsigned long numa_miss;	/* allocated in non intended node */ | 
|  | unsigned long numa_foreign;	/* was intended here, hit elsewhere */ | 
|  | unsigned long interleave_hit; 	/* interleaver prefered this zone */ | 
|  | unsigned long local_node;	/* allocation from local node */ | 
|  | unsigned long other_node;	/* allocation from other node */ | 
|  | #endif | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) | 
|  | #else | 
|  | #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) | 
|  | #endif | 
|  |  | 
|  | #define ZONE_DMA		0 | 
|  | #define ZONE_DMA32		1 | 
|  | #define ZONE_NORMAL		2 | 
|  | #define ZONE_HIGHMEM		3 | 
|  |  | 
|  | #define MAX_NR_ZONES		4	/* Sync this with ZONES_SHIFT */ | 
|  | #define ZONES_SHIFT		2	/* ceil(log2(MAX_NR_ZONES)) */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * When a memory allocation must conform to specific limitations (such | 
|  | * as being suitable for DMA) the caller will pass in hints to the | 
|  | * allocator in the gfp_mask, in the zone modifier bits.  These bits | 
|  | * are used to select a priority ordered list of memory zones which | 
|  | * match the requested limits.  GFP_ZONEMASK defines which bits within | 
|  | * the gfp_mask should be considered as zone modifiers.  Each valid | 
|  | * combination of the zone modifier bits has a corresponding list | 
|  | * of zones (in node_zonelists).  Thus for two zone modifiers there | 
|  | * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will | 
|  | * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible | 
|  | * combinations of zone modifiers in "zone modifier space". | 
|  | * | 
|  | * As an optimisation any zone modifier bits which are only valid when | 
|  | * no other zone modifier bits are set (loners) should be placed in | 
|  | * the highest order bits of this field.  This allows us to reduce the | 
|  | * extent of the zonelists thus saving space.  For example in the case | 
|  | * of three zone modifier bits, we could require up to eight zonelists. | 
|  | * If the left most zone modifier is a "loner" then the highest valid | 
|  | * zonelist would be four allowing us to allocate only five zonelists. | 
|  | * Use the first form for GFP_ZONETYPES when the left most bit is not | 
|  | * a "loner", otherwise use the second. | 
|  | * | 
|  | * NOTE! Make sure this matches the zones in <linux/gfp.h> | 
|  | */ | 
|  | #define GFP_ZONEMASK	0x07 | 
|  | /* #define GFP_ZONETYPES       (GFP_ZONEMASK + 1) */           /* Non-loner */ | 
|  | #define GFP_ZONETYPES  ((GFP_ZONEMASK + 1) / 2 + 1)            /* Loner */ | 
|  |  | 
|  | /* | 
|  | * On machines where it is needed (eg PCs) we divide physical memory | 
|  | * into multiple physical zones. On a 32bit PC we have 4 zones: | 
|  | * | 
|  | * ZONE_DMA	  < 16 MB	ISA DMA capable memory | 
|  | * ZONE_DMA32	     0 MB 	Empty | 
|  | * ZONE_NORMAL	16-896 MB	direct mapped by the kernel | 
|  | * ZONE_HIGHMEM	 > 896 MB	only page cache and user processes | 
|  | */ | 
|  |  | 
|  | struct zone { | 
|  | /* Fields commonly accessed by the page allocator */ | 
|  | unsigned long		free_pages; | 
|  | unsigned long		pages_min, pages_low, pages_high; | 
|  | /* | 
|  | * We don't know if the memory that we're going to allocate will be freeable | 
|  | * or/and it will be released eventually, so to avoid totally wasting several | 
|  | * GB of ram we must reserve some of the lower zone memory (otherwise we risk | 
|  | * to run OOM on the lower zones despite there's tons of freeable ram | 
|  | * on the higher zones). This array is recalculated at runtime if the | 
|  | * sysctl_lowmem_reserve_ratio sysctl changes. | 
|  | */ | 
|  | unsigned long		lowmem_reserve[MAX_NR_ZONES]; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | struct per_cpu_pageset	*pageset[NR_CPUS]; | 
|  | #else | 
|  | struct per_cpu_pageset	pageset[NR_CPUS]; | 
|  | #endif | 
|  | /* | 
|  | * free areas of different sizes | 
|  | */ | 
