| /* |
| * PCI Express Hot Plug Controller Driver |
| * |
| * Copyright (C) 1995,2001 Compaq Computer Corporation |
| * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) |
| * Copyright (C) 2001 IBM Corp. |
| * Copyright (C) 2003-2004 Intel Corporation |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to <greg@kroah.com>, <dely.l.sy@intel.com> |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/wait.h> |
| #include <linux/smp_lock.h> |
| #include <linux/pci.h> |
| #include "../pci.h" |
| #include "pciehp.h" |
| #include "pciehprm.h" |
| |
| static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); |
| static int configure_new_function( struct controller *ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); |
| static void interrupt_event_handler(struct controller *ctrl); |
| |
| static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */ |
| static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */ |
| static int event_finished; |
| static unsigned long pushbutton_pending; /* = 0 */ |
| static unsigned long surprise_rm_pending; /* = 0 */ |
| |
| u8 pciehp_handle_attention_button(u8 hp_slot, void *inst_id) |
| { |
| struct controller *ctrl = (struct controller *) inst_id; |
| struct slot *p_slot; |
| u8 rc = 0; |
| u8 getstatus; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| /* Attention Button Change */ |
| dbg("pciehp: Attention button interrupt received.\n"); |
| |
| func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| |
| /* This is the structure that tells the worker thread what to do */ |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| |
| /* |
| * Button pressed - See if need to TAKE ACTION!!! |
| */ |
| info("Button pressed on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| taskInfo->event_type = INT_BUTTON_PRESS; |
| |
| if ((p_slot->state == BLINKINGON_STATE) |
| || (p_slot->state == BLINKINGOFF_STATE)) { |
| /* Cancel if we are still blinking; this means that we press the |
| * attention again before the 5 sec. limit expires to cancel hot-add |
| * or hot-remove |
| */ |
| taskInfo->event_type = INT_BUTTON_CANCEL; |
| info("Button cancel on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| } else if ((p_slot->state == POWERON_STATE) |
| || (p_slot->state == POWEROFF_STATE)) { |
| /* Ignore if the slot is on power-on or power-off state; this |
| * means that the previous attention button action to hot-add or |
| * hot-remove is undergoing |
| */ |
| taskInfo->event_type = INT_BUTTON_IGNORE; |
| info("Button ignore on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| } |
| |
| if (rc) |
| up(&event_semaphore); /* signal event thread that new event is posted */ |
| |
| return 0; |
| |
| } |
| |
| u8 pciehp_handle_switch_change(u8 hp_slot, void *inst_id) |
| { |
| struct controller *ctrl = (struct controller *) inst_id; |
| struct slot *p_slot; |
| u8 rc = 0; |
| u8 getstatus; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| /* Switch Change */ |
| dbg("pciehp: Switch interrupt received.\n"); |
| |
| func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| |
| /* This is the structure that tells the worker thread |
| * what to do |
| */ |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| |
| if (getstatus) { |
| /* |
| * Switch opened |
| */ |
| info("Latch open on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| func->switch_save = 0; |
| taskInfo->event_type = INT_SWITCH_OPEN; |
| } else { |
| /* |
| * Switch closed |
| */ |
| info("Latch close on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| func->switch_save = 0x10; |
| taskInfo->event_type = INT_SWITCH_CLOSE; |
| } |
| |
| if (rc) |
| up(&event_semaphore); /* signal event thread that new event is posted */ |
| |
| return rc; |
| } |
| |
| u8 pciehp_handle_presence_change(u8 hp_slot, void *inst_id) |
