|  | /* | 
|  | *  linux/kernel/timer.c | 
|  | * | 
|  | *  Kernel internal timers, kernel timekeeping, basic process system calls | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better. | 
|  | * | 
|  | *  1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
|  | *              "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 
|  | *              serialize accesses to xtime/lost_ticks). | 
|  | *                              Copyright (C) 1998  Andrea Arcangeli | 
|  | *  1999-03-10  Improved NTP compatibility by Ulrich Windl | 
|  | *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love | 
|  | *  2000-10-05  Implemented scalable SMP per-CPU timer handling. | 
|  | *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar | 
|  | *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/thread_info.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/syscalls.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/div64.h> | 
|  | #include <asm/timex.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | static void time_interpolator_update(long delta_nsec); | 
|  | #else | 
|  | #define time_interpolator_update(x) | 
|  | #endif | 
|  |  | 
|  | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 
|  |  | 
|  | EXPORT_SYMBOL(jiffies_64); | 
|  |  | 
|  | /* | 
|  | * per-CPU timer vector definitions: | 
|  | */ | 
|  |  | 
|  | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 
|  | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 
|  | #define TVN_SIZE (1 << TVN_BITS) | 
|  | #define TVR_SIZE (1 << TVR_BITS) | 
|  | #define TVN_MASK (TVN_SIZE - 1) | 
|  | #define TVR_MASK (TVR_SIZE - 1) | 
|  |  | 
|  | struct timer_base_s { | 
|  | spinlock_t lock; | 
|  | struct timer_list *running_timer; | 
|  | }; | 
|  |  | 
|  | typedef struct tvec_s { | 
|  | struct list_head vec[TVN_SIZE]; | 
|  | } tvec_t; | 
|  |  | 
|  | typedef struct tvec_root_s { | 
|  | struct list_head vec[TVR_SIZE]; | 
|  | } tvec_root_t; | 
|  |  | 
|  | struct tvec_t_base_s { | 
|  | struct timer_base_s t_base; | 
|  | unsigned long timer_jiffies; | 
|  | tvec_root_t tv1; | 
|  | tvec_t tv2; | 
|  | tvec_t tv3; | 
|  | tvec_t tv4; | 
|  | tvec_t tv5; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | typedef struct tvec_t_base_s tvec_base_t; | 
|  | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | 
|  |  | 
|  | static inline void set_running_timer(tvec_base_t *base, | 
|  | struct timer_list *timer) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | base->t_base.running_timer = timer; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 
|  | { | 
|  | unsigned long expires = timer->expires; | 
|  | unsigned long idx = expires - base->timer_jiffies; | 
|  | struct list_head *vec; | 
|  |  | 
|  | if (idx < TVR_SIZE) { | 
|  | int i = expires & TVR_MASK; | 
|  | vec = base->tv1.vec + i; | 
|  | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 
|  | int i = (expires >> TVR_BITS) & TVN_MASK; | 
|  | vec = base->tv2.vec + i; | 
|  | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 
|  | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 
|  | vec = base->tv3.vec + i; | 
|  | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 
|  | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 
|  | vec = base->tv4.vec + i; | 
|  | } else if ((signed long) idx < 0) { | 
|  | /* | 
|  | * Can happen if you add a timer with expires == jiffies, | 
|  | * or you set a timer to go off in the past | 
|  | */ | 
|  | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 
|  | } else { | 
|  | int i; | 
|  | /* If the timeout is larger than 0xffffffff on 64-bit | 
|  | * architectures then we use the maximum timeout: | 
|  | */ | 
|  | if (idx > 0xffffffffUL) { | 
|  | idx = 0xffffffffUL; | 
|  | expires = idx + base->timer_jiffies; | 
|  | } | 
|  | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 
|  | vec = base->tv5.vec + i; | 
|  | } | 
|  | /* | 
|  | * Timers are FIFO: | 
|  | */ | 
|  | list_add_tail(&timer->entry, vec); | 
|  | } | 
|  |  | 
|  | typedef struct timer_base_s timer_base_t; | 
|  | /* | 
|  | * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) | 
|  | * at compile time, and we need timer->base to lock the timer. | 
|  | */ | 
|  | timer_base_t __init_timer_base | 
|  | ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; | 
|  | EXPORT_SYMBOL(__init_timer_base); | 
|  |  | 
|  | /*** | 
|  | * init_timer - initialize a timer. | 
|  | * @timer: the timer to be initialized | 
|  | * | 
|  | * init_timer() must be done to a timer prior calling *any* of the | 
|  | * other timer functions. | 
|  | */ | 
|  | void fastcall init_timer(struct timer_list *timer) | 
|  | { | 
|  | timer->entry.next = NULL; | 
|  | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | 
|  | } | 
|  | EXPORT_SYMBOL(init_timer); | 
|  |  | 
|  | static inline void detach_timer(struct timer_list *timer, | 
|  | int clear_pending) | 
|  | { | 
|  | struct list_head *entry = &timer->entry; | 
|  |  | 
|  | __list_del(entry->prev, entry->next); | 
|  | if (clear_pending) | 
|  | entry->next = NULL; | 
|  | entry->prev = LIST_POISON2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock | 
|  | * means that all timers which are tied to this base via timer->base are | 
|  | * locked, and the base itself is locked too. | 
|  | * | 
|  | * So __run_timers/migrate_timers can safely modify all timers which could | 
|  | * be found on ->tvX lists. | 
|  | * | 
|  | * When the timer's base is locked, and the timer removed from list, it is | 
|  | * possible to set timer->base = NULL and drop the lock: the timer remains | 
|  | * locked. | 
|  | */ | 
|  | static timer_base_t *lock_timer_base(struct timer_list *timer, | 
|  | unsigned long *flags) | 
|  | { | 
|  | timer_base_t *base; | 
|  |  | 
|  | for (;;) { | 
|  | base = timer->base; | 
|  | if (likely(base != NULL)) { | 
|  | spin_lock_irqsave(&base->lock, *flags); | 
|  | if (likely(base == timer->base)) | 
|  | return base; | 
|  | /* The timer has migrated to another CPU */ | 
|  | spin_unlock_irqrestore(&base->lock, *flags); | 
|  | } | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | { | 
|  | timer_base_t *base; | 
|  | tvec_base_t *new_base; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!timer->function); | 
