| /* |
| * apb_timer.c: Driver for Langwell APB timers |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * Author: Jacob Pan (jacob.jun.pan@intel.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| * |
| * Note: |
| * Langwell is the south complex of Intel Moorestown MID platform. There are |
| * eight external timers in total that can be used by the operating system. |
| * The timer information, such as frequency and addresses, is provided to the |
| * OS via SFI tables. |
| * Timer interrupts are routed via FW/HW emulated IOAPIC independently via |
| * individual redirection table entries (RTE). |
| * Unlike HPET, there is no master counter, therefore one of the timers are |
| * used as clocksource. The overall allocation looks like: |
| * - timer 0 - NR_CPUs for per cpu timer |
| * - one timer for clocksource |
| * - one timer for watchdog driver. |
| * It is also worth notice that APB timer does not support true one-shot mode, |
| * free-running mode will be used here to emulate one-shot mode. |
| * APB timer can also be used as broadcast timer along with per cpu local APIC |
| * timer, but by default APB timer has higher rating than local APIC timers. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/dw_apb_timer.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/pm.h> |
| #include <linux/sfi.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/irq.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/apb_timer.h> |
| #include <asm/intel-mid.h> |
| #include <asm/time.h> |
| |
| #define APBT_CLOCKEVENT_RATING 110 |
| #define APBT_CLOCKSOURCE_RATING 250 |
| |
| #define APBT_CLOCKEVENT0_NUM (0) |
| #define APBT_CLOCKSOURCE_NUM (2) |
| |
| static phys_addr_t apbt_address; |
| static int apb_timer_block_enabled; |
| static void __iomem *apbt_virt_address; |
| |
| /* |
| * Common DW APB timer info |
| */ |
| static unsigned long apbt_freq; |
| |
| struct apbt_dev { |
| struct dw_apb_clock_event_device *timer; |
| unsigned int num; |
| int cpu; |
| unsigned int irq; |
| char name[10]; |
| }; |
| |
| static struct dw_apb_clocksource *clocksource_apbt; |
| |
| static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) |
| { |
| return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; |
| } |
| |
| static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); |
| |
| #ifdef CONFIG_SMP |
| static unsigned int apbt_num_timers_used; |
| #endif |
| |
| static inline void apbt_set_mapping(void) |
| { |
| struct sfi_timer_table_entry *mtmr; |
| int phy_cs_timer_id = 0; |
| |
| if (apbt_virt_address) { |
| pr_debug("APBT base already mapped\n"); |
| return; |
| } |
| mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| if (mtmr == NULL) { |
| printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| APBT_CLOCKEVENT0_NUM); |
| return; |
| } |
| apbt_address = (phys_addr_t)mtmr->phys_addr; |
| if (!apbt_address) { |
| printk(KERN_WARNING "No timer base from SFI, use default\n"); |
| apbt_address = APBT_DEFAULT_BASE; |
| } |
| apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); |
| if (!apbt_virt_address) { |
| pr_debug("Failed mapping APBT phy address at %lu\n",\ |
| (unsigned long)apbt_address); |
| goto panic_noapbt; |
| } |
| apbt_freq = mtmr->freq_hz; |
| sfi_free_mtmr(mtmr); |
| |
| /* Now figure out the physical timer id for clocksource device */ |
| mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); |
| if (mtmr == NULL) |
| goto panic_noapbt; |
| |
| /* Now figure out the physical timer id */ |
| pr_debug("Use timer %d for clocksource\n", |
| (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); |
| phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / |
| APBTMRS_REG_SIZE; |
| |
| clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, |
| "apbt0", apbt_virt_address + phy_cs_timer_id * |
| APBTMRS_REG_SIZE, apbt_freq); |
| return; |
| |
| panic_noapbt: |
| panic("Failed to setup APB system timer\n"); |
| |
| } |
| |
| static inline void apbt_clear_mapping(void) |
| { |
| iounmap(apbt_virt_address); |
| apbt_virt_address = NULL; |
| } |
| |
| /* |
| * APBT timer interrupt enable / disable |
| */ |
