| /* | 
 |  *  linux/arch/x86-64/mm/fault.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | 
 |  */ | 
 |  | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
 | #include <linux/compiler.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include <asm/system.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm-generic/sections.h> | 
 |  | 
 | /* Page fault error code bits */ | 
 | #define PF_PROT	(1<<0)		/* or no page found */ | 
 | #define PF_WRITE	(1<<1) | 
 | #define PF_USER	(1<<2) | 
 | #define PF_RSVD	(1<<3) | 
 | #define PF_INSTR	(1<<4) | 
 |  | 
 | static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain); | 
 |  | 
 | /* Hook to register for page fault notifications */ | 
 | int register_page_fault_notifier(struct notifier_block *nb) | 
 | { | 
 | 	vmalloc_sync_all(); | 
 | 	return atomic_notifier_chain_register(¬ify_page_fault_chain, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_page_fault_notifier); | 
 |  | 
 | int unregister_page_fault_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_page_fault_notifier); | 
 |  | 
 | static inline int notify_page_fault(struct pt_regs *regs, long err) | 
 | { | 
 | 	struct die_args args = { | 
 | 		.regs = regs, | 
 | 		.str = "page fault", | 
 | 		.err = err, | 
 | 		.trapnr = 14, | 
 | 		.signr = SIGSEGV | 
 | 	}; | 
 | 	return atomic_notifier_call_chain(¬ify_page_fault_chain, | 
 | 	                                  DIE_PAGE_FAULT, &args); | 
 | } | 
 |  | 
 | /* Sometimes the CPU reports invalid exceptions on prefetch. | 
 |    Check that here and ignore. | 
 |    Opcode checker based on code by Richard Brunner */ | 
 | static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr, | 
 | 				unsigned long error_code) | 
 | {  | 
 | 	unsigned char *instr; | 
 | 	int scan_more = 1; | 
 | 	int prefetch = 0;  | 
 | 	unsigned char *max_instr; | 
 |  | 
 | 	/* If it was a exec fault ignore */ | 
 | 	if (error_code & PF_INSTR) | 
 | 		return 0; | 
 | 	 | 
 | 	instr = (unsigned char __user *)convert_rip_to_linear(current, regs); | 
 | 	max_instr = instr + 15; | 
 |  | 
 | 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	while (scan_more && instr < max_instr) {  | 
 | 		unsigned char opcode; | 
 | 		unsigned char instr_hi; | 
 | 		unsigned char instr_lo; | 
 |  | 
 | 		if (probe_kernel_address(instr, opcode)) | 
 | 			break;  | 
 |  | 
 | 		instr_hi = opcode & 0xf0;  | 
 | 		instr_lo = opcode & 0x0f;  | 
 | 		instr++; | 
 |  | 
 | 		switch (instr_hi) {  | 
 | 		case 0x20: | 
 | 		case 0x30: | 
 | 			/* Values 0x26,0x2E,0x36,0x3E are valid x86 | 
 | 			   prefixes.  In long mode, the CPU will signal | 
 | 			   invalid opcode if some of these prefixes are | 
 | 			   present so we will never get here anyway */ | 
 | 			scan_more = ((instr_lo & 7) == 0x6); | 
 | 			break; | 
 | 			 | 
 | 		case 0x40: | 
 | 			/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes | 
 | 			   Need to figure out under what instruction mode the | 
 | 			   instruction was issued ... */ | 
 | 			/* Could check the LDT for lm, but for now it's good | 
 | 			   enough to assume that long mode only uses well known | 
 | 			   segments or kernel. */ | 
 | 			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | 
 | 			break; | 
 | 			 | 
 | 		case 0x60: | 
 | 			/* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
 | 			scan_more = (instr_lo & 0xC) == 0x4; | 
 | 			break;		 | 
 | 		case 0xF0: | 
 | 			/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */ | 
 | 			scan_more = !instr_lo || (instr_lo>>1) == 1; | 
 | 			break;			 | 
 | 		case 0x00: | 
 | 			/* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
 | 			scan_more = 0; | 
 | 			if (probe_kernel_address(instr, opcode)) | 
 | 				break; | 
 | 			prefetch = (instr_lo == 0xF) && | 
 | 				(opcode == 0x0D || opcode == 0x18); | 
 | 			break;			 | 
 | 		default: | 
 | 			scan_more = 0; | 
 | 			break; | 
 | 		}  | 
 | 	} | 
 | 	return prefetch; | 
 | } | 
 |  | 