|  |  | 
|  | base = lock_timer_base(timer, &flags); | 
|  |  | 
|  | if (timer_pending(timer)) { | 
|  | detach_timer(timer, 0); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | new_base = &__get_cpu_var(tvec_bases); | 
|  |  | 
|  | if (base != &new_base->t_base) { | 
|  | /* | 
|  | * We are trying to schedule the timer on the local CPU. | 
|  | * However we can't change timer's base while it is running, | 
|  | * otherwise del_timer_sync() can't detect that the timer's | 
|  | * handler yet has not finished. This also guarantees that | 
|  | * the timer is serialized wrt itself. | 
|  | */ | 
|  | if (unlikely(base->running_timer == timer)) { | 
|  | /* The timer remains on a former base */ | 
|  | new_base = container_of(base, tvec_base_t, t_base); | 
|  | } else { | 
|  | /* See the comment in lock_timer_base() */ | 
|  | timer->base = NULL; | 
|  | spin_unlock(&base->lock); | 
|  | spin_lock(&new_base->t_base.lock); | 
|  | timer->base = &new_base->t_base; | 
|  | } | 
|  | } | 
|  |  | 
|  | timer->expires = expires; | 
|  | internal_add_timer(new_base, timer); | 
|  | spin_unlock_irqrestore(&new_base->t_base.lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__mod_timer); | 
|  |  | 
|  | /*** | 
|  | * add_timer_on - start a timer on a particular CPU | 
|  | * @timer: the timer to be added | 
|  | * @cpu: the CPU to start it on | 
|  | * | 
|  | * This is not very scalable on SMP. Double adds are not possible. | 
|  | */ | 
|  | void add_timer_on(struct timer_list *timer, int cpu) | 
|  | { | 
|  | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON(timer_pending(timer) || !timer->function); | 
|  | spin_lock_irqsave(&base->t_base.lock, flags); | 
|  | timer->base = &base->t_base; | 
|  | internal_add_timer(base, timer); | 
|  | spin_unlock_irqrestore(&base->t_base.lock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*** | 
|  | * mod_timer - modify a timer's timeout | 
|  | * @timer: the timer to be modified | 
|  | * | 
|  | * mod_timer is a more efficient way to update the expire field of an | 
|  | * active timer (if the timer is inactive it will be activated) | 
|  | * | 
|  | * mod_timer(timer, expires) is equivalent to: | 
|  | * | 
|  | *     del_timer(timer); timer->expires = expires; add_timer(timer); | 
|  | * | 
|  | * Note that if there are multiple unserialized concurrent users of the | 
|  | * same timer, then mod_timer() is the only safe way to modify the timeout, | 
|  | * since add_timer() cannot modify an already running timer. | 
|  | * | 
|  | * The function returns whether it has modified a pending timer or not. | 
|  | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 
|  | * active timer returns 1.) | 
|  | */ | 
|  | int mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | { | 
|  | BUG_ON(!timer->function); | 
|  |  | 
|  | /* | 
|  | * This is a common optimization triggered by the | 
|  | * networking code - if the timer is re-modified | 
|  | * to be the same thing then just return: | 
|  | */ | 
|  | if (timer->expires == expires && timer_pending(timer)) | 
|  | return 1; | 
|  |  | 
|  | return __mod_timer(timer, expires); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(mod_timer); | 
|  |  | 
|  | /*** | 
|  | * del_timer - deactive a timer. | 
|  | * @timer: the timer to be deactivated | 
|  | * | 
|  | * del_timer() deactivates a timer - this works on both active and inactive | 
|  | * timers. | 
|  | * | 
|  | * The function returns whether it has deactivated a pending timer or not. | 
|  | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 
|  | * active timer returns 1.) | 
|  | */ | 
|  | int del_timer(struct timer_list *timer) | 
|  | { | 
|  | timer_base_t *base; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (timer_pending(timer)) { | 
|  | base = lock_timer_base(timer, &flags); | 
|  | if (timer_pending(timer)) { | 
|  | detach_timer(timer, 1); | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock_irqrestore(&base->lock, flags); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(del_timer); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This function tries to deactivate a timer. Upon successful (ret >= 0) | 
|  | * exit the timer is not queued and the handler is not running on any CPU. | 
|  | * | 
|  | * It must not be called from interrupt contexts. | 
|  | */ | 
|  | int try_to_del_timer_sync(struct timer_list *timer) | 
|  | { | 
|  | timer_base_t *base; | 
|  | unsigned long flags; | 
|  | int ret = -1; | 
|  |  | 
|  | base = lock_timer_base(timer, &flags); | 
|  |  | 
|  | if (base->running_timer == timer) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (timer_pending(timer)) { | 
|  | detach_timer(timer, 1); | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&base->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * del_timer_sync - deactivate a timer and wait for the handler to finish. | 
|  | * @timer: the timer to be deactivated | 
|  | * | 
|  | * This function only differs from del_timer() on SMP: besides deactivating | 
|  | * the timer it also makes sure the handler has finished executing on other | 
|  | * CPUs. | 
|  | * | 
|  | * Synchronization rules: callers must prevent restarting of the timer, | 
|  | * otherwise this function is meaningless. It must not be called from | 
|  | * interrupt contexts. The caller must not hold locks which would prevent | 
|  | * completion of the timer's handler. The timer's handler must not call | 
|  | * add_timer_on(). Upon exit the timer is not queued and the handler is | 
|  | * not running on any CPU. | 
|  | * | 
|  | * The function returns whether it has deactivated a pending timer or not. | 
|  | */ | 
|  | int del_timer_sync(struct timer_list *timer) | 
|  | { | 
|  | for (;;) { | 
|  | int ret = try_to_del_timer_sync(timer); | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(del_timer_sync); | 
|  | #endif | 
|  |  | 
|  | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 
|  | { | 
|  | /* cascade all the timers from tv up one level */ | 
|  | struct list_head *head, *curr; | 
|  |  | 
|  | head = tv->vec + index; | 
|  | curr = head->next; | 
|  | /* | 
|  | * We are removing _all_ timers from the list, so we don't  have to | 
|  | * detach them individually, just clear the list afterwards. | 