|  | spinlock_t		lock; | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* see spanned/present_pages for more description */ | 
|  | seqlock_t		span_seqlock; | 
|  | #endif | 
|  | struct free_area	free_area[MAX_ORDER]; | 
|  |  | 
|  |  | 
|  | ZONE_PADDING(_pad1_) | 
|  |  | 
|  | /* Fields commonly accessed by the page reclaim scanner */ | 
|  | spinlock_t		lru_lock; | 
|  | struct list_head	active_list; | 
|  | struct list_head	inactive_list; | 
|  | unsigned long		nr_scan_active; | 
|  | unsigned long		nr_scan_inactive; | 
|  | unsigned long		nr_active; | 
|  | unsigned long		nr_inactive; | 
|  | unsigned long		pages_scanned;	   /* since last reclaim */ | 
|  | int			all_unreclaimable; /* All pages pinned */ | 
|  |  | 
|  | /* A count of how many reclaimers are scanning this zone */ | 
|  | atomic_t		reclaim_in_progress; | 
|  |  | 
|  | /* | 
|  | * timestamp (in jiffies) of the last zone reclaim that did not | 
|  | * result in freeing of pages. This is used to avoid repeated scans | 
|  | * if all memory in the zone is in use. | 
|  | */ | 
|  | unsigned long		last_unsuccessful_zone_reclaim; | 
|  |  | 
|  | /* | 
|  | * prev_priority holds the scanning priority for this zone.  It is | 
|  | * defined as the scanning priority at which we achieved our reclaim | 
|  | * target at the previous try_to_free_pages() or balance_pgdat() | 
|  | * invokation. | 
|  | * | 
|  | * We use prev_priority as a measure of how much stress page reclaim is | 
|  | * under - it drives the swappiness decision: whether to unmap mapped | 
|  | * pages. | 
|  | * | 
|  | * temp_priority is used to remember the scanning priority at which | 
|  | * this zone was successfully refilled to free_pages == pages_high. | 
|  | * | 
|  | * Access to both these fields is quite racy even on uniprocessor.  But | 
|  | * it is expected to average out OK. | 
|  | */ | 
|  | int temp_priority; | 
|  | int prev_priority; | 
|  |  | 
|  |  | 
|  | ZONE_PADDING(_pad2_) | 
|  | /* Rarely used or read-mostly fields */ | 
|  |  | 
|  | /* | 
|  | * wait_table		-- the array holding the hash table | 
|  | * wait_table_size	-- the size of the hash table array | 
|  | * wait_table_bits	-- wait_table_size == (1 << wait_table_bits) | 
|  | * | 
|  | * The purpose of all these is to keep track of the people | 
|  | * waiting for a page to become available and make them | 
|  | * runnable again when possible. The trouble is that this | 
|  | * consumes a lot of space, especially when so few things | 
|  | * wait on pages at a given time. So instead of using | 
|  | * per-page waitqueues, we use a waitqueue hash table. | 
|  | * | 
|  | * The bucket discipline is to sleep on the same queue when | 
|  | * colliding and wake all in that wait queue when removing. | 
|  | * When something wakes, it must check to be sure its page is | 
|  | * truly available, a la thundering herd. The cost of a | 
|  | * collision is great, but given the expected load of the | 
|  | * table, they should be so rare as to be outweighed by the | 
|  | * benefits from the saved space. | 
|  | * | 
|  | * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the | 
|  | * primary users of these fields, and in mm/page_alloc.c | 
|  | * free_area_init_core() performs the initialization of them. | 
|  | */ | 
|  | wait_queue_head_t	* wait_table; | 
|  | unsigned long		wait_table_size; | 
|  | unsigned long		wait_table_bits; | 
|  |  | 
|  | /* | 
|  | * Discontig memory support fields. | 
|  | */ | 
|  | struct pglist_data	*zone_pgdat; | 
|  | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ | 
|  | unsigned long		zone_start_pfn; | 
|  |  | 
|  | /* | 
|  | * zone_start_pfn, spanned_pages and present_pages are all | 
|  | * protected by span_seqlock.  It is a seqlock because it has | 
|  | * to be read outside of zone->lock, and it is done in the main | 
|  | * allocator path.  But, it is written quite infrequently. | 
|  | * | 
|  | * The lock is declared along with zone->lock because it is | 
|  | * frequently read in proximity to zone->lock.  It's good to | 
