| /* |
| * drivers/power/process.c - Functions for starting/stopping processes on |
| * suspend transitions. |
| * |
| * Originally from swsusp. |
| */ |
| |
| |
| #undef DEBUG |
| |
| #include <linux/interrupt.h> |
| #include <linux/suspend.h> |
| #include <linux/module.h> |
| #include <linux/syscalls.h> |
| #include <linux/freezer.h> |
| |
| /* |
| * Timeout for stopping processes |
| */ |
| #define TIMEOUT (20 * HZ) |
| |
| #define FREEZER_KERNEL_THREADS 0 |
| #define FREEZER_USER_SPACE 1 |
| |
| static inline int freezeable(struct task_struct * p) |
| { |
| if ((p == current) || |
| (p->flags & PF_NOFREEZE) || |
| (p->exit_state != 0)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * freezing is complete, mark current process as frozen |
| */ |
| static inline void frozen_process(void) |
| { |
| if (!unlikely(current->flags & PF_NOFREEZE)) { |
| current->flags |= PF_FROZEN; |
| wmb(); |
| } |
| clear_freeze_flag(current); |
| } |
| |
| /* Refrigerator is place where frozen processes are stored :-). */ |
| void refrigerator(void) |
| { |
| /* Hmm, should we be allowed to suspend when there are realtime |
| processes around? */ |
| long save; |
| |
| task_lock(current); |
| if (freezing(current)) { |
| frozen_process(); |
| task_unlock(current); |
| } else { |
| task_unlock(current); |
| return; |
| } |
| save = current->state; |
| pr_debug("%s entered refrigerator\n", current->comm); |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| recalc_sigpending(); /* We sent fake signal, clean it up */ |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (!frozen(current)) |
| break; |
| schedule(); |
| } |
| pr_debug("%s left refrigerator\n", current->comm); |
| __set_current_state(save); |
| } |
| |
| static void fake_signal_wake_up(struct task_struct *p, int resume) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| signal_wake_up(p, resume); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| } |
| |
| static void send_fake_signal(struct task_struct *p) |
| { |
| if (task_is_stopped(p)) |
| force_sig_specific(SIGSTOP, p); |
| fake_signal_wake_up(p, task_is_stopped(p)); |
| } |
| |
| static int has_mm(struct task_struct *p) |
| { |
| return (p->mm && !(p->flags & PF_BORROWED_MM)); |
| } |
| |
| /** |
| * freeze_task - send a freeze request to given task |
| * @p: task to send the request to |
| * @with_mm_only: if set, the request will only be sent if the task has its |
| * own mm |
| * Return value: 0, if @with_mm_only is set and the task has no mm of its |
| * own or the task is frozen, 1, otherwise |
| * |
| * The freeze request is sent by seting the tasks's TIF_FREEZE flag and |
| * either sending a fake signal to it or waking it up, depending on whether |
| * or not it has its own mm (ie. it is a user land task). If @with_mm_only |
| * is set and the task has no mm of its own (ie. it is a kernel thread), |
| * its TIF_FREEZE flag should not be set. |
| * |
| * The task_lock() is necessary to prevent races with exit_mm() or |
| * use_mm()/unuse_mm() from occuring. |
| */ |
| static int freeze_task(struct task_struct *p, int with_mm_only) |
| { |
| int ret = 1; |
| |
| task_lock(p); |
| if (freezing(p)) { |
| if (has_mm(p)) { |
| if (!signal_pending(p)) |
| fake_signal_wake_up(p, 0); |
| } else { |
| if (with_mm_only) |
| ret = 0; |
| else |
| wake_up_state(p, TASK_INTERRUPTIBLE); |
| } |
| } else { |
| rmb(); |
| if (frozen(p)) { |
| ret = 0; |
| } else { |
| if (has_mm(p)) { |
| set_freeze_flag(p); |
| send_fake_signal(p); |