| { |
| struct controller *ctrl = (struct controller *) inst_id; |
| struct slot *p_slot; |
| u8 rc = 0; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| /* Presence Change */ |
| dbg("pciehp: Presence/Notify input change.\n"); |
| |
| func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| |
| /* This is the structure that tells the worker thread |
| * what to do |
| */ |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| /* Switch is open, assume a presence change |
| * Save the presence state |
| */ |
| p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| if (func->presence_save) { |
| /* |
| * Card Present |
| */ |
| info("Card present on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| taskInfo->event_type = INT_PRESENCE_ON; |
| } else { |
| /* |
| * Not Present |
| */ |
| info("Card not present on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| taskInfo->event_type = INT_PRESENCE_OFF; |
| } |
| |
| if (rc) |
| up(&event_semaphore); /* signal event thread that new event is posted */ |
| |
| return rc; |
| } |
| |
| u8 pciehp_handle_power_fault(u8 hp_slot, void *inst_id) |
| { |
| struct controller *ctrl = (struct controller *) inst_id; |
| struct slot *p_slot; |
| u8 rc = 0; |
| struct pci_func *func; |
| struct event_info *taskInfo; |
| |
| /* power fault */ |
| dbg("pciehp: Power fault interrupt received.\n"); |
| |
| func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| |
| /* this is the structure that tells the worker thread |
| * what to do |
| */ |
| taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| ctrl->next_event = (ctrl->next_event + 1) % 10; |
| taskInfo->hp_slot = hp_slot; |
| |
| rc++; |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| if ( !(p_slot->hpc_ops->query_power_fault(p_slot))) { |
| /* |
| * power fault Cleared |
| */ |
| info("Power fault cleared on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| func->status = 0x00; |
| taskInfo->event_type = INT_POWER_FAULT_CLEAR; |
| } else { |
| /* |
| * power fault |
| */ |
| info("Power fault on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| taskInfo->event_type = INT_POWER_FAULT; |
| /* set power fault status for this board */ |
| func->status = 0xFF; |
| info("power fault bit %x set\n", hp_slot); |
| } |
| if (rc) |
| up(&event_semaphore); /* signal event thread that new event is posted */ |
| |
| return rc; |
| } |
| |
| |
| /** |
| * sort_by_size: sort nodes by their length, smallest first. |
| * |
| * @head: list to sort |
| */ |
| static int sort_by_size(struct pci_resource **head) |
| { |
| struct pci_resource *current_res; |
| struct pci_resource *next_res; |
| int out_of_order = 1; |
| |
| if (!(*head)) |
| return 1; |
| |
| if (!((*head)->next)) |
| return 0; |
| |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->length > (*head)->next->length)) { |
| out_of_order++; |
| current_res = *head; |
| *head = (*head)->next; |
| current_res->next = (*head)->next; |
| (*head)->next = current_res; |
| } |
| |
| current_res = *head; |
| |
| while (current_res->next && current_res->next->next) { |
| if (current_res->next->length > current_res->next->next->length) { |
| out_of_order++; |
| next_res = current_res->next; |
| current_res->next = current_res->next->next; |
| current_res = current_res->next; |
| next_res->next = current_res->next; |
| current_res->next = next_res; |
| } else |
| current_res = current_res->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| return 0; |
| } |
| |
| |
| /* |
| * sort_by_max_size |
| * |
| * Sorts nodes on the list by their length. |
| * Largest first. |
| * |
| */ |
| static int sort_by_max_size(struct pci_resource **head) |
| { |
| struct pci_resource *current_res; |
| struct pci_resource *next_res; |
| int out_of_order = 1; |
| |
| if (!(*head)) |
| return 1; |
| |