|  | * give them a chance of being in the same cacheline. | 
|  | */ | 
|  | unsigned long		spanned_pages;	/* total size, including holes */ | 
|  | unsigned long		present_pages;	/* amount of memory (excluding holes) */ | 
|  |  | 
|  | /* | 
|  | * rarely used fields: | 
|  | */ | 
|  | char			*name; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The "priority" of VM scanning is how much of the queues we will scan in one | 
|  | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | 
|  | * queues ("queue_length >> 12") during an aging round. | 
|  | */ | 
|  | #define DEF_PRIORITY 12 | 
|  |  | 
|  | /* | 
|  | * One allocation request operates on a zonelist. A zonelist | 
|  | * is a list of zones, the first one is the 'goal' of the | 
|  | * allocation, the other zones are fallback zones, in decreasing | 
|  | * priority. | 
|  | * | 
|  | * Right now a zonelist takes up less than a cacheline. We never | 
|  | * modify it apart from boot-up, and only a few indices are used, | 
|  | * so despite the zonelist table being relatively big, the cache | 
|  | * footprint of this construct is very small. | 
|  | */ | 
|  | struct zonelist { | 
|  | struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM | 
|  | * (mostly NUMA machines?) to denote a higher-level memory zone than the | 
|  | * zone denotes. | 
|  | * | 
|  | * On NUMA machines, each NUMA node would have a pg_data_t to describe | 
|  | * it's memory layout. | 
|  | * | 
|  | * Memory statistics and page replacement data structures are maintained on a | 
|  | * per-zone basis. | 
|  | */ | 
|  | struct bootmem_data; | 
|  | typedef struct pglist_data { | 
|  | struct zone node_zones[MAX_NR_ZONES]; | 
|  | struct zonelist node_zonelists[GFP_ZONETYPES]; | 
|  | int nr_zones; | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | struct page *node_mem_map; | 
|  | #endif | 
|  | struct bootmem_data *bdata; | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Must be held any time you expect node_start_pfn, node_present_pages | 
|  | * or node_spanned_pages stay constant.  Holding this will also | 
|  | * guarantee that any pfn_valid() stays that way. | 
|  | * | 
|  | * Nests above zone->lock and zone->size_seqlock. | 
|  | */ | 
|  | spinlock_t node_size_lock; | 
|  | #endif | 
|  | unsigned long node_start_pfn; | 
|  | unsigned long node_present_pages; /* total number of physical pages */ | 
|  | unsigned long node_spanned_pages; /* total size of physical page | 
|  | range, including holes */ | 
|  | int node_id; | 
|  | wait_queue_head_t kswapd_wait; | 
|  | struct task_struct *kswapd; | 
|  | int kswapd_max_order; | 
|  | } pg_data_t; | 
|  |  | 
|  | #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages) | 
|  | #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages) | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr)) | 
|  | #else | 
|  | #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | 
|  | #endif | 
|  | #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr)) | 
|  |  | 
|  | #include <linux/memory_hotplug.h> | 
|  |  | 
|  | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | 
|  | unsigned long *free, struct pglist_data *pgdat); | 
|  | void get_zone_counts(unsigned long *active, unsigned long *inactive, | 
|  | unsigned long *free); | 
|  | void build_all_zonelists(void); | 
|  | void wakeup_kswapd(struct zone *zone, int order); | 
|  | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORY_PRESENT | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  | #else | 
|  | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE | 
|  | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | 
|  | */ | 
|  | #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones) | 
|  |  | 
|  | static inline int populated_zone(struct zone *zone) | 
|  | { | 
|  | return (!!zone->present_pages); | 
|  | } | 
|  |  | 
|  | static inline int is_highmem_idx(int idx) | 
|  | { | 
|  | return (idx == ZONE_HIGHMEM); | 