| } else { |
| if (with_mm_only) { |
| ret = 0; |
| } else { |
| set_freeze_flag(p); |
| wake_up_state(p, TASK_INTERRUPTIBLE); |
| } |
| } |
| } |
| } |
| task_unlock(p); |
| return ret; |
| } |
| |
| static void cancel_freezing(struct task_struct *p) |
| { |
| unsigned long flags; |
| |
| if (freezing(p)) { |
| pr_debug(" clean up: %s\n", p->comm); |
| clear_freeze_flag(p); |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| recalc_sigpending_and_wake(p); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| } |
| } |
| |
| static int try_to_freeze_tasks(int freeze_user_space) |
| { |
| struct task_struct *g, *p; |
| unsigned long end_time; |
| unsigned int todo; |
| struct timeval start, end; |
| s64 elapsed_csecs64; |
| unsigned int elapsed_csecs; |
| |
| do_gettimeofday(&start); |
| |
| end_time = jiffies + TIMEOUT; |
| do { |
| todo = 0; |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| if (frozen(p) || !freezeable(p)) |
| continue; |
| |
| if (task_is_traced(p) && frozen(p->parent)) { |
| cancel_freezing(p); |
| continue; |
| } |
| |
| if (!freeze_task(p, freeze_user_space)) |
| continue; |
| |
| if (!freezer_should_skip(p)) |
| todo++; |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| yield(); /* Yield is okay here */ |
| if (time_after(jiffies, end_time)) |
| break; |
| } while (todo); |
| |
| do_gettimeofday(&end); |
| elapsed_csecs64 = timeval_to_ns(&end) - timeval_to_ns(&start); |
| do_div(elapsed_csecs64, NSEC_PER_SEC / 100); |
| elapsed_csecs = elapsed_csecs64; |
| |
| if (todo) { |
| /* This does not unfreeze processes that are already frozen |
| * (we have slightly ugly calling convention in that respect, |
| * and caller must call thaw_processes() if something fails), |
| * but it cleans up leftover PF_FREEZE requests. |
| */ |
| printk("\n"); |
| printk(KERN_ERR "Freezing of tasks failed after %d.%02d seconds " |
| "(%d tasks refusing to freeze):\n", |
| elapsed_csecs / 100, elapsed_csecs % 100, todo); |
| show_state(); |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| task_lock(p); |
| if (freezing(p) && !freezer_should_skip(p)) |
| printk(KERN_ERR " %s\n", p->comm); |
| cancel_freezing(p); |
| task_unlock(p); |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| } else { |
| printk("(elapsed %d.%02d seconds) ", elapsed_csecs / 100, |
| elapsed_csecs % 100); |
| } |
| |
| return todo ? -EBUSY : 0; |
| } |
| |
| /** |
| * freeze_processes - tell processes to enter the refrigerator |
| */ |
| int freeze_processes(void) |
| { |
| int error; |
| |
| printk("Freezing user space processes ... "); |
| error = try_to_freeze_tasks(FREEZER_USER_SPACE); |
| if (error) |
| goto Exit; |
| printk("done.\n"); |
| |
| printk("Freezing remaining freezable tasks ... "); |
| error = try_to_freeze_tasks(FREEZER_KERNEL_THREADS); |
| if (error) |
| goto Exit; |
| printk("done."); |
| Exit: |
| BUG_ON(in_atomic()); |
| printk("\n"); |
| return error; |
| } |
| |
| static void thaw_tasks(int thaw_user_space) |
| { |
| struct task_struct *g, *p; |
| |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| if (!freezeable(p)) |
| continue; |
| |
| if (!p->mm == thaw_user_space) |
| continue; |
| |
| thaw_process(p); |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| } |
| |
| void thaw_processes(void) |
| { |
| printk("Restarting tasks ... "); |
| thaw_tasks(FREEZER_KERNEL_THREADS); |
| thaw_tasks(FREEZER_USER_SPACE); |
| schedule(); |
| printk("done.\n"); |
| } |
| |
| EXPORT_SYMBOL(refrigerator); |