| if (!((*head)->next)) |
| return 0; |
| |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->length < (*head)->next->length)) { |
| out_of_order++; |
| current_res = *head; |
| *head = (*head)->next; |
| current_res->next = (*head)->next; |
| (*head)->next = current_res; |
| } |
| |
| current_res = *head; |
| |
| while (current_res->next && current_res->next->next) { |
| if (current_res->next->length < current_res->next->next->length) { |
| out_of_order++; |
| next_res = current_res->next; |
| current_res->next = current_res->next->next; |
| current_res = current_res->next; |
| next_res->next = current_res->next; |
| current_res->next = next_res; |
| } else |
| current_res = current_res->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| return 0; |
| } |
| |
| |
| /** |
| * do_pre_bridge_resource_split: return one unused resource node |
| * @head: list to scan |
| * |
| */ |
| static struct pci_resource * |
| do_pre_bridge_resource_split(struct pci_resource **head, |
| struct pci_resource **orig_head, u32 alignment) |
| { |
| struct pci_resource *prevnode = NULL; |
| struct pci_resource *node; |
| struct pci_resource *split_node; |
| u32 rc; |
| u32 temp_dword; |
| dbg("do_pre_bridge_resource_split\n"); |
| |
| if (!(*head) || !(*orig_head)) |
| return NULL; |
| |
| rc = pciehp_resource_sort_and_combine(head); |
| |
| if (rc) |
| return NULL; |
| |
| if ((*head)->base != (*orig_head)->base) |
| return NULL; |
| |
| if ((*head)->length == (*orig_head)->length) |
| return NULL; |
| |
| |
| /* If we got here, there the bridge requires some of the resource, but |
| * we may be able to split some off of the front |
| */ |
| node = *head; |
| |
| if (node->length & (alignment -1)) { |
| /* this one isn't an aligned length, so we'll make a new entry |
| * and split it up. |
| */ |
| split_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| temp_dword = (node->length | (alignment-1)) + 1 - alignment; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword; |
| |
| node->length -= temp_dword; |
| node->base += split_node->length; |
| |
| /* Put it in the list */ |
| *head = split_node; |
| split_node->next = node; |
| } |
| |
| if (node->length < alignment) |
| return NULL; |
| |
| /* Now unlink it */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| |
| return node; |
| } |
| |
| |
| /** |
| * do_bridge_resource_split: return one unused resource node |
| * @head: list to scan |
| * |
| */ |
| static struct pci_resource * |
| do_bridge_resource_split(struct pci_resource **head, u32 alignment) |
| { |
| struct pci_resource *prevnode = NULL; |
| struct pci_resource *node; |
| u32 rc; |
| u32 temp_dword; |
| |
| if (!(*head)) |
| return NULL; |
| |
| rc = pciehp_resource_sort_and_combine(head); |
| |
| if (rc) |
| return NULL; |
| |
| node = *head; |
| |
| while (node->next) { |
| prevnode = node; |
| node = node->next; |
| kfree(prevnode); |
| } |
| |
| if (node->length < alignment) { |
| kfree(node); |
| return NULL; |
| } |
| |
| if (node->base & (alignment - 1)) { |
| /* Short circuit if adjusted size is too small */ |
| temp_dword = (node->base | (alignment-1)) + 1; |
| if ((node->length - (temp_dword - node->base)) < alignment) { |
| kfree(node); |
| return NULL; |
| } |
| |
| node->length -= (temp_dword - node->base); |
| node->base = temp_dword; |
| } |
| |
| if (node->length & (alignment - 1)) { |
| /* There's stuff in use after this node */ |
| kfree(node); |
| return NULL; |
| } |
| |
| return node; |
| } |
| |
| |
| /* |
| * get_io_resource |
| * |
| * this function sorts the resource list by size and then |
| * returns the first node of "size" length that is not in the |
| * ISA aliasing window. If it finds a node larger than "size" |
| * it will split it up. |
| * |
| * size must be a power of two. |
| */ |