| static inline int is_apbt_capable(void) |
| { |
| return apbt_virt_address ? 1 : 0; |
| } |
| |
| static int __init apbt_clockevent_register(void) |
| { |
| struct sfi_timer_table_entry *mtmr; |
| struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); |
| |
| mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| if (mtmr == NULL) { |
| printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| APBT_CLOCKEVENT0_NUM); |
| return -ENODEV; |
| } |
| |
| adev->num = smp_processor_id(); |
| adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", |
| intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ? |
| APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, |
| adev_virt_addr(adev), 0, apbt_freq); |
| /* Firmware does EOI handling for us. */ |
| adev->timer->eoi = NULL; |
| |
| if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { |
| global_clock_event = &adev->timer->ced; |
| printk(KERN_DEBUG "%s clockevent registered as global\n", |
| global_clock_event->name); |
| } |
| |
| dw_apb_clockevent_register(adev->timer); |
| |
| sfi_free_mtmr(mtmr); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void apbt_setup_irq(struct apbt_dev *adev) |
| { |
| /* timer0 irq has been setup early */ |
| if (adev->irq == 0) |
| return; |
| |
| irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); |
| irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); |
| /* APB timer irqs are set up as mp_irqs, timer is edge type */ |
| __irq_set_handler(adev->irq, handle_edge_irq, 0, "edge"); |
| } |
| |
| /* Should be called with per cpu */ |
| void apbt_setup_secondary_clock(void) |
| { |
| struct apbt_dev *adev; |
| int cpu; |
| |
| /* Don't register boot CPU clockevent */ |
| cpu = smp_processor_id(); |
| if (!cpu) |
| return; |
| |
| adev = &__get_cpu_var(cpu_apbt_dev); |
| if (!adev->timer) { |
| adev->timer = dw_apb_clockevent_init(cpu, adev->name, |
| APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), |
| adev->irq, apbt_freq); |
| adev->timer->eoi = NULL; |
| } else { |
| dw_apb_clockevent_resume(adev->timer); |
| } |
| |
| printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", |
| cpu, adev->name, adev->cpu); |
| |
| apbt_setup_irq(adev); |
| dw_apb_clockevent_register(adev->timer); |
| |
| return; |
| } |
| |
| /* |
| * this notify handler process CPU hotplug events. in case of S0i3, nonboot |
| * cpus are disabled/enabled frequently, for performance reasons, we keep the |
| * per cpu timer irq registered so that we do need to do free_irq/request_irq. |
| * |
| * TODO: it might be more reliable to directly disable percpu clockevent device |
| * without the notifier chain. currently, cpu 0 may get interrupts from other |
| * cpu timers during the offline process due to the ordering of notification. |
| * the extra interrupt is harmless. |
| */ |
| static int apbt_cpuhp_notify(struct notifier_block *n, |
| unsigned long action, void *hcpu) |
| { |
| unsigned long cpu = (unsigned long)hcpu; |
| struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); |
| |
| switch (action & 0xf) { |
| case CPU_DEAD: |
| dw_apb_clockevent_pause(adev->timer); |
| if (system_state == SYSTEM_RUNNING) { |
| pr_debug("skipping APBT CPU %lu offline\n", cpu); |
| } else { |
| pr_debug("APBT clockevent for cpu %lu offline\n", cpu); |
| dw_apb_clockevent_stop(adev->timer); |
| } |
| break; |
| default: |
| pr_debug("APBT notified %lu, no action\n", action); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static __init int apbt_late_init(void) |
| { |
| if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT || |
| !apb_timer_block_enabled) |
| return 0; |
| /* This notifier should be called after workqueue is ready */ |
| hotcpu_notifier(apbt_cpuhp_notify, -20); |
| return 0; |
| } |
| fs_initcall(apbt_late_init); |
| #else |
| |
| void apbt_setup_secondary_clock(void) {} |
| |
| #endif /* CONFIG_SMP */ |
| |
| static int apbt_clocksource_register(void) |
| { |
| u64 start, now; |
| cycle_t t1; |
| |
| /* Start the counter, use timer 2 as source, timer 0/1 for event */ |
| dw_apb_clocksource_start(clocksource_apbt); |
| |
| /* Verify whether apbt counter works */ |
