|  | /* | 
|  | *  linux/mm/bootmem.c | 
|  | * | 
|  | *  Copyright (C) 1999 Ingo Molnar | 
|  | *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
|  | * | 
|  | *  simple boot-time physical memory area allocator and | 
|  | *  free memory collector. It's used to deal with reserved | 
|  | *  system memory and memory holes as well. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/io.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Access to this subsystem has to be serialized externally. (this is | 
|  | * true for the boot process anyway) | 
|  | */ | 
|  | unsigned long max_low_pfn; | 
|  | unsigned long min_low_pfn; | 
|  | unsigned long max_pfn; | 
|  |  | 
|  | EXPORT_SYMBOL(max_pfn);		/* This is exported so | 
|  | * dma_get_required_mask(), which uses | 
|  | * it, can be an inline function */ | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | /* | 
|  | * If we have booted due to a crash, max_pfn will be a very low value. We need | 
|  | * to know the amount of memory that the previous kernel used. | 
|  | */ | 
|  | unsigned long saved_max_pfn; | 
|  | #endif | 
|  |  | 
|  | /* return the number of _pages_ that will be allocated for the boot bitmap */ | 
|  | unsigned long __init bootmem_bootmap_pages (unsigned long pages) | 
|  | { | 
|  | unsigned long mapsize; | 
|  |  | 
|  | mapsize = (pages+7)/8; | 
|  | mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; | 
|  | mapsize >>= PAGE_SHIFT; | 
|  |  | 
|  | return mapsize; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called once to set up the allocator itself. | 
|  | */ | 
|  | static unsigned long __init init_bootmem_core (pg_data_t *pgdat, | 
|  | unsigned long mapstart, unsigned long start, unsigned long end) | 
|  | { | 
|  | bootmem_data_t *bdata = pgdat->bdata; | 
|  | unsigned long mapsize = ((end - start)+7)/8; | 
|  |  | 
|  | pgdat->pgdat_next = pgdat_list; | 
|  | pgdat_list = pgdat; | 
|  |  | 
|  | mapsize = ALIGN(mapsize, sizeof(long)); | 
|  | bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT); | 
|  | bdata->node_boot_start = (start << PAGE_SHIFT); | 
|  | bdata->node_low_pfn = end; | 
|  |  | 
|  | /* | 
|  | * Initially all pages are reserved - setup_arch() has to | 
|  | * register free RAM areas explicitly. | 
|  | */ | 
|  | memset(bdata->node_bootmem_map, 0xff, mapsize); | 
|  |  | 
|  | return mapsize; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Marks a particular physical memory range as unallocatable. Usable RAM | 
|  | * might be used for boot-time allocations - or it might get added | 
|  | * to the free page pool later on. | 
|  | */ | 
|  | static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) | 
|  | { | 
|  | unsigned long i; | 
|  | /* | 
|  | * round up, partially reserved pages are considered | 
|  | * fully reserved. | 
|  | */ | 
|  | unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE; | 
|  | unsigned long eidx = (addr + size - bdata->node_boot_start + | 
|  | PAGE_SIZE-1)/PAGE_SIZE; | 
|  | unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; | 
|  |  | 
|  | BUG_ON(!size); | 
|  | BUG_ON(sidx >= eidx); | 
|  | BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn); | 
|  | BUG_ON(end > bdata->node_low_pfn); | 
|  |  | 
|  | for (i = sidx; i < eidx; i++) | 
|  | if (test_and_set_bit(i, bdata->node_bootmem_map)) { | 
|  | #ifdef CONFIG_DEBUG_BOOTMEM | 
|  | printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) | 
|  | { | 
|  | unsigned long i; | 
|  | unsigned long start; | 
|  | /* | 
|  | * round down end of usable mem, partially free pages are | 
|  | * considered reserved. | 
|  | */ | 
|  | unsigned long sidx; | 
|  | unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; | 
|  | unsigned long end = (addr + size)/PAGE_SIZE; | 
|  |  | 
|  | BUG_ON(!size); | 
|  | BUG_ON(end > bdata->node_low_pfn); | 
|  |  | 
|  | if (addr < bdata->last_success) | 
|  | bdata->last_success = addr; | 
|  |  | 
|  | /* | 
|  | * Round up the beginning of the address. | 
|  | */ | 
|  | start = (addr + PAGE_SIZE-1) / PAGE_SIZE; | 
|  | sidx = start - (bdata->node_boot_start/PAGE_SIZE); | 
|  |  | 
|  | for (i = sidx; i < eidx; i++) { | 
|  | if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We 'merge' subsequent allocations to save space. We might 'lose' | 
|  | * some fraction of a page if allocations cannot be satisfied due to | 