 | static int bad_address(void *p)  | 
 | {  | 
 | 	unsigned long dummy; | 
 | 	return probe_kernel_address((unsigned long *)p, dummy); | 
 | }  | 
 |  | 
 | void dump_pagetable(unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	asm("movq %%cr3,%0" : "=r" (pgd)); | 
 |  | 
 | 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);  | 
 | 	pgd += pgd_index(address); | 
 | 	if (bad_address(pgd)) goto bad; | 
 | 	printk("PGD %lx ", pgd_val(*pgd)); | 
 | 	if (!pgd_present(*pgd)) goto ret;  | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (bad_address(pud)) goto bad; | 
 | 	printk("PUD %lx ", pud_val(*pud)); | 
 | 	if (!pud_present(*pud))	goto ret; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (bad_address(pmd)) goto bad; | 
 | 	printk("PMD %lx ", pmd_val(*pmd)); | 
 | 	if (!pmd_present(*pmd))	goto ret;	  | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	if (bad_address(pte)) goto bad; | 
 | 	printk("PTE %lx", pte_val(*pte));  | 
 | ret: | 
 | 	printk("\n"); | 
 | 	return; | 
 | bad: | 
 | 	printk("BAD\n"); | 
 | } | 
 |  | 
 | static const char errata93_warning[] =  | 
 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | 
 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | 
 | KERN_ERR "******* Please consider a BIOS update.\n" | 
 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | 
 |  | 
 | /* Workaround for K8 erratum #93 & buggy BIOS. | 
 |    BIOS SMM functions are required to use a specific workaround | 
 |    to avoid corruption of the 64bit RIP register on C stepping K8.  | 
 |    A lot of BIOS that didn't get tested properly miss this.  | 
 |    The OS sees this as a page fault with the upper 32bits of RIP cleared. | 
 |    Try to work around it here. | 
 |    Note we only handle faults in kernel here. */ | 
 |  | 
 | static int is_errata93(struct pt_regs *regs, unsigned long address)  | 
 | { | 
 | 	static int warned; | 
 | 	if (address != regs->rip) | 
 | 		return 0; | 
 | 	if ((address >> 32) != 0)  | 
 | 		return 0; | 
 | 	address |= 0xffffffffUL << 32; | 
 | 	if ((address >= (u64)_stext && address <= (u64)_etext) ||  | 
 | 	    (address >= MODULES_VADDR && address <= MODULES_END)) {  | 
 | 		if (!warned) { | 
 | 			printk(errata93_warning); 		 | 
 | 			warned = 1; | 
 | 		} | 
 | 		regs->rip = address; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | }  | 
 |  | 
 | int unhandled_signal(struct task_struct *tsk, int sig) | 
 | { | 
 | 	if (is_init(tsk)) | 
 | 		return 1; | 
 | 	if (tsk->ptrace & PT_PTRACED) | 
 | 		return 0; | 
 | 	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || | 
 | 		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); | 
 | } | 
 |  | 
 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | 
 | 				 unsigned long error_code) | 
 | { | 
 | 	unsigned long flags = oops_begin(); | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | 
 | 	       current->comm, address); | 
 | 	dump_pagetable(address); | 
 | 	tsk = current; | 
 | 	tsk->thread.cr2 = address; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	tsk->thread.error_code = error_code; | 
 | 	__die("Bad pagetable", regs, error_code); | 
 | 	oops_end(flags); | 
 | 	do_exit(SIGKILL); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle a fault on the vmalloc area | 
 |  * | 
 |  * This assumes no large pages in there. | 
 |  */ | 
 | static int vmalloc_fault(unsigned long address) | 
 | { | 
 | 	pgd_t *pgd, *pgd_ref; | 
 | 	pud_t *pud, *pud_ref; | 
 | 	pmd_t *pmd, *pmd_ref; | 
 | 	pte_t *pte, *pte_ref; | 
 |  | 
 | 	/* Copy kernel mappings over when needed. This can also | 
 | 	   happen within a race in page table update. In the later | 
 | 	   case just flush. */ | 
 |  | 
 | 	pgd = pgd_offset(current->mm ?: &init_mm, address); | 
 | 	pgd_ref = pgd_offset_k(address); | 
 | 	if (pgd_none(*pgd_ref)) | 
 | 		return -1; | 
 | 	if (pgd_none(*pgd)) | 
 | 		set_pgd(pgd, *pgd_ref); | 
 | 	else | 
 | 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | 
 |  | 