|  | */ | 
|  | while (curr != head) { | 
|  | struct timer_list *tmp; | 
|  |  | 
|  | tmp = list_entry(curr, struct timer_list, entry); | 
|  | BUG_ON(tmp->base != &base->t_base); | 
|  | curr = curr->next; | 
|  | internal_add_timer(base, tmp); | 
|  | } | 
|  | INIT_LIST_HEAD(head); | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * __run_timers - run all expired timers (if any) on this CPU. | 
|  | * @base: the timer vector to be processed. | 
|  | * | 
|  | * This function cascades all vectors and executes all expired timer | 
|  | * vectors. | 
|  | */ | 
|  | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 
|  |  | 
|  | static inline void __run_timers(tvec_base_t *base) | 
|  | { | 
|  | struct timer_list *timer; | 
|  |  | 
|  | spin_lock_irq(&base->t_base.lock); | 
|  | while (time_after_eq(jiffies, base->timer_jiffies)) { | 
|  | struct list_head work_list = LIST_HEAD_INIT(work_list); | 
|  | struct list_head *head = &work_list; | 
|  | int index = base->timer_jiffies & TVR_MASK; | 
|  |  | 
|  | /* | 
|  | * Cascade timers: | 
|  | */ | 
|  | if (!index && | 
|  | (!cascade(base, &base->tv2, INDEX(0))) && | 
|  | (!cascade(base, &base->tv3, INDEX(1))) && | 
|  | !cascade(base, &base->tv4, INDEX(2))) | 
|  | cascade(base, &base->tv5, INDEX(3)); | 
|  | ++base->timer_jiffies; | 
|  | list_splice_init(base->tv1.vec + index, &work_list); | 
|  | while (!list_empty(head)) { | 
|  | void (*fn)(unsigned long); | 
|  | unsigned long data; | 
|  |  | 
|  | timer = list_entry(head->next,struct timer_list,entry); | 
|  | fn = timer->function; | 
|  | data = timer->data; | 
|  |  | 
|  | set_running_timer(base, timer); | 
|  | detach_timer(timer, 1); | 
|  | spin_unlock_irq(&base->t_base.lock); | 
|  | { | 
|  | int preempt_count = preempt_count(); | 
|  | fn(data); | 
|  | if (preempt_count != preempt_count()) { | 
|  | printk(KERN_WARNING "huh, entered %p " | 
|  | "with preempt_count %08x, exited" | 
|  | " with %08x?\n", | 
|  | fn, preempt_count, | 
|  | preempt_count()); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | spin_lock_irq(&base->t_base.lock); | 
|  | } | 
|  | } | 
|  | set_running_timer(base, NULL); | 
|  | spin_unlock_irq(&base->t_base.lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_IDLE_HZ | 
|  | /* | 
|  | * Find out when the next timer event is due to happen. This | 
|  | * is used on S/390 to stop all activity when a cpus is idle. | 
|  | * This functions needs to be called disabled. | 
|  | */ | 
|  | unsigned long next_timer_interrupt(void) | 
|  | { | 
|  | tvec_base_t *base; | 
|  | struct list_head *list; | 
|  | struct timer_list *nte; | 
|  | unsigned long expires; | 
|  | tvec_t *varray[4]; | 
|  | int i, j; | 
|  |  | 
|  | base = &__get_cpu_var(tvec_bases); | 
|  | spin_lock(&base->t_base.lock); | 
|  | expires = base->timer_jiffies + (LONG_MAX >> 1); | 
|  | list = 0; | 
|  |  | 
|  | /* Look for timer events in tv1. */ | 
|  | j = base->timer_jiffies & TVR_MASK; | 
|  | do { | 
|  | list_for_each_entry(nte, base->tv1.vec + j, entry) { | 
|  | expires = nte->expires; | 
|  | if (j < (base->timer_jiffies & TVR_MASK)) | 
|  | list = base->tv2.vec + (INDEX(0)); | 
|  | goto found; | 
|  | } | 
|  | j = (j + 1) & TVR_MASK; | 
|  | } while (j != (base->timer_jiffies & TVR_MASK)); | 
|  |  | 
|  | /* Check tv2-tv5. */ | 
|  | varray[0] = &base->tv2; | 
|  | varray[1] = &base->tv3; | 
|  | varray[2] = &base->tv4; | 
|  | varray[3] = &base->tv5; | 
|  | for (i = 0; i < 4; i++) { | 
|  | j = INDEX(i); | 
|  | do { | 
|  | if (list_empty(varray[i]->vec + j)) { | 
|  | j = (j + 1) & TVN_MASK; | 
|  | continue; | 
|  | } | 
|  | list_for_each_entry(nte, varray[i]->vec + j, entry) | 
|  | if (time_before(nte->expires, expires)) | 
|  | expires = nte->expires; | 
|  | if (j < (INDEX(i)) && i < 3) | 
|  | list = varray[i + 1]->vec + (INDEX(i + 1)); | 
|  | goto found; | 
|  | } while (j != (INDEX(i))); | 
|  | } | 
|  | found: | 
|  | if (list) { | 
|  | /* | 
|  | * The search wrapped. We need to look at the next list | 
|  | * from next tv element that would cascade into tv element | 
|  | * where we found the timer element. | 
|  | */ | 
|  | list_for_each_entry(nte, list, entry) { | 
|  | if (time_before(nte->expires, expires)) | 
|  | expires = nte->expires; | 
|  | } | 
|  | } | 
|  | spin_unlock(&base->t_base.lock); | 
|  | return expires; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /******************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Timekeeping variables | 
|  | */ | 
|  | unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */ | 
|  | unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */ | 
|  |  | 
|  | /* | 
|  | * The current time | 
|  | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | 
|  | * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
|  | * at zero at system boot time, so wall_to_monotonic will be negative, | 
|  | * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
|  | * the usual normalization. | 
|  | */ | 
|  | struct timespec xtime __attribute__ ((aligned (16))); | 
|  | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 
|  |  | 
|  | EXPORT_SYMBOL(xtime); | 
|  |  | 
|  | /* Don't completely fail for HZ > 500.  */ | 
|  | int tickadj = 500/HZ ? : 1;		/* microsecs */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * phase-lock loop variables | 
|  | */ | 
|  | /* TIME_ERROR prevents overwriting the CMOS clock */ | 
|  | int time_state = TIME_OK;		/* clock synchronization status	*/ | 
|  | int time_status = STA_UNSYNC;		/* clock status bits		*/ | 
|  | long time_offset;			/* time adjustment (us)		*/ | 
|  | long time_constant = 2;			/* pll time constant		*/ | 
|  | long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/ | 
|  | long time_precision = 1;		/* clock precision (us)		*/ | 
|  | long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/ | 
|  | long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/ | 
|  | static long time_phase;			/* phase offset (scaled us)	*/ | 
|  | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 
|  | /* frequency offset (scaled ppm)*/ | 
|  | static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/ | 
|  | long time_reftime;			/* time at last adjustment (s)	*/ | 
|  | long time_adjust; | 