|  | * size constraints on boxes where there is physical RAM space | 
|  | * fragmentation - in these cases (mostly large memory boxes) this | 
|  | * is not a problem. | 
|  | * | 
|  | * On low memory boxes we get it right in 100% of the cases. | 
|  | * | 
|  | * alignment has to be a power of 2 value. | 
|  | * | 
|  | * NOTE:  This function is _not_ reentrant. | 
|  | */ | 
|  | static void * __init | 
|  | __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, | 
|  | unsigned long align, unsigned long goal, unsigned long limit) | 
|  | { | 
|  | unsigned long offset, remaining_size, areasize, preferred; | 
|  | unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn; | 
|  | void *ret; | 
|  |  | 
|  | if(!size) { | 
|  | printk("__alloc_bootmem_core(): zero-sized request\n"); | 
|  | BUG(); | 
|  | } | 
|  | BUG_ON(align & (align-1)); | 
|  |  | 
|  | if (limit && bdata->node_boot_start >= limit) | 
|  | return NULL; | 
|  |  | 
|  | limit >>=PAGE_SHIFT; | 
|  | if (limit && end_pfn > limit) | 
|  | end_pfn = limit; | 
|  |  | 
|  | eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT); | 
|  | offset = 0; | 
|  | if (align && | 
|  | (bdata->node_boot_start & (align - 1UL)) != 0) | 
|  | offset = (align - (bdata->node_boot_start & (align - 1UL))); | 
|  | offset >>= PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * We try to allocate bootmem pages above 'goal' | 
|  | * first, then we try to allocate lower pages. | 
|  | */ | 
|  | if (goal && (goal >= bdata->node_boot_start) && | 
|  | ((goal >> PAGE_SHIFT) < end_pfn)) { | 
|  | preferred = goal - bdata->node_boot_start; | 
|  |  | 
|  | if (bdata->last_success >= preferred) | 
|  | if (!limit || (limit && limit > bdata->last_success)) | 
|  | preferred = bdata->last_success; | 
|  | } else | 
|  | preferred = 0; | 
|  |  | 
|  | preferred = ALIGN(preferred, align) >> PAGE_SHIFT; | 
|  | preferred += offset; | 
|  | areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; | 
|  | incr = align >> PAGE_SHIFT ? : 1; | 
|  |  | 
|  | restart_scan: | 
|  | for (i = preferred; i < eidx; i += incr) { | 
|  | unsigned long j; | 
|  | i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i); | 
|  | i = ALIGN(i, incr); | 
|  | if (i >= eidx) | 
|  | break; | 
|  | if (test_bit(i, bdata->node_bootmem_map)) | 
|  | continue; | 
|  | for (j = i + 1; j < i + areasize; ++j) { | 
|  | if (j >= eidx) | 
|  | goto fail_block; | 
|  | if (test_bit (j, bdata->node_bootmem_map)) | 
|  | goto fail_block; | 
|  | } | 
|  | start = i; | 
|  | goto found; | 
|  | fail_block: | 
|  | i = ALIGN(j, incr); | 
|  | } | 
|  |  | 
|  | if (preferred > offset) { | 
|  | preferred = offset; | 
|  | goto restart_scan; | 
|  | } | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | bdata->last_success = start << PAGE_SHIFT; | 
|  | BUG_ON(start >= eidx); | 
|  |  | 
|  | /* | 
|  | * Is the next page of the previous allocation-end the start | 
|  | * of this allocation's buffer? If yes then we can 'merge' | 
|  | * the previous partial page with this allocation. | 
|  | */ | 
|  | if (align < PAGE_SIZE && | 
|  | bdata->last_offset && bdata->last_pos+1 == start) { | 
|  | offset = ALIGN(bdata->last_offset, align); | 
|  | BUG_ON(offset > PAGE_SIZE); | 
|  | remaining_size = PAGE_SIZE-offset; | 
|  | if (size < remaining_size) { | 
|  | areasize = 0; | 
|  | /* last_pos unchanged */ | 
|  | bdata->last_offset = offset+size; | 
|  | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + | 
|  | bdata->node_boot_start); | 
|  | } else { | 
|  | remaining_size = size - remaining_size; | 
|  | areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE; | 
|  | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + | 
|  | bdata->node_boot_start); | 
|  | bdata->last_pos = start+areasize-1; | 
|  | bdata->last_offset = remaining_size; | 
|  | } | 
|  | bdata->last_offset &= ~PAGE_MASK; | 
|  | } else { | 
|  | bdata->last_pos = start + areasize - 1; | 
|  | bdata->last_offset = size & ~PAGE_MASK; | 
|  | ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the area now: | 
|  | */ | 
|  | for (i = start; i < start+areasize; i++) | 
|  | if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map))) | 
|  | BUG(); | 
|  | memset(ret, 0, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long pfn; | 
|  | bootmem_data_t *bdata = pgdat->bdata; | 
|  | unsigned long i, count, total = 0; | 