 | 	/* Below here mismatches are bugs because these lower tables | 
 | 	   are shared */ | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	pud_ref = pud_offset(pgd_ref, address); | 
 | 	if (pud_none(*pud_ref)) | 
 | 		return -1; | 
 | 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | 
 | 		BUG(); | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	pmd_ref = pmd_offset(pud_ref, address); | 
 | 	if (pmd_none(*pmd_ref)) | 
 | 		return -1; | 
 | 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | 
 | 		BUG(); | 
 | 	pte_ref = pte_offset_kernel(pmd_ref, address); | 
 | 	if (!pte_present(*pte_ref)) | 
 | 		return -1; | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	/* Don't use pte_page here, because the mappings can point | 
 | 	   outside mem_map, and the NUMA hash lookup cannot handle | 
 | 	   that. */ | 
 | 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | 
 | 		BUG(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int page_fault_trace = 0; | 
 | int exception_trace = 1; | 
 |  | 
 | /* | 
 |  * This routine handles page faults.  It determines the address, | 
 |  * and the problem, and then passes it off to one of the appropriate | 
 |  * routines. | 
 |  */ | 
 | asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, | 
 | 					unsigned long error_code) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct * vma; | 
 | 	unsigned long address; | 
 | 	const struct exception_table_entry *fixup; | 
 | 	int write; | 
 | 	unsigned long flags; | 
 | 	siginfo_t info; | 
 |  | 
 | 	tsk = current; | 
 | 	mm = tsk->mm; | 
 | 	prefetchw(&mm->mmap_sem); | 
 |  | 
 | 	/* get the address */ | 
 | 	__asm__("movq %%cr2,%0":"=r" (address)); | 
 |  | 
 | 	info.si_code = SEGV_MAPERR; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * We fault-in kernel-space virtual memory on-demand. The | 
 | 	 * 'reference' page table is init_mm.pgd. | 
 | 	 * | 
 | 	 * NOTE! We MUST NOT take any locks for this case. We may | 
 | 	 * be in an interrupt or a critical region, and should | 
 | 	 * only copy the information from the master page table, | 
 | 	 * nothing more. | 
 | 	 * | 
 | 	 * This verifies that the fault happens in kernel space | 
 | 	 * (error_code & 4) == 0, and that the fault was not a | 
 | 	 * protection error (error_code & 9) == 0. | 
 | 	 */ | 
 | 	if (unlikely(address >= TASK_SIZE64)) { | 
 | 		/* | 
 | 		 * Don't check for the module range here: its PML4 | 
 | 		 * is always initialized because it's shared with the main | 
 | 		 * kernel text. Only vmalloc may need PML4 syncups. | 
 | 		 */ | 
 | 		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | 
 | 		      ((address >= VMALLOC_START && address < VMALLOC_END))) { | 
 | 			if (vmalloc_fault(address) >= 0) | 
 | 				return; | 
 | 		} | 
 | 		if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | 
 | 			return; | 
 | 		/* | 
 | 		 * Don't take the mm semaphore here. If we fixup a prefetch | 
 | 		 * fault we could otherwise deadlock. | 
 | 		 */ | 
 | 		goto bad_area_nosemaphore; | 
 | 	} | 
 |  | 
 | 	if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	if (likely(regs->eflags & X86_EFLAGS_IF)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	if (unlikely(page_fault_trace)) | 
 | 		printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n", | 
 | 		       regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);  | 
 |  | 
 | 	if (unlikely(error_code & PF_RSVD)) | 
 | 		pgtable_bad(address, regs, error_code); | 
 |  | 
 | 	/* | 
 | 	 * If we're in an interrupt or have no user | 
 | 	 * context, we must not take the fault.. | 
 | 	 */ | 
 | 	if (unlikely(in_atomic() || !mm)) | 
 | 		goto bad_area_nosemaphore; | 
 |  | 
 |  again: | 
 | 	/* When running in the kernel we expect faults to occur only to | 
 | 	 * addresses in user space.  All other faults represent errors in the | 
 | 	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an | 
 | 	 * erroneous fault occurring in a code path which already holds mmap_sem | 