|  | long time_next_adjust; | 
|  |  | 
|  | /* | 
|  | * this routine handles the overflow of the microsecond field | 
|  | * | 
|  | * The tricky bits of code to handle the accurate clock support | 
|  | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
|  | * They were originally developed for SUN and DEC kernels. | 
|  | * All the kudos should go to Dave for this stuff. | 
|  | * | 
|  | */ | 
|  | static void second_overflow(void) | 
|  | { | 
|  | long ltemp; | 
|  |  | 
|  | /* Bump the maxerror field */ | 
|  | time_maxerror += time_tolerance >> SHIFT_USEC; | 
|  | if (time_maxerror > NTP_PHASE_LIMIT) { | 
|  | time_maxerror = NTP_PHASE_LIMIT; | 
|  | time_status |= STA_UNSYNC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leap second processing. If in leap-insert state at the end of the | 
|  | * day, the system clock is set back one second; if in leap-delete | 
|  | * state, the system clock is set ahead one second. The microtime() | 
|  | * routine or external clock driver will insure that reported time is | 
|  | * always monotonic. The ugly divides should be replaced. | 
|  | */ | 
|  | switch (time_state) { | 
|  | case TIME_OK: | 
|  | if (time_status & STA_INS) | 
|  | time_state = TIME_INS; | 
|  | else if (time_status & STA_DEL) | 
|  | time_state = TIME_DEL; | 
|  | break; | 
|  | case TIME_INS: | 
|  | if (xtime.tv_sec % 86400 == 0) { | 
|  | xtime.tv_sec--; | 
|  | wall_to_monotonic.tv_sec++; | 
|  | /* | 
|  | * The timer interpolator will make time change | 
|  | * gradually instead of an immediate jump by one second | 
|  | */ | 
|  | time_interpolator_update(-NSEC_PER_SEC); | 
|  | time_state = TIME_OOP; | 
|  | clock_was_set(); | 
|  | printk(KERN_NOTICE "Clock: inserting leap second " | 
|  | "23:59:60 UTC\n"); | 
|  | } | 
|  | break; | 
|  | case TIME_DEL: | 
|  | if ((xtime.tv_sec + 1) % 86400 == 0) { | 
|  | xtime.tv_sec++; | 
|  | wall_to_monotonic.tv_sec--; | 
|  | /* | 
|  | * Use of time interpolator for a gradual change of | 
|  | * time | 
|  | */ | 
|  | time_interpolator_update(NSEC_PER_SEC); | 
|  | time_state = TIME_WAIT; | 
|  | clock_was_set(); | 
|  | printk(KERN_NOTICE "Clock: deleting leap second " | 
|  | "23:59:59 UTC\n"); | 
|  | } | 
|  | break; | 
|  | case TIME_OOP: | 
|  | time_state = TIME_WAIT; | 
|  | break; | 
|  | case TIME_WAIT: | 
|  | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | time_state = TIME_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the phase adjustment for the next second. In PLL mode, the | 
|  | * offset is reduced by a fixed factor times the time constant. In FLL | 
|  | * mode the offset is used directly. In either mode, the maximum phase | 
|  | * adjustment for each second is clamped so as to spread the adjustment | 
|  | * over not more than the number of seconds between updates. | 
|  | */ | 
|  | ltemp = time_offset; | 
|  | if (!(time_status & STA_FLL)) | 
|  | ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | 
|  | ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
|  | ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
|  | time_offset -= ltemp; | 
|  | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
|  |  | 
|  | /* | 
|  | * Compute the frequency estimate and additional phase adjustment due | 
|  | * to frequency error for the next second. When the PPS signal is | 
|  | * engaged, gnaw on the watchdog counter and update the frequency | 
|  | * computed by the pll and the PPS signal. | 
|  | */ | 
|  | pps_valid++; | 
|  | if (pps_valid == PPS_VALID) {	/* PPS signal lost */ | 
|  | pps_jitter = MAXTIME; | 
|  | pps_stabil = MAXFREQ; | 
|  | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
|  | STA_PPSWANDER | STA_PPSERROR); | 
|  | } | 
|  | ltemp = time_freq + pps_freq; | 
|  | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | 
|  |  | 
|  | #if HZ == 100 | 
|  | /* | 
|  | * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to | 
|  | * get 128.125; => only 0.125% error (p. 14) | 
|  | */ | 
|  | time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | 
|  | #endif | 
|  | #if HZ == 250 | 
|  | /* | 
|  | * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and | 
|  | * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | 
|  | */ | 
|  | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
|  | #endif | 
|  | #if HZ == 1000 | 
|  | /* | 
|  | * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and | 
|  | * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 
|  | */ | 
|  | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* in the NTP reference this is called "hardclock()" */ | 
|  | static void update_wall_time_one_tick(void) | 
|  | { | 
|  | long time_adjust_step, delta_nsec; | 
|  |  | 
|  | if ((time_adjust_step = time_adjust) != 0 ) { | 
|  | /* | 
|  | * We are doing an adjtime thing.  Prepare time_adjust_step to | 
|  | * be within bounds.  Note that a positive time_adjust means we | 
|  | * want the clock to run faster. | 
|  | * | 
|  | * Limit the amount of the step to be in the range | 
|  | * -tickadj .. +tickadj | 
|  | */ | 
|  | time_adjust_step = min(time_adjust_step, (long)tickadj); | 
|  | time_adjust_step = max(time_adjust_step, (long)-tickadj); | 
|  |  | 
|  | /* Reduce by this step the amount of time left  */ | 
|  | time_adjust -= time_adjust_step; | 
|  | } | 
|  | delta_nsec = tick_nsec + time_adjust_step * 1000; | 
|  | /* | 
|  | * Advance the phase, once it gets to one microsecond, then | 
|  | * advance the tick more. | 
|  | */ | 
|  | time_phase += time_adj; | 
|  | if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) { | 
|  | long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10)); | 
|  | time_phase -= ltemp << (SHIFT_SCALE - 10); | 
|  | delta_nsec += ltemp; | 
|  | } | 
|  | xtime.tv_nsec += delta_nsec; | 
|  | time_interpolator_update(delta_nsec); | 
|  |  | 
|  | /* Changes by adjtime() do not take effect till next tick. */ | 
|  | if (time_next_adjust != 0) { | 
|  | time_adjust = time_next_adjust; | 
|  | time_next_adjust = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Using a loop looks inefficient, but "ticks" is | 
|  | * usually just one (we shouldn't be losing ticks, | 
|  | * we're doing this this way mainly for interrupt | 
|  | * latency reasons, not because we think we'll | 