|  | unsigned long idx; | 
|  | unsigned long *map; | 
|  | int gofast = 0; | 
|  |  | 
|  | BUG_ON(!bdata->node_bootmem_map); | 
|  |  | 
|  | count = 0; | 
|  | /* first extant page of the node */ | 
|  | pfn = bdata->node_boot_start >> PAGE_SHIFT; | 
|  | idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); | 
|  | map = bdata->node_bootmem_map; | 
|  | /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ | 
|  | if (bdata->node_boot_start == 0 || | 
|  | ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) | 
|  | gofast = 1; | 
|  | for (i = 0; i < idx; ) { | 
|  | unsigned long v = ~map[i / BITS_PER_LONG]; | 
|  |  | 
|  | if (gofast && v == ~0UL) { | 
|  | int j, order; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | count += BITS_PER_LONG; | 
|  | __ClearPageReserved(page); | 
|  | order = ffs(BITS_PER_LONG) - 1; | 
|  | set_page_refs(page, order); | 
|  | for (j = 1; j < BITS_PER_LONG; j++) { | 
|  | if (j + 16 < BITS_PER_LONG) | 
|  | prefetchw(page + j + 16); | 
|  | __ClearPageReserved(page + j); | 
|  | set_page_count(page + j, 0); | 
|  | } | 
|  | __free_pages(page, order); | 
|  | i += BITS_PER_LONG; | 
|  | page += BITS_PER_LONG; | 
|  | } else if (v) { | 
|  | unsigned long m; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | for (m = 1; m && i < idx; m<<=1, page++, i++) { | 
|  | if (v & m) { | 
|  | count++; | 
|  | __ClearPageReserved(page); | 
|  | set_page_refs(page, 0); | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | i+=BITS_PER_LONG; | 
|  | } | 
|  | pfn += BITS_PER_LONG; | 
|  | } | 
|  | total += count; | 
|  |  | 
|  | /* | 
|  | * Now free the allocator bitmap itself, it's not | 
|  | * needed anymore: | 
|  | */ | 
|  | page = virt_to_page(bdata->node_bootmem_map); | 
|  | count = 0; | 
|  | for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) { | 
|  | count++; | 
|  | __ClearPageReserved(page); | 
|  | set_page_count(page, 1); | 
|  | __free_page(page); | 
|  | } | 
|  | total += count; | 
|  | bdata->node_bootmem_map = NULL; | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) | 
|  | { | 
|  | return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn)); | 
|  | } | 
|  |  | 
|  | void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) | 
|  | { | 
|  | reserve_bootmem_core(pgdat->bdata, physaddr, size); | 
|  | } | 
|  |  | 
|  | void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) | 
|  | { | 
|  | free_bootmem_core(pgdat->bdata, physaddr, size); | 
|  | } | 
|  |  | 
|  | unsigned long __init free_all_bootmem_node (pg_data_t *pgdat) | 
|  | { | 
|  | return(free_all_bootmem_core(pgdat)); | 
|  | } | 
|  |  | 
|  | unsigned long __init init_bootmem (unsigned long start, unsigned long pages) | 
|  | { | 
|  | max_low_pfn = pages; | 
|  | min_low_pfn = start; | 
|  | return(init_bootmem_core(NODE_DATA(0), start, 0, pages)); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | 
|  | void __init reserve_bootmem (unsigned long addr, unsigned long size) | 
|  | { | 
|  | reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size); | 
|  | } | 
|  | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | 
|  |  | 
|  | void __init free_bootmem (unsigned long addr, unsigned long size) | 
|  | { | 
|  | free_bootmem_core(NODE_DATA(0)->bdata, addr, size); | 
|  | } | 
|  |  | 
|  | unsigned long __init free_all_bootmem (void) | 
|  | { | 
|  | return(free_all_bootmem_core(NODE_DATA(0))); | 
|  | } | 
|  |  | 
|  | void * __init __alloc_bootmem_limit (unsigned long size, unsigned long align, unsigned long goal, | 
|  | unsigned long limit) | 
|  | { | 
|  | pg_data_t *pgdat = pgdat_list; | 
|  | void *ptr; | 
|  |  | 
|  | for_each_pgdat(pgdat) | 
|  | if ((ptr = __alloc_bootmem_core(pgdat->bdata, size, | 
|  | align, goal, limit))) | 
|  | return(ptr); | 
|  |  | 
|  | /* | 
|  | * Whoops, we cannot satisfy the allocation request. | 
|  | */ | 
|  | printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); | 
|  | panic("Out of memory"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | void * __init __alloc_bootmem_node_limit (pg_data_t *pgdat, unsigned long size, unsigned long align, | 
|  | unsigned long goal, unsigned long limit) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, limit); | 
|  | if (ptr) | 
|  | return (ptr); | 
|  |  | 
|  | return __alloc_bootmem_limit(size, align, goal, limit); | 
|  | } | 
|  |  |