| static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *prevnode; |
| struct pci_resource *node; |
| struct pci_resource *split_node = NULL; |
| u32 temp_dword; |
| |
| if (!(*head)) |
| return NULL; |
| |
| if ( pciehp_resource_sort_and_combine(head) ) |
| return NULL; |
| |
| if ( sort_by_size(head) ) |
| return NULL; |
| |
| for (node = *head; node; node = node->next) { |
| if (node->length < size) |
| continue; |
| |
| if (node->base & (size - 1)) { |
| /* this one isn't base aligned properly |
| so we'll make a new entry and split it up */ |
| temp_dword = (node->base | (size-1)) + 1; |
| |
| /*/ Short circuit if adjusted size is too small */ |
| if ((node->length - (temp_dword - node->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword - node->base; |
| node->base = temp_dword; |
| node->length -= split_node->length; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of non-aligned base */ |
| |
| /* Don't need to check if too small since we already did */ |
| if (node->length > size) { |
| /* this one is longer than we need |
| so we'll make a new entry and split it up */ |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base + size; |
| split_node->length = node->length - size; |
| node->length = size; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of too big on top end */ |
| |
| /* For IO make sure it's not in the ISA aliasing space */ |
| if (node->base & 0x300L) |
| continue; |
| |
| /* If we got here, then it is the right size |
| Now take it out of the list */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| /* Stop looping */ |
| break; |
| } |
| |
| return node; |
| } |
| |
| |
| /* |
| * get_max_resource |
| * |
| * Gets the largest node that is at least "size" big from the |
| * list pointed to by head. It aligns the node on top and bottom |
| * to "size" alignment before returning it. |
| * J.I. modified to put max size limits of; 64M->32M->16M->8M->4M->1M |
| * This is needed to avoid allocating entire ACPI _CRS res to one child bridge/slot. |
| */ |
| static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *max; |
| struct pci_resource *temp; |
| struct pci_resource *split_node; |
| u32 temp_dword; |
| u32 max_size[] = { 0x4000000, 0x2000000, 0x1000000, 0x0800000, 0x0400000, 0x0200000, 0x0100000, 0x00 }; |
| int i; |
| |
| if (!(*head)) |
| return NULL; |
| |
| if (pciehp_resource_sort_and_combine(head)) |
| return NULL; |
| |
| if (sort_by_max_size(head)) |
| return NULL; |
| |
| for (max = *head;max; max = max->next) { |
| |
| /* If not big enough we could probably just bail, |
| instead we'll continue to the next. */ |
| if (max->length < size) |
| continue; |
| |
| if (max->base & (size - 1)) { |
| /* this one isn't base aligned properly |
| so we'll make a new entry and split it up */ |
| temp_dword = (max->base | (size-1)) + 1; |
| |
| /* Short circuit if adjusted size is too small */ |
| if ((max->length - (temp_dword - max->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = max->base; |
| split_node->length = temp_dword - max->base; |
| max->base = temp_dword; |
| max->length -= split_node->length; |
| |
| /* Put it next in the list */ |
| split_node->next = max->next; |
| max->next = split_node; |
| } |
| |
| if ((max->base + max->length) & (size - 1)) { |
| /* this one isn't end aligned properly at the top |
| so we'll make a new entry and split it up */ |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| temp_dword = ((max->base + max->length) & ~(size - 1)); |
| split_node->base = temp_dword; |
| split_node->length = max->length + max->base |
| - split_node->base; |
| max->length -= split_node->length; |
| |
| /* Put it in the list */ |
| split_node->next = max->next; |
| max->next = split_node; |
| } |
| |
| /* Make sure it didn't shrink too much when we aligned it */ |
| if (max->length < size) |