|  | * have lots of lost timer ticks | 
|  | */ | 
|  | static void update_wall_time(unsigned long ticks) | 
|  | { | 
|  | do { | 
|  | ticks--; | 
|  | update_wall_time_one_tick(); | 
|  | if (xtime.tv_nsec >= 1000000000) { | 
|  | xtime.tv_nsec -= 1000000000; | 
|  | xtime.tv_sec++; | 
|  | second_overflow(); | 
|  | } | 
|  | } while (ticks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the timer interrupt handler to charge one tick to the current | 
|  | * process.  user_tick is 1 if the tick is user time, 0 for system. | 
|  | */ | 
|  | void update_process_times(int user_tick) | 
|  | { | 
|  | struct task_struct *p = current; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* Note: this timer irq context must be accounted for as well. */ | 
|  | if (user_tick) | 
|  | account_user_time(p, jiffies_to_cputime(1)); | 
|  | else | 
|  | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 
|  | run_local_timers(); | 
|  | if (rcu_pending(cpu)) | 
|  | rcu_check_callbacks(cpu, user_tick); | 
|  | scheduler_tick(); | 
|  | run_posix_cpu_timers(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nr of active tasks - counted in fixed-point numbers | 
|  | */ | 
|  | static unsigned long count_active_tasks(void) | 
|  | { | 
|  | return (nr_running() + nr_uninterruptible()) * FIXED_1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 
|  | * imply that avenrun[] is the standard name for this kind of thing. | 
|  | * Nothing else seems to be standardized: the fractional size etc | 
|  | * all seem to differ on different machines. | 
|  | * | 
|  | * Requires xtime_lock to access. | 
|  | */ | 
|  | unsigned long avenrun[3]; | 
|  |  | 
|  | EXPORT_SYMBOL(avenrun); | 
|  |  | 
|  | /* | 
|  | * calc_load - given tick count, update the avenrun load estimates. | 
|  | * This is called while holding a write_lock on xtime_lock. | 
|  | */ | 
|  | static inline void calc_load(unsigned long ticks) | 
|  | { | 
|  | unsigned long active_tasks; /* fixed-point */ | 
|  | static int count = LOAD_FREQ; | 
|  |  | 
|  | count -= ticks; | 
|  | if (count < 0) { | 
|  | count += LOAD_FREQ; | 
|  | active_tasks = count_active_tasks(); | 
|  | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 
|  | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 
|  | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* jiffies at the most recent update of wall time */ | 
|  | unsigned long wall_jiffies = INITIAL_JIFFIES; | 
|  |  | 
|  | /* | 
|  | * This read-write spinlock protects us from races in SMP while | 
|  | * playing with xtime and avenrun. | 
|  | */ | 
|  | #ifndef ARCH_HAVE_XTIME_LOCK | 
|  | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 
|  |  | 
|  | EXPORT_SYMBOL(xtime_lock); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This function runs timers and the timer-tq in bottom half context. | 
|  | */ | 
|  | static void run_timer_softirq(struct softirq_action *h) | 
|  | { | 
|  | tvec_base_t *base = &__get_cpu_var(tvec_bases); | 
|  |  | 
|  | if (time_after_eq(jiffies, base->timer_jiffies)) | 
|  | __run_timers(base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by the local, per-CPU timer interrupt on SMP. | 
|  | */ | 
|  | void run_local_timers(void) | 
|  | { | 
|  | raise_softirq(TIMER_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by the timer interrupt. xtime_lock must already be taken | 
|  | * by the timer IRQ! | 
|  | */ | 
|  | static inline void update_times(void) | 
|  | { | 
|  | unsigned long ticks; | 
|  |  | 
|  | ticks = jiffies - wall_jiffies; | 
|  | if (ticks) { | 
|  | wall_jiffies += ticks; | 
|  | update_wall_time(ticks); | 
|  | } | 
|  | calc_load(ticks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
|  | * without sampling the sequence number in xtime_lock. | 
|  | * jiffies is defined in the linker script... | 
|  | */ | 
|  |  | 
|  | void do_timer(struct pt_regs *regs) | 
|  | { | 
|  | jiffies_64++; | 
|  | update_times(); | 
|  | softlockup_tick(regs); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_ALARM | 
|  |  | 
|  | /* | 
|  | * For backwards compatibility?  This can be done in libc so Alpha | 
|  | * and all newer ports shouldn't need it. | 
|  | */ | 
|  | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 
|  | { | 
|  | struct itimerval it_new, it_old; | 
|  | unsigned int oldalarm; | 
|  |  | 
|  | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | 
|  | it_new.it_value.tv_sec = seconds; | 
|  | it_new.it_value.tv_usec = 0; | 
|  | do_setitimer(ITIMER_REAL, &it_new, &it_old); | 
|  | oldalarm = it_old.it_value.tv_sec; | 
|  | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | 
|  | /* And we'd better return too much than too little anyway */ | 
|  | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | 
|  | oldalarm++; | 
|  | return oldalarm; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifndef __alpha__ | 
|  |  | 
|  | /* | 
|  | * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this | 
|  | * should be moved into arch/i386 instead? | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * sys_getpid - return the thread group id of the current process | 
|  | * | 
|  | * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
|  | * the pid are identical unless CLONE_THREAD was specified on clone() in | 
|  | * which case the tgid is the same in all threads of the same group. | 
|  | * | 
|  | * This is SMP safe as current->tgid does not change. | 
|  | */ | 
|  | asmlinkage long sys_getpid(void) | 
|  | { | 
|  | return current->tgid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accessing ->group_leader->real_parent is not SMP-safe, it could | 
|  | * change from under us. However, rather than getting any lock | 
|  | * we can use an optimistic algorithm: get the parent | 
|  | * pid, and go back and check that the parent is still | 
|  | * the same. If it has changed (which is extremely unlikely | 
|  | * indeed), we just try again.. | 
|  | * | 
|  | * NOTE! This depends on the fact that even if we _do_ | 
|  | * get an old value of "parent", we can happily dereference | 
|  | * the pointer (it was and remains a dereferencable kernel pointer | 
|  | * no matter what): we just can't necessarily trust the result | 
