| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/prctl.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/module.h> |
| #include <linux/pm.h> |
| #include <linux/clockchips.h> |
| #include <linux/random.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/dmi.h> |
| #include <linux/utsname.h> |
| #include <linux/stackprotector.h> |
| #include <linux/tick.h> |
| #include <linux/cpuidle.h> |
| #include <trace/events/power.h> |
| #include <linux/hw_breakpoint.h> |
| #include <asm/cpu.h> |
| #include <asm/apic.h> |
| #include <asm/syscalls.h> |
| #include <asm/idle.h> |
| #include <asm/uaccess.h> |
| #include <asm/i387.h> |
| #include <asm/fpu-internal.h> |
| #include <asm/debugreg.h> |
| #include <asm/nmi.h> |
| |
| /* |
| * per-CPU TSS segments. Threads are completely 'soft' on Linux, |
| * no more per-task TSS's. The TSS size is kept cacheline-aligned |
| * so they are allowed to end up in the .data..cacheline_aligned |
| * section. Since TSS's are completely CPU-local, we want them |
| * on exact cacheline boundaries, to eliminate cacheline ping-pong. |
| */ |
| __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS; |
| |
| #ifdef CONFIG_X86_64 |
| static DEFINE_PER_CPU(unsigned char, is_idle); |
| static ATOMIC_NOTIFIER_HEAD(idle_notifier); |
| |
| void idle_notifier_register(struct notifier_block *n) |
| { |
| atomic_notifier_chain_register(&idle_notifier, n); |
| } |
| EXPORT_SYMBOL_GPL(idle_notifier_register); |
| |
| void idle_notifier_unregister(struct notifier_block *n) |
| { |
| atomic_notifier_chain_unregister(&idle_notifier, n); |
| } |
| EXPORT_SYMBOL_GPL(idle_notifier_unregister); |
| #endif |
| |
| struct kmem_cache *task_xstate_cachep; |
| EXPORT_SYMBOL_GPL(task_xstate_cachep); |
| |
| /* |
| * this gets called so that we can store lazy state into memory and copy the |
| * current task into the new thread. |
| */ |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| int ret; |
| |
| *dst = *src; |
| if (fpu_allocated(&src->thread.fpu)) { |
| memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); |
| ret = fpu_alloc(&dst->thread.fpu); |
| if (ret) |
| return ret; |
| fpu_copy(dst, src); |
| } |
| return 0; |
| } |
| |
| void free_thread_xstate(struct task_struct *tsk) |
| { |
| fpu_free(&tsk->thread.fpu); |
| } |
| |
| void arch_release_task_struct(struct task_struct *tsk) |
| { |
| free_thread_xstate(tsk); |
| } |
| |
| void arch_task_cache_init(void) |
| { |
| task_xstate_cachep = |
| kmem_cache_create("task_xstate", xstate_size, |
| __alignof__(union thread_xstate), |
| SLAB_PANIC | SLAB_NOTRACK, NULL); |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| struct task_struct *me = current; |
| struct thread_struct *t = &me->thread; |
| unsigned long *bp = t->io_bitmap_ptr; |
| |
| if (bp) { |
| struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); |
| |
| t->io_bitmap_ptr = NULL; |
| clear_thread_flag(TIF_IO_BITMAP); |
| /* |
| * Careful, clear this in the TSS too: |
| */ |
| memset(tss->io_bitmap, 0xff, t->io_bitmap_max); |
| t->io_bitmap_max = 0; |
| put_cpu(); |
| kfree(bp); |
| } |
| |
| drop_fpu(me); |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| flush_ptrace_hw_breakpoint(tsk); |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| drop_init_fpu(tsk); |
| /* |
| * Free the FPU state for non xsave platforms. They get reallocated |
| * lazily at the first use. |
| */ |
| if (!use_eager_fpu()) |
| free_thread_xstate(tsk); |
| } |
| |
| static void hard_disable_TSC(void) |
| { |
| write_cr4(read_cr4() | X86_CR4_TSD); |
| } |
| |
| void disable_TSC(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_disable_TSC(); |
| preempt_enable(); |
| } |
| |
| static void hard_enable_TSC(void) |
| { |
| write_cr4(read_cr4() & ~X86_CR4_TSD); |
| } |
| |
| static void enable_TSC(void) |
| { |
| preempt_disable(); |
| if (test_and_clear_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_enable_TSC(); |
| preempt_enable(); |
| } |
| |
| int get_tsc_mode(unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (test_thread_flag(TIF_NOTSC)) |
| val = PR_TSC_SIGSEGV; |
| else |
| val = PR_TSC_ENABLE; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_tsc_mode(unsigned int val) |
| { |
| if (val == PR_TSC_SIGSEGV) |
| disable_TSC(); |
| else if (val == PR_TSC_ENABLE) |
| enable_TSC(); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, |
| struct tss_struct *tss) |
| { |
| struct thread_struct *prev, *next; |
| |
| prev = &prev_p->thread; |
| next = &next_p->thread; |
| |
| if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ |
| test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { |
| unsigned long debugctl = get_debugctlmsr(); |
| |
| debugctl &= ~DEBUGCTLMSR_BTF; |
| if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) |
| debugctl |= DEBUGCTLMSR_BTF; |
| |
| update_debugctlmsr(debugctl); |
| } |
| |
| if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ |
| test_tsk_thread_flag(next_p, TIF_NOTSC)) { |
| /* prev and next are different */ |
| if (test_tsk_thread_flag(next_p, TIF_NOTSC)) |
| hard_disable_TSC(); |
| else |
| hard_enable_TSC(); |
| } |
| |
| if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { |
| /* |
| * Copy the relevant range of the IO bitmap. |
| * Normally this is 128 bytes or less: |
| */ |
| memcpy(tss->io_bitmap, next->io_bitmap_ptr, |