 | 	 * we will deadlock attempting to validate the fault against the | 
 | 	 * address space.  Luckily the kernel only validly references user | 
 | 	 * space from well defined areas of code, which are listed in the | 
 | 	 * exceptions table. | 
 | 	 * | 
 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 	 * the source reference check when there is a possibilty of a deadlock. | 
 | 	 * Attempt to lock the address space, if we cannot we then validate the | 
 | 	 * source.  If this is invalid we can skip the address space check, | 
 | 	 * thus avoiding the deadlock. | 
 | 	 */ | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		if ((error_code & PF_USER) == 0 && | 
 | 		    !search_exception_tables(regs->rip)) | 
 | 			goto bad_area_nosemaphore; | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		goto bad_area; | 
 | 	if (likely(vma->vm_start <= address)) | 
 | 		goto good_area; | 
 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 		goto bad_area; | 
 | 	if (error_code & 4) { | 
 | 		/* Allow userspace just enough access below the stack pointer | 
 | 		 * to let the 'enter' instruction work. | 
 | 		 */ | 
 | 		if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp) | 
 | 			goto bad_area; | 
 | 	} | 
 | 	if (expand_stack(vma, address)) | 
 | 		goto bad_area; | 
 | /* | 
 |  * Ok, we have a good vm_area for this memory access, so | 
 |  * we can handle it.. | 
 |  */ | 
 | good_area: | 
 | 	info.si_code = SEGV_ACCERR; | 
 | 	write = 0; | 
 | 	switch (error_code & (PF_PROT|PF_WRITE)) { | 
 | 		default:	/* 3: write, present */ | 
 | 			/* fall through */ | 
 | 		case PF_WRITE:		/* write, not present */ | 
 | 			if (!(vma->vm_flags & VM_WRITE)) | 
 | 				goto bad_area; | 
 | 			write++; | 
 | 			break; | 
 | 		case PF_PROT:		/* read, present */ | 
 | 			goto bad_area; | 
 | 		case 0:			/* read, not present */ | 
 | 			if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
 | 				goto bad_area; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 	 * the fault. | 
 | 	 */ | 
 | 	switch (handle_mm_fault(mm, vma, address, write)) { | 
 | 	case VM_FAULT_MINOR: | 
 | 		tsk->min_flt++; | 
 | 		break; | 
 | 	case VM_FAULT_MAJOR: | 
 | 		tsk->maj_flt++; | 
 | 		break; | 
 | 	case VM_FAULT_SIGBUS: | 
 | 		goto do_sigbus; | 
 | 	default: | 
 | 		goto out_of_memory; | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return; | 
 |  | 
 | /* | 
 |  * Something tried to access memory that isn't in our memory map.. | 
 |  * Fix it, but check if it's kernel or user first.. | 
 |  */ | 
 | bad_area: | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | bad_area_nosemaphore: | 
 | 	/* User mode accesses just cause a SIGSEGV */ | 
 | 	if (error_code & PF_USER) { | 
 | 		if (is_prefetch(regs, address, error_code)) | 
 | 			return; | 
 |  | 
 | 		/* Work around K8 erratum #100 K8 in compat mode | 
 | 		   occasionally jumps to illegal addresses >4GB.  We | 
 | 		   catch this here in the page fault handler because | 
 | 		   these addresses are not reachable. Just detect this | 
 | 		   case and return.  Any code segment in LDT is | 
 | 		   compatibility mode. */ | 
 | 		if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | 
 | 		    (address >> 32)) | 
 | 			return; | 
 |  | 
 | 		if (exception_trace && unhandled_signal(tsk, SIGSEGV)) { | 
 | 			printk( | 
 | 		       "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n", | 
 | 					tsk->pid > 1 ? KERN_INFO : KERN_EMERG, | 
 | 					tsk->comm, tsk->pid, address, regs->rip, | 
 | 					regs->rsp, error_code); | 
 | 		} | 
 |         | 
 | 		tsk->thread.cr2 = address; | 
 | 		/* Kernel addresses are always protection faults */ | 
 | 		tsk->thread.error_code = error_code | (address >= TASK_SIZE); | 
 | 		tsk->thread.trap_no = 14; | 
 | 		info.si_signo = SIGSEGV; | 
 | 		info.si_errno = 0; | 
 | 		/* info.si_code has been set above */ | 
 | 		info.si_addr = (void __user *)address; | 