|  | * until we know that the parent pointer is valid. | 
|  | * | 
|  | * NOTE2: ->group_leader never changes from under us. | 
|  | */ | 
|  | asmlinkage long sys_getppid(void) | 
|  | { | 
|  | int pid; | 
|  | struct task_struct *me = current; | 
|  | struct task_struct *parent; | 
|  |  | 
|  | parent = me->group_leader->real_parent; | 
|  | for (;;) { | 
|  | pid = parent->tgid; | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
|  | { | 
|  | struct task_struct *old = parent; | 
|  |  | 
|  | /* | 
|  | * Make sure we read the pid before re-reading the | 
|  | * parent pointer: | 
|  | */ | 
|  | smp_rmb(); | 
|  | parent = me->group_leader->real_parent; | 
|  | if (old != parent) | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getuid(void) | 
|  | { | 
|  | /* Only we change this so SMP safe */ | 
|  | return current->uid; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_geteuid(void) | 
|  | { | 
|  | /* Only we change this so SMP safe */ | 
|  | return current->euid; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getgid(void) | 
|  | { | 
|  | /* Only we change this so SMP safe */ | 
|  | return current->gid; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getegid(void) | 
|  | { | 
|  | /* Only we change this so SMP safe */ | 
|  | return  current->egid; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void process_timeout(unsigned long __data) | 
|  | { | 
|  | wake_up_process((task_t *)__data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_timeout - sleep until timeout | 
|  | * @timeout: timeout value in jiffies | 
|  | * | 
|  | * Make the current task sleep until @timeout jiffies have | 
|  | * elapsed. The routine will return immediately unless | 
|  | * the current task state has been set (see set_current_state()). | 
|  | * | 
|  | * You can set the task state as follows - | 
|  | * | 
|  | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 
|  | * pass before the routine returns. The routine will return 0 | 
|  | * | 
|  | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
|  | * delivered to the current task. In this case the remaining time | 
|  | * in jiffies will be returned, or 0 if the timer expired in time | 
|  | * | 
|  | * The current task state is guaranteed to be TASK_RUNNING when this | 
|  | * routine returns. | 
|  | * | 
|  | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 
|  | * the CPU away without a bound on the timeout. In this case the return | 
|  | * value will be %MAX_SCHEDULE_TIMEOUT. | 
|  | * | 
|  | * In all cases the return value is guaranteed to be non-negative. | 
|  | */ | 
|  | fastcall signed long __sched schedule_timeout(signed long timeout) | 
|  | { | 
|  | struct timer_list timer; | 
|  | unsigned long expire; | 
|  |  | 
|  | switch (timeout) | 
|  | { | 
|  | case MAX_SCHEDULE_TIMEOUT: | 
|  | /* | 
|  | * These two special cases are useful to be comfortable | 
|  | * in the caller. Nothing more. We could take | 
|  | * MAX_SCHEDULE_TIMEOUT from one of the negative value | 
|  | * but I' d like to return a valid offset (>=0) to allow | 
|  | * the caller to do everything it want with the retval. | 
|  | */ | 
|  | schedule(); | 
|  | goto out; | 
|  | default: | 
|  | /* | 
|  | * Another bit of PARANOID. Note that the retval will be | 
|  | * 0 since no piece of kernel is supposed to do a check | 
|  | * for a negative retval of schedule_timeout() (since it | 
|  | * should never happens anyway). You just have the printk() | 
|  | * that will tell you if something is gone wrong and where. | 
|  | */ | 
|  | if (timeout < 0) | 
|  | { | 
|  | printk(KERN_ERR "schedule_timeout: wrong timeout " | 
|  | "value %lx from %p\n", timeout, | 
|  | __builtin_return_address(0)); | 
|  | current->state = TASK_RUNNING; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | expire = timeout + jiffies; | 
|  |  | 
|  | setup_timer(&timer, process_timeout, (unsigned long)current); | 
|  | __mod_timer(&timer, expire); | 
|  | schedule(); | 
|  | del_singleshot_timer_sync(&timer); | 
|  |  | 
|  | timeout = expire - jiffies; | 
|  |  | 
|  | out: | 
|  | return timeout < 0 ? 0 : timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_timeout); | 
|  |  | 
|  | /* | 
|  | * We can use __set_current_state() here because schedule_timeout() calls | 
|  | * schedule() unconditionally. | 
|  | */ | 
|  | signed long __sched schedule_timeout_interruptible(signed long timeout) | 
|  | { | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | return schedule_timeout(timeout); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_timeout_interruptible); | 
|  |  | 
|  | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | 
|  | { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | return schedule_timeout(timeout); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | 
|  |  | 
|  | /* Thread ID - the internal kernel "pid" */ | 
|  | asmlinkage long sys_gettid(void) | 
|  | { | 
|  | return current->pid; | 
|  | } | 
|  |  | 
|  | static long __sched nanosleep_restart(struct restart_block *restart) | 
|  | { | 
|  | unsigned long expire = restart->arg0, now = jiffies; | 
|  | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; | 
|  | long ret; | 
|  |  | 
|  | /* Did it expire while we handled signals? */ | 
|  | if (!time_after(expire, now)) | 
|  | return 0; | 
|  |  | 
|  | expire = schedule_timeout_interruptible(expire - now); | 
|  |  | 
|  | ret = 0; | 
|  | if (expire) { | 
|  | struct timespec t; | 
|  | jiffies_to_timespec(expire, &t); | 
|  |  | 
|  | ret = -ERESTART_RESTARTBLOCK; | 
|  | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | ret = -EFAULT; | 
|  | /* The 'restart' block is already filled in */ | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | 
|  | { | 
|  | struct timespec t; | 
|  | unsigned long expire; | 
|  | long ret; | 
|  |  | 
|  | if (copy_from_user(&t, rqtp, sizeof(t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); | 
|  | expire = schedule_timeout_interruptible(expire); | 
|  |  | 
|  | ret = 0; | 
|  | if (expire) { | 
|  | struct restart_block *restart; | 
|  | jiffies_to_timespec(expire, &t); | 
|  | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | restart = ¤t_thread_info()->restart_block; | 
|  | restart->fn = nanosleep_restart; | 