|  | } | 
|  |  | 
|  | static inline int is_normal_idx(int idx) | 
|  | { | 
|  | return (idx == ZONE_NORMAL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_highmem - helper function to quickly check if a struct zone is a | 
|  | *              highmem zone or not.  This is an attempt to keep references | 
|  | *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | 
|  | * @zone - pointer to struct zone variable | 
|  | */ | 
|  | static inline int is_highmem(struct zone *zone) | 
|  | { | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; | 
|  | } | 
|  |  | 
|  | static inline int is_normal(struct zone *zone) | 
|  | { | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; | 
|  | } | 
|  |  | 
|  | static inline int is_dma32(struct zone *zone) | 
|  | { | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; | 
|  | } | 
|  |  | 
|  | static inline int is_dma(struct zone *zone) | 
|  | { | 
|  | return zone == zone->zone_pgdat->node_zones + ZONE_DMA; | 
|  | } | 
|  |  | 
|  | /* These two functions are used to setup the per zone pages min values */ | 
|  | struct ctl_table; | 
|  | struct file; | 
|  | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; | 
|  | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  |  | 
|  | #include <linux/topology.h> | 
|  | /* Returns the number of the current Node. */ | 
|  | #ifndef numa_node_id | 
|  | #define numa_node_id()		(cpu_to_node(raw_smp_processor_id())) | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  |  | 
|  | extern struct pglist_data contig_page_data; | 
|  | #define NODE_DATA(nid)		(&contig_page_data) | 
|  | #define NODE_MEM_MAP(nid)	mem_map | 
|  | #define MAX_NODES_SHIFT		1 | 
|  |  | 
|  | #else /* CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | #include <asm/mmzone.h> | 
|  |  | 
|  | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | extern struct pglist_data *first_online_pgdat(void); | 
|  | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | 
|  | extern struct zone *next_zone(struct zone *zone); | 
|  |  | 
|  | /** | 
|  | * for_each_pgdat - helper macro to iterate over all nodes | 
|  | * @pgdat - pointer to a pg_data_t variable | 
|  | */ | 
|  | #define for_each_online_pgdat(pgdat)			\ | 
|  | for (pgdat = first_online_pgdat();		\ | 
|  | pgdat;					\ | 
|  | pgdat = next_online_pgdat(pgdat)) | 
|  | /** | 
|  | * for_each_zone - helper macro to iterate over all memory zones | 
|  | * @zone - pointer to struct zone variable | 
|  | * | 
|  | * The user only needs to declare the zone variable, for_each_zone | 
|  | * fills it in. | 
|  | */ | 
|  | #define for_each_zone(zone)			        \ | 
|  | for (zone = (first_online_pgdat())->node_zones; \ | 
|  | zone;					\ | 
|  | zone = next_zone(zone)) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | #include <asm/sparsemem.h> | 
|  | #endif | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | /* | 
|  | * with 32 bit page->flags field, we reserve 9 bits for node/zone info. | 
|  | * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. | 
|  | */ | 
|  | #define FLAGS_RESERVED		9 | 
|  |  | 
|  | #elif BITS_PER_LONG == 64 | 
|  | /* | 
|  | * with 64 bit flags field, there's plenty of room. | 
|  | */ | 
|  | #define FLAGS_RESERVED		32 | 
|  |  | 
|  | #else | 
|  |  | 
|  | #error BITS_PER_LONG not defined | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
|  | #define early_pfn_to_nid(nid)  (0UL) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) | 
|  | #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  |  | 
|  | /* | 
|  | * SECTION_SHIFT    		#bits space required to store a section # | 
|  | * | 
|  | * PA_SECTION_SHIFT		physical address to/from section number | 
|  | * PFN_SECTION_SHIFT		pfn to/from section number | 
|  | */ | 
|  | #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) | 
|  |  | 
|  | #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS) | 
|  | #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT) | 
|  |  | 