| continue; |
| |
| for ( i = 0; max_size[i] > size; i++) { |
| if (max->length > max_size[i]) { |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| if (!split_node) |
| break; /* return NULL; */ |
| split_node->base = max->base + max_size[i]; |
| split_node->length = max->length - max_size[i]; |
| max->length = max_size[i]; |
| /* Put it next in the list */ |
| split_node->next = max->next; |
| max->next = split_node; |
| break; |
| } |
| } |
| |
| /* Now take it out of the list */ |
| temp = (struct pci_resource*) *head; |
| if (temp == max) { |
| *head = max->next; |
| } else { |
| while (temp && temp->next != max) { |
| temp = temp->next; |
| } |
| |
| temp->next = max->next; |
| } |
| |
| max->next = NULL; |
| return max; |
| } |
| |
| /* If we get here, we couldn't find one */ |
| return NULL; |
| } |
| |
| |
| /* |
| * get_resource |
| * |
| * this function sorts the resource list by size and then |
| * returns the first node of "size" length. If it finds a node |
| * larger than "size" it will split it up. |
| * |
| * size must be a power of two. |
| */ |
| static struct pci_resource *get_resource(struct pci_resource **head, u32 size) |
| { |
| struct pci_resource *prevnode; |
| struct pci_resource *node; |
| struct pci_resource *split_node; |
| u32 temp_dword; |
| |
| if (!(*head)) |
| return NULL; |
| |
| if ( pciehp_resource_sort_and_combine(head) ) |
| return NULL; |
| |
| if ( sort_by_size(head) ) |
| return NULL; |
| |
| for (node = *head; node; node = node->next) { |
| dbg("%s: req_size =0x%x node=%p, base=0x%x, length=0x%x\n", |
| __FUNCTION__, size, node, node->base, node->length); |
| if (node->length < size) |
| continue; |
| |
| if (node->base & (size - 1)) { |
| dbg("%s: not aligned\n", __FUNCTION__); |
| /* this one isn't base aligned properly |
| so we'll make a new entry and split it up */ |
| temp_dword = (node->base | (size-1)) + 1; |
| |
| /* Short circuit if adjusted size is too small */ |
| if ((node->length - (temp_dword - node->base)) < size) |
| continue; |
| |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base; |
| split_node->length = temp_dword - node->base; |
| node->base = temp_dword; |
| node->length -= split_node->length; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of non-aligned base */ |
| |
| /* Don't need to check if too small since we already did */ |
| if (node->length > size) { |
| dbg("%s: too big\n", __FUNCTION__); |
| /* this one is longer than we need |
| so we'll make a new entry and split it up */ |
| split_node = kmalloc(sizeof(struct pci_resource), |
| GFP_KERNEL); |
| |
| if (!split_node) |
| return NULL; |
| |
| split_node->base = node->base + size; |
| split_node->length = node->length - size; |
| node->length = size; |
| |
| /* Put it in the list */ |
| split_node->next = node->next; |
| node->next = split_node; |
| } /* End of too big on top end */ |
| |
| dbg("%s: got one!!!\n", __FUNCTION__); |
| /* If we got here, then it is the right size |
| Now take it out of the list */ |
| if (*head == node) { |
| *head = node->next; |
| } else { |
| prevnode = *head; |
| while (prevnode->next != node) |
| prevnode = prevnode->next; |
| |
| prevnode->next = node->next; |
| } |
| node->next = NULL; |
| /* Stop looping */ |
| break; |
| } |
| return node; |
| } |
| |
| |
| /* |
| * pciehp_resource_sort_and_combine |
| * |
| * Sorts all of the nodes in the list in ascending order by |
| * their base addresses. Also does garbage collection by |
| * combining adjacent nodes. |
| * |
| * returns 0 if success |
| */ |
| int pciehp_resource_sort_and_combine(struct pci_resource **head) |
| { |
| struct pci_resource *node1; |
| struct pci_resource *node2; |
| int out_of_order = 1; |
| |
| dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head); |
| |
| if (!(*head)) |