| t1 = dw_apb_clocksource_read(clocksource_apbt); |
| rdtscll(start); |
| |
| /* |
| * We don't know the TSC frequency yet, but waiting for |
| * 200000 TSC cycles is safe: |
| * 4 GHz == 50us |
| * 1 GHz == 200us |
| */ |
| do { |
| rep_nop(); |
| rdtscll(now); |
| } while ((now - start) < 200000UL); |
| |
| /* APBT is the only always on clocksource, it has to work! */ |
| if (t1 == dw_apb_clocksource_read(clocksource_apbt)) |
| panic("APBT counter not counting. APBT disabled\n"); |
| |
| dw_apb_clocksource_register(clocksource_apbt); |
| |
| return 0; |
| } |
| |
| /* |
| * Early setup the APBT timer, only use timer 0 for booting then switch to |
| * per CPU timer if possible. |
| * returns 1 if per cpu apbt is setup |
| * returns 0 if no per cpu apbt is chosen |
| * panic if set up failed, this is the only platform timer on Moorestown. |
| */ |
| void __init apbt_time_init(void) |
| { |
| #ifdef CONFIG_SMP |
| int i; |
| struct sfi_timer_table_entry *p_mtmr; |
| struct apbt_dev *adev; |
| #endif |
| |
| if (apb_timer_block_enabled) |
| return; |
| apbt_set_mapping(); |
| if (!apbt_virt_address) |
| goto out_noapbt; |
| /* |
| * Read the frequency and check for a sane value, for ESL model |
| * we extend the possible clock range to allow time scaling. |
| */ |
| |
| if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { |
| pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); |
| goto out_noapbt; |
| } |
| if (apbt_clocksource_register()) { |
| pr_debug("APBT has failed to register clocksource\n"); |
| goto out_noapbt; |
| } |
| if (!apbt_clockevent_register()) |
| apb_timer_block_enabled = 1; |
| else { |
| pr_debug("APBT has failed to register clockevent\n"); |
| goto out_noapbt; |
| } |
| #ifdef CONFIG_SMP |
| /* kernel cmdline disable apb timer, so we will use lapic timers */ |
| if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { |
| printk(KERN_INFO "apbt: disabled per cpu timer\n"); |
| return; |
| } |
| pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); |
| if (num_possible_cpus() <= sfi_mtimer_num) |
| apbt_num_timers_used = num_possible_cpus(); |
| else |
| apbt_num_timers_used = 1; |
| pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); |
| |
| /* here we set up per CPU timer data structure */ |
| for (i = 0; i < apbt_num_timers_used; i++) { |
| adev = &per_cpu(cpu_apbt_dev, i); |
| adev->num = i; |
| adev->cpu = i; |
| p_mtmr = sfi_get_mtmr(i); |
| if (p_mtmr) |
| adev->irq = p_mtmr->irq; |
| else |
| printk(KERN_ERR "Failed to get timer for cpu %d\n", i); |
| snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); |
| } |
| #endif |
| |
| return; |
| |
| out_noapbt: |
| apbt_clear_mapping(); |
| apb_timer_block_enabled = 0; |
| panic("failed to enable APB timer\n"); |
| } |
| |
| /* called before apb_timer_enable, use early map */ |
| unsigned long apbt_quick_calibrate(void) |
| { |
| int i, scale; |
| u64 old, new; |
| cycle_t t1, t2; |
| unsigned long khz = 0; |
| u32 loop, shift; |
| |
| apbt_set_mapping(); |
| dw_apb_clocksource_start(clocksource_apbt); |
| |
| /* check if the timer can count down, otherwise return */ |
| old = dw_apb_clocksource_read(clocksource_apbt); |
| i = 10000; |
| while (--i) { |
| if (old != dw_apb_clocksource_read(clocksource_apbt)) |
| break; |
| } |
| if (!i) |
| goto failed; |
| |
| /* count 16 ms */ |
| loop = (apbt_freq / 1000) << 4; |
| |
| /* restart the timer to ensure it won't get to 0 in the calibration */ |
| dw_apb_clocksource_start(clocksource_apbt); |
| |
| old = dw_apb_clocksource_read(clocksource_apbt); |
| old += loop; |
| |
| t1 = __native_read_tsc(); |
| |
| do { |
| new = dw_apb_clocksource_read(clocksource_apbt); |
| } while (new < old); |
| |
| t2 = __native_read_tsc(); |
| |
| shift = 5; |
| if (unlikely(loop >> shift == 0)) { |
| printk(KERN_INFO |
| "APBT TSC calibration failed, not enough resolution\n"); |
| return 0; |
| } |
| scale = (int)div_u64((t2 - t1), loop >> shift); |
| khz = (scale * (apbt_freq / 1000)) >> shift; |
| printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); |
| return khz; |
| failed: |
| return 0; |
| } |