 | 		force_sig_info(SIGSEGV, &info, tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | no_context: | 
 | 	 | 
 | 	/* Are we prepared to handle this kernel fault?  */ | 
 | 	fixup = search_exception_tables(regs->rip); | 
 | 	if (fixup) { | 
 | 		regs->rip = fixup->fixup; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/*  | 
 | 	 * Hall of shame of CPU/BIOS bugs. | 
 | 	 */ | 
 |  | 
 |  	if (is_prefetch(regs, address, error_code)) | 
 |  		return; | 
 |  | 
 | 	if (is_errata93(regs, address)) | 
 | 		return;  | 
 |  | 
 | /* | 
 |  * Oops. The kernel tried to access some bad page. We'll have to | 
 |  * terminate things with extreme prejudice. | 
 |  */ | 
 |  | 
 | 	flags = oops_begin(); | 
 |  | 
 | 	if (address < PAGE_SIZE) | 
 | 		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | 
 | 	else | 
 | 		printk(KERN_ALERT "Unable to handle kernel paging request"); | 
 | 	printk(" at %016lx RIP: \n" KERN_ALERT,address); | 
 | 	printk_address(regs->rip); | 
 | 	dump_pagetable(address); | 
 | 	tsk->thread.cr2 = address; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	tsk->thread.error_code = error_code; | 
 | 	__die("Oops", regs, error_code); | 
 | 	/* Executive summary in case the body of the oops scrolled away */ | 
 | 	printk(KERN_EMERG "CR2: %016lx\n", address); | 
 | 	oops_end(flags); | 
 | 	do_exit(SIGKILL); | 
 |  | 
 | /* | 
 |  * We ran out of memory, or some other thing happened to us that made | 
 |  * us unable to handle the page fault gracefully. | 
 |  */ | 
 | out_of_memory: | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (is_init(current)) { | 
 | 		yield(); | 
 | 		goto again; | 
 | 	} | 
 | 	printk("VM: killing process %s\n", tsk->comm); | 
 | 	if (error_code & 4) | 
 | 		do_exit(SIGKILL); | 
 | 	goto no_context; | 
 |  | 
 | do_sigbus: | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	/* Kernel mode? Handle exceptions or die */ | 
 | 	if (!(error_code & PF_USER)) | 
 | 		goto no_context; | 
 |  | 
 | 	tsk->thread.cr2 = address; | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	info.si_signo = SIGBUS; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = BUS_ADRERR; | 
 | 	info.si_addr = (void __user *)address; | 
 | 	force_sig_info(SIGBUS, &info, tsk); | 
 | 	return; | 
 | } | 
 |  | 
 | DEFINE_SPINLOCK(pgd_lock); | 
 | LIST_HEAD(pgd_list); | 
 |  | 
 | void vmalloc_sync_all(void) | 
 | { | 
 | 	/* Note that races in the updates of insync and start aren't  | 
 | 	   problematic: | 
 | 	   insync can only get set bits added, and updates to start are only | 
 | 	   improving performance (without affecting correctness if undone). */ | 
 | 	static DECLARE_BITMAP(insync, PTRS_PER_PGD); | 
 | 	static unsigned long start = VMALLOC_START & PGDIR_MASK; | 
 | 	unsigned long address; | 
 |  | 
 | 	for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { | 
 | 		if (!test_bit(pgd_index(address), insync)) { | 
 | 			const pgd_t *pgd_ref = pgd_offset_k(address); | 
 | 			struct page *page; | 
 |  | 
 | 			if (pgd_none(*pgd_ref)) | 
 | 				continue; | 
 | 			spin_lock(&pgd_lock); | 
 | 			list_for_each_entry(page, &pgd_list, lru) { | 
 | 				pgd_t *pgd; | 
 | 				pgd = (pgd_t *)page_address(page) + pgd_index(address); | 
 | 				if (pgd_none(*pgd)) | 
 | 					set_pgd(pgd, *pgd_ref); | 
 | 				else | 
 | 					BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | 
 | 			} | 
 | 			spin_unlock(&pgd_lock); | 
 | 			set_bit(pgd_index(address), insync); | 
 | 		} | 
 | 		if (address == start) | 
 | 			start = address + PGDIR_SIZE; | 
 | 	} | 
 | 	/* Check that there is no need to do the same for the modules area. */ | 
 | 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); | 
 | 	BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==  | 
 | 				(__START_KERNEL & PGDIR_MASK))); | 
 | } | 
 |  | 
 | static int __init enable_pagefaulttrace(char *str) | 
 | { | 
 | 	page_fault_trace = 1; | 
 | 	return 1; | 
 | } | 
 | __setup("pagefaulttrace", enable_pagefaulttrace); |