|  | #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT) | 
|  |  | 
|  | #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT) | 
|  | #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1)) | 
|  |  | 
|  | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS | 
|  | #error Allocator MAX_ORDER exceeds SECTION_SIZE | 
|  | #endif | 
|  |  | 
|  | struct page; | 
|  | struct mem_section { | 
|  | /* | 
|  | * This is, logically, a pointer to an array of struct | 
|  | * pages.  However, it is stored with some other magic. | 
|  | * (see sparse.c::sparse_init_one_section()) | 
|  | * | 
|  | * Making it a UL at least makes someone do a cast | 
|  | * before using it wrong. | 
|  | */ | 
|  | unsigned long section_mem_map; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section)) | 
|  | #else | 
|  | #define SECTIONS_PER_ROOT	1 | 
|  | #endif | 
|  |  | 
|  | #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT) | 
|  | #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT) | 
|  | #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1) | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | extern struct mem_section *mem_section[NR_SECTION_ROOTS]; | 
|  | #else | 
|  | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; | 
|  | #endif | 
|  |  | 
|  | static inline struct mem_section *__nr_to_section(unsigned long nr) | 
|  | { | 
|  | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) | 
|  | return NULL; | 
|  | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | 
|  | } | 
|  | extern int __section_nr(struct mem_section* ms); | 
|  |  | 
|  | /* | 
|  | * We use the lower bits of the mem_map pointer to store | 
|  | * a little bit of information.  There should be at least | 
|  | * 3 bits here due to 32-bit alignment. | 
|  | */ | 
|  | #define	SECTION_MARKED_PRESENT	(1UL<<0) | 
|  | #define SECTION_HAS_MEM_MAP	(1UL<<1) | 
|  | #define SECTION_MAP_LAST_BIT	(1UL<<2) | 
|  | #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1)) | 
|  |  | 
|  | static inline struct page *__section_mem_map_addr(struct mem_section *section) | 
|  | { | 
|  | unsigned long map = section->section_mem_map; | 
|  | map &= SECTION_MAP_MASK; | 
|  | return (struct page *)map; | 
|  | } | 
|  |  | 
|  | static inline int valid_section(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); | 
|  | } | 
|  |  | 
|  | static inline int section_has_mem_map(struct mem_section *section) | 
|  | { | 
|  | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); | 
|  | } | 
|  |  | 
|  | static inline int valid_section_nr(unsigned long nr) | 
|  | { | 
|  | return valid_section(__nr_to_section(nr)); | 
|  | } | 
|  |  | 
|  | static inline struct mem_section *__pfn_to_section(unsigned long pfn) | 
|  | { | 
|  | return __nr_to_section(pfn_to_section_nr(pfn)); | 
|  | } | 
|  |  | 
|  | static inline int pfn_valid(unsigned long pfn) | 
|  | { | 
|  | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
|  | return 0; | 
|  | return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are _only_ used during initialisation, therefore they | 
|  | * can use __initdata ...  They could have names to indicate | 
|  | * this restriction. | 
|  | */ | 
|  | #ifdef CONFIG_NUMA | 
|  | #define pfn_to_nid(pfn)							\ | 
|  | ({									\ | 
|  | unsigned long __pfn_to_nid_pfn = (pfn);				\ | 
|  | page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\ | 
|  | }) | 
|  | #else | 
|  | #define pfn_to_nid(pfn)		(0) | 
|  | #endif | 
|  |  | 
|  | #define early_pfn_valid(pfn)	pfn_valid(pfn) | 
|  | void sparse_init(void); | 
|  | #else | 
|  | #define sparse_init()	do {} while (0) | 
|  | #define sparse_index_init(_sec, _nid)  do {} while (0) | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | #ifndef early_pfn_valid | 
|  | #define early_pfn_valid(pfn)	(1) | 
|  | #endif | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end); | 
|  | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  | #endif /* __KERNEL__ */ | 
|  | #endif /* _LINUX_MMZONE_H */ |