|  | restart->arg0 = jiffies + expire; | 
|  | restart->arg1 = (unsigned long) rmtp; | 
|  | ret = -ERESTART_RESTARTBLOCK; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_sysinfo - fill in sysinfo struct | 
|  | */ | 
|  | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 
|  | { | 
|  | struct sysinfo val; | 
|  | unsigned long mem_total, sav_total; | 
|  | unsigned int mem_unit, bitcount; | 
|  | unsigned long seq; | 
|  |  | 
|  | memset((char *)&val, 0, sizeof(struct sysinfo)); | 
|  |  | 
|  | do { | 
|  | struct timespec tp; | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  |  | 
|  | /* | 
|  | * This is annoying.  The below is the same thing | 
|  | * posix_get_clock_monotonic() does, but it wants to | 
|  | * take the lock which we want to cover the loads stuff | 
|  | * too. | 
|  | */ | 
|  |  | 
|  | getnstimeofday(&tp); | 
|  | tp.tv_sec += wall_to_monotonic.tv_sec; | 
|  | tp.tv_nsec += wall_to_monotonic.tv_nsec; | 
|  | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 
|  | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 
|  | tp.tv_sec++; | 
|  | } | 
|  | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
|  |  | 
|  | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 
|  |  | 
|  | val.procs = nr_threads; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | si_meminfo(&val); | 
|  | si_swapinfo(&val); | 
|  |  | 
|  | /* | 
|  | * If the sum of all the available memory (i.e. ram + swap) | 
|  | * is less than can be stored in a 32 bit unsigned long then | 
|  | * we can be binary compatible with 2.2.x kernels.  If not, | 
|  | * well, in that case 2.2.x was broken anyways... | 
|  | * | 
|  | *  -Erik Andersen <andersee@debian.org> | 
|  | */ | 
|  |  | 
|  | mem_total = val.totalram + val.totalswap; | 
|  | if (mem_total < val.totalram || mem_total < val.totalswap) | 
|  | goto out; | 
|  | bitcount = 0; | 
|  | mem_unit = val.mem_unit; | 
|  | while (mem_unit > 1) { | 
|  | bitcount++; | 
|  | mem_unit >>= 1; | 
|  | sav_total = mem_total; | 
|  | mem_total <<= 1; | 
|  | if (mem_total < sav_total) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If mem_total did not overflow, multiply all memory values by | 
|  | * val.mem_unit and set it to 1.  This leaves things compatible | 
|  | * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
|  | * kernels... | 
|  | */ | 
|  |  | 
|  | val.mem_unit = 1; | 
|  | val.totalram <<= bitcount; | 
|  | val.freeram <<= bitcount; | 
|  | val.sharedram <<= bitcount; | 
|  | val.bufferram <<= bitcount; | 
|  | val.totalswap <<= bitcount; | 
|  | val.freeswap <<= bitcount; | 
|  | val.totalhigh <<= bitcount; | 
|  | val.freehigh <<= bitcount; | 
|  |  | 
|  | out: | 
|  | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __devinit init_timers_cpu(int cpu) | 
|  | { | 
|  | int j; | 
|  | tvec_base_t *base; | 
|  |  | 
|  | base = &per_cpu(tvec_bases, cpu); | 
|  | spin_lock_init(&base->t_base.lock); | 
|  | for (j = 0; j < TVN_SIZE; j++) { | 
|  | INIT_LIST_HEAD(base->tv5.vec + j); | 
|  | INIT_LIST_HEAD(base->tv4.vec + j); | 
|  | INIT_LIST_HEAD(base->tv3.vec + j); | 
|  | INIT_LIST_HEAD(base->tv2.vec + j); | 
|  | } | 
|  | for (j = 0; j < TVR_SIZE; j++) | 
|  | INIT_LIST_HEAD(base->tv1.vec + j); | 
|  |  | 
|  | base->timer_jiffies = jiffies; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 
|  | { | 
|  | struct timer_list *timer; | 
|  |  | 
|  | while (!list_empty(head)) { | 
|  | timer = list_entry(head->next, struct timer_list, entry); | 
|  | detach_timer(timer, 0); | 
|  | timer->base = &new_base->t_base; | 
|  | internal_add_timer(new_base, timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __devinit migrate_timers(int cpu) | 
|  | { | 
|  | tvec_base_t *old_base; | 
|  | tvec_base_t *new_base; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(cpu_online(cpu)); | 
|  | old_base = &per_cpu(tvec_bases, cpu); | 
|  | new_base = &get_cpu_var(tvec_bases); | 
|  |  | 
|  | local_irq_disable(); | 
|  | spin_lock(&new_base->t_base.lock); | 
|  | spin_lock(&old_base->t_base.lock); | 
|  |  | 
|  | if (old_base->t_base.running_timer) | 
|  | BUG(); | 
|  | for (i = 0; i < TVR_SIZE; i++) | 
|  | migrate_timer_list(new_base, old_base->tv1.vec + i); | 
|  | for (i = 0; i < TVN_SIZE; i++) { | 
|  | migrate_timer_list(new_base, old_base->tv2.vec + i); | 
|  | migrate_timer_list(new_base, old_base->tv3.vec + i); | 
|  | migrate_timer_list(new_base, old_base->tv4.vec + i); | 
|  | migrate_timer_list(new_base, old_base->tv5.vec + i); | 
|  | } | 
|  |  | 
|  | spin_unlock(&old_base->t_base.lock); | 
|  | spin_unlock(&new_base->t_base.lock); | 
|  | local_irq_enable(); | 
|  | put_cpu_var(tvec_bases); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | static int __devinit timer_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  | switch(action) { | 
|  | case CPU_UP_PREPARE: | 
|  | init_timers_cpu(cpu); | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DEAD: | 
|  | migrate_timers(cpu); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __devinitdata timers_nb = { | 
|  | .notifier_call	= timer_cpu_notify, | 
|  | }; | 
|  |  | 
|  |  | 
|  | void __init init_timers(void) | 
|  | { | 
|  | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | (void *)(long)smp_processor_id()); | 
|  | register_cpu_notifier(&timers_nb); | 
|  | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TIME_INTERPOLATION | 
|  |  | 
|  | struct time_interpolator *time_interpolator; | 
|  | static struct time_interpolator *time_interpolator_list; | 
|  | static DEFINE_SPINLOCK(time_interpolator_lock); | 
|  |  | 
|  | static inline u64 time_interpolator_get_cycles(unsigned int src) | 
|  | { | 
|  | unsigned long (*x)(void); | 
|  |  | 
|  | switch (src) | 
|  | { | 
|  | case TIME_SOURCE_FUNCTION: | 
|  | x = time_interpolator->addr; | 
|  | return x(); | 
|  |  | 
|  | case TIME_SOURCE_MMIO64	: | 
|  | return readq((void __iomem *) time_interpolator->addr); | 
|  |  | 
|  | case TIME_SOURCE_MMIO32	: | 
|  | return readl((void __iomem *) time_interpolator->addr); | 
|  |  | 
|  | default: return get_cycles(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline u64 time_interpolator_get_counter(int writelock) | 
|  | { | 
|  | unsigned int src = time_interpolator->source; | 
|  |  | 