| max(prev->io_bitmap_max, next->io_bitmap_max)); |
| } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { |
| /* |
| * Clear any possible leftover bits: |
| */ |
| memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); |
| } |
| propagate_user_return_notify(prev_p, next_p); |
| } |
| |
| /* |
| * Idle related variables and functions |
| */ |
| unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| static void (*x86_idle)(void); |
| |
| #ifndef CONFIG_SMP |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| void enter_idle(void) |
| { |
| this_cpu_write(is_idle, 1); |
| atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); |
| } |
| |
| static void __exit_idle(void) |
| { |
| if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) |
| return; |
| atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); |
| } |
| |
| /* Called from interrupts to signify idle end */ |
| void exit_idle(void) |
| { |
| /* idle loop has pid 0 */ |
| if (current->pid) |
| return; |
| __exit_idle(); |
| } |
| #endif |
| |
| void arch_cpu_idle_enter(void) |
| { |
| local_touch_nmi(); |
| enter_idle(); |
| } |
| |
| void arch_cpu_idle_exit(void) |
| { |
| __exit_idle(); |
| } |
| |
| void arch_cpu_idle_dead(void) |
| { |
| play_dead(); |
| } |
| |
| /* |
| * Called from the generic idle code. |
| */ |
| void arch_cpu_idle(void) |
| { |
| x86_idle(); |
| } |
| |
| /* |
| * We use this if we don't have any better idle routine.. |
| */ |
| void default_idle(void) |
| { |
| trace_cpu_idle_rcuidle(1, smp_processor_id()); |
| safe_halt(); |
| trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| #ifdef CONFIG_XEN |
| bool xen_set_default_idle(void) |
| { |
| bool ret = !!x86_idle; |
| |
| x86_idle = default_idle; |
| |
| return ret; |
| } |
| #endif |
| void stop_this_cpu(void *dummy) |
| { |
| local_irq_disable(); |
| /* |
| * Remove this CPU: |
| */ |
| set_cpu_online(smp_processor_id(), false); |
| disable_local_APIC(); |
| |
| for (;;) |
| halt(); |
| } |
| |
| bool amd_e400_c1e_detected; |
| EXPORT_SYMBOL(amd_e400_c1e_detected); |
| |
| static cpumask_var_t amd_e400_c1e_mask; |
| |
| void amd_e400_remove_cpu(int cpu) |
| { |
| if (amd_e400_c1e_mask != NULL) |
| cpumask_clear_cpu(cpu, amd_e400_c1e_mask); |
| } |
| |
| /* |
| * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt |
| * pending message MSR. If we detect C1E, then we handle it the same |
| * way as C3 power states (local apic timer and TSC stop) |
| */ |
| static void amd_e400_idle(void) |
| { |
| if (!amd_e400_c1e_detected) { |
| u32 lo, hi; |
| |
| rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
| |
| if (lo & K8_INTP_C1E_ACTIVE_MASK) { |
| amd_e400_c1e_detected = true; |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| mark_tsc_unstable("TSC halt in AMD C1E"); |
| pr_info("System has AMD C1E enabled\n"); |
| } |
| } |
| |
| if (amd_e400_c1e_detected) { |
| int cpu = smp_processor_id(); |
| |
| if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { |
| cpumask_set_cpu(cpu, amd_e400_c1e_mask); |
| /* |
| * Force broadcast so ACPI can not interfere. |
| */ |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, |
| &cpu); |
| pr_info("Switch to broadcast mode on CPU%d\n", cpu); |
| } |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); |
| |
| default_idle(); |
| |
| /* |
| * The switch back from broadcast mode needs to be |
| * called with interrupts disabled. |
| */ |
| local_irq_disable(); |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); |
| local_irq_enable(); |
| } else |
| default_idle(); |
| } |
| |
| void select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) |
| pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); |
| #endif |
| if (x86_idle || boot_option_idle_override == IDLE_POLL) |
| return; |
| |
| if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { |
| /* E400: APIC timer interrupt does not wake up CPU from C1e */ |
| pr_info("using AMD E400 aware idle routine\n"); |
| x86_idle = amd_e400_idle; |
| } else |
| x86_idle = default_idle; |
| } |
| |
| void __init init_amd_e400_c1e_mask(void) |
| { |
| /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ |
| if (x86_idle == amd_e400_idle) |
| zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); |
| } |
| |
| static int __init idle_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "poll")) { |
| pr_info("using polling idle threads\n"); |
| boot_option_idle_override = IDLE_POLL; |
| cpu_idle_poll_ctrl(true); |
| } else if (!strcmp(str, "halt")) { |
| /* |
| * When the boot option of idle=halt is added, halt is |
| * forced to be used for CPU idle. In such case CPU C2/C3 |
| * won't be used again. |
| * To continue to load the CPU idle driver, don't touch |
| * the boot_option_idle_override. |
| */ |
| x86_idle = default_idle; |
| boot_option_idle_override = IDLE_HALT; |
| } else if (!strcmp(str, "nomwait")) { |
| /* |
| * If the boot option of "idle=nomwait" is added, |
| * it means that mwait will be disabled for CPU C2/C3 |
| * states. In such case it won't touch the variable |
| * of boot_option_idle_override. |
| */ |
| boot_option_idle_override = IDLE_NOMWAIT; |
| } else |
| return -1; |
| |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| unsigned long range_end = mm->brk + 0x02000000; |
| return randomize_range(mm->brk, range_end, 0) ? : mm->brk; |
| } |
| |