|  | if (time_interpolator->jitter) | 
|  | { | 
|  | u64 lcycle; | 
|  | u64 now; | 
|  |  | 
|  | do { | 
|  | lcycle = time_interpolator->last_cycle; | 
|  | now = time_interpolator_get_cycles(src); | 
|  | if (lcycle && time_after(lcycle, now)) | 
|  | return lcycle; | 
|  |  | 
|  | /* When holding the xtime write lock, there's no need | 
|  | * to add the overhead of the cmpxchg.  Readers are | 
|  | * force to retry until the write lock is released. | 
|  | */ | 
|  | if (writelock) { | 
|  | time_interpolator->last_cycle = now; | 
|  | return now; | 
|  | } | 
|  | /* Keep track of the last timer value returned. The use of cmpxchg here | 
|  | * will cause contention in an SMP environment. | 
|  | */ | 
|  | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 
|  | return now; | 
|  | } | 
|  | else | 
|  | return time_interpolator_get_cycles(src); | 
|  | } | 
|  |  | 
|  | void time_interpolator_reset(void) | 
|  | { | 
|  | time_interpolator->offset = 0; | 
|  | time_interpolator->last_counter = time_interpolator_get_counter(1); | 
|  | } | 
|  |  | 
|  | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 
|  |  | 
|  | unsigned long time_interpolator_get_offset(void) | 
|  | { | 
|  | /* If we do not have a time interpolator set up then just return zero */ | 
|  | if (!time_interpolator) | 
|  | return 0; | 
|  |  | 
|  | return time_interpolator->offset + | 
|  | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | 
|  | } | 
|  |  | 
|  | #define INTERPOLATOR_ADJUST 65536 | 
|  | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 
|  |  | 
|  | static void time_interpolator_update(long delta_nsec) | 
|  | { | 
|  | u64 counter; | 
|  | unsigned long offset; | 
|  |  | 
|  | /* If there is no time interpolator set up then do nothing */ | 
|  | if (!time_interpolator) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The interpolator compensates for late ticks by accumulating the late | 
|  | * time in time_interpolator->offset. A tick earlier than expected will | 
|  | * lead to a reset of the offset and a corresponding jump of the clock | 
|  | * forward. Again this only works if the interpolator clock is running | 
|  | * slightly slower than the regular clock and the tuning logic insures | 
|  | * that. | 
|  | */ | 
|  |  | 
|  | counter = time_interpolator_get_counter(1); | 
|  | offset = time_interpolator->offset + | 
|  | GET_TI_NSECS(counter, time_interpolator); | 
|  |  | 
|  | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 
|  | time_interpolator->offset = offset - delta_nsec; | 
|  | else { | 
|  | time_interpolator->skips++; | 
|  | time_interpolator->ns_skipped += delta_nsec - offset; | 
|  | time_interpolator->offset = 0; | 
|  | } | 
|  | time_interpolator->last_counter = counter; | 
|  |  | 
|  | /* Tuning logic for time interpolator invoked every minute or so. | 
|  | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 
|  | * Increase interpolator clock speed if we skip too much time. | 
|  | */ | 
|  | if (jiffies % INTERPOLATOR_ADJUST == 0) | 
|  | { | 
|  | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | 
|  | time_interpolator->nsec_per_cyc--; | 
|  | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 
|  | time_interpolator->nsec_per_cyc++; | 
|  | time_interpolator->skips = 0; | 
|  | time_interpolator->ns_skipped = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | is_better_time_interpolator(struct time_interpolator *new) | 
|  | { | 
|  | if (!time_interpolator) | 
|  | return 1; | 
|  | return new->frequency > 2*time_interpolator->frequency || | 
|  | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 
|  | } | 
|  |  | 
|  | void | 
|  | register_time_interpolator(struct time_interpolator *ti) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Sanity check */ | 
|  | if (ti->frequency == 0 || ti->mask == 0) | 
|  | BUG(); | 
|  |  | 
|  | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 
|  | spin_lock(&time_interpolator_lock); | 
|  | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | if (is_better_time_interpolator(ti)) { | 
|  | time_interpolator = ti; | 
|  | time_interpolator_reset(); | 
|  | } | 
|  | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  |  | 
|  | ti->next = time_interpolator_list; | 
|  | time_interpolator_list = ti; | 
|  | spin_unlock(&time_interpolator_lock); | 
|  | } | 
|  |  | 
|  | void | 
|  | unregister_time_interpolator(struct time_interpolator *ti) | 
|  | { | 
|  | struct time_interpolator *curr, **prev; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock(&time_interpolator_lock); | 
|  | prev = &time_interpolator_list; | 
|  | for (curr = *prev; curr; curr = curr->next) { | 
|  | if (curr == ti) { | 
|  | *prev = curr->next; | 
|  | break; | 
|  | } | 
|  | prev = &curr->next; | 
|  | } | 
|  |  | 
|  | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | if (ti == time_interpolator) { | 
|  | /* we lost the best time-interpolator: */ | 
|  | time_interpolator = NULL; | 
|  | /* find the next-best interpolator */ | 
|  | for (curr = time_interpolator_list; curr; curr = curr->next) | 
|  | if (is_better_time_interpolator(curr)) | 
|  | time_interpolator = curr; | 
|  | time_interpolator_reset(); | 
|  | } | 
|  | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | spin_unlock(&time_interpolator_lock); | 
|  | } | 
|  | #endif /* CONFIG_TIME_INTERPOLATION */ | 
|  |  | 
|  | /** | 
|  | * msleep - sleep safely even with waitqueue interruptions | 
|  | * @msecs: Time in milliseconds to sleep for | 
|  | */ | 
|  | void msleep(unsigned int msecs) | 
|  | { | 
|  | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  |  | 
|  | while (timeout) | 
|  | timeout = schedule_timeout_uninterruptible(timeout); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(msleep); | 
|  |  | 
|  | /** | 
|  | * msleep_interruptible - sleep waiting for signals | 
|  | * @msecs: Time in milliseconds to sleep for | 
|  | */ | 
|  | unsigned long msleep_interruptible(unsigned int msecs) | 
|  | { | 
|  | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  |  | 
|  | while (timeout && !signal_pending(current)) | 
|  | timeout = schedule_timeout_interruptible(timeout); | 
|  | return jiffies_to_msecs(timeout); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(msleep_interruptible); |