| return 1; |
| |
| dbg("*head->next = %p\n",(*head)->next); |
| |
| if (!(*head)->next) |
| return 0; /* only one item on the list, already sorted! */ |
| |
| dbg("*head->base = 0x%x\n",(*head)->base); |
| dbg("*head->next->base = 0x%x\n",(*head)->next->base); |
| while (out_of_order) { |
| out_of_order = 0; |
| |
| /* Special case for swapping list head */ |
| if (((*head)->next) && |
| ((*head)->base > (*head)->next->base)) { |
| node1 = *head; |
| (*head) = (*head)->next; |
| node1->next = (*head)->next; |
| (*head)->next = node1; |
| out_of_order++; |
| } |
| |
| node1 = (*head); |
| |
| while (node1->next && node1->next->next) { |
| if (node1->next->base > node1->next->next->base) { |
| out_of_order++; |
| node2 = node1->next; |
| node1->next = node1->next->next; |
| node1 = node1->next; |
| node2->next = node1->next; |
| node1->next = node2; |
| } else |
| node1 = node1->next; |
| } |
| } /* End of out_of_order loop */ |
| |
| node1 = *head; |
| |
| while (node1 && node1->next) { |
| if ((node1->base + node1->length) == node1->next->base) { |
| /* Combine */ |
| dbg("8..\n"); |
| node1->length += node1->next->length; |
| node2 = node1->next; |
| node1->next = node1->next->next; |
| kfree(node2); |
| } else |
| node1 = node1->next; |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| * pciehp_slot_create - Creates a node and adds it to the proper bus. |
| * @busnumber - bus where new node is to be located |
| * |
| * Returns pointer to the new node or NULL if unsuccessful |
| */ |
| struct pci_func *pciehp_slot_create(u8 busnumber) |
| { |
| struct pci_func *new_slot; |
| struct pci_func *next; |
| dbg("%s: busnumber %x\n", __FUNCTION__, busnumber); |
| new_slot = kmalloc(sizeof(struct pci_func), GFP_KERNEL); |
| |
| if (new_slot == NULL) |
| return new_slot; |
| |
| memset(new_slot, 0, sizeof(struct pci_func)); |
| |
| new_slot->next = NULL; |
| new_slot->configured = 1; |
| |
| if (pciehp_slot_list[busnumber] == NULL) { |
| pciehp_slot_list[busnumber] = new_slot; |
| } else { |
| next = pciehp_slot_list[busnumber]; |
| while (next->next != NULL) |
| next = next->next; |
| next->next = new_slot; |
| } |
| return new_slot; |
| } |
| |
| |
| /** |
| * slot_remove - Removes a node from the linked list of slots. |
| * @old_slot: slot to remove |
| * |
| * Returns 0 if successful, !0 otherwise. |
| */ |
| static int slot_remove(struct pci_func * old_slot) |
| { |
| struct pci_func *next; |
| |
| if (old_slot == NULL) |
| return 1; |
| |
| next = pciehp_slot_list[old_slot->bus]; |
| |
| if (next == NULL) |
| return 1; |
| |
| if (next == old_slot) { |
| pciehp_slot_list[old_slot->bus] = old_slot->next; |
| pciehp_destroy_board_resources(old_slot); |
| kfree(old_slot); |
| return 0; |
| } |
| |
| while ((next->next != old_slot) && (next->next != NULL)) { |
| next = next->next; |
| } |
| |
| if (next->next == old_slot) { |
| next->next = old_slot->next; |
| pciehp_destroy_board_resources(old_slot); |
| kfree(old_slot); |
| return 0; |
| } else |
| return 2; |
| } |
| |
| |
| /** |
| * bridge_slot_remove - Removes a node from the linked list of slots. |
| * @bridge: bridge to remove |
| * |
| * Returns 0 if successful, !0 otherwise. |
| */ |
| static int bridge_slot_remove(struct pci_func *bridge) |
| { |
| u8 subordinateBus, secondaryBus; |
| u8 tempBus; |
| struct pci_func *next; |
| |
| if (bridge == NULL) |
| return 1; |
| |
| secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; |
| subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; |
| |
| for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { |
| next = pciehp_slot_list[tempBus]; |
| |
| while (!slot_remove(next)) { |
| next = pciehp_slot_list[tempBus]; |
| } |
| } |
| |
| next = pciehp_slot_list[bridge->bus]; |
| |
| if (next == NULL) { |
| return 1; |
| } |
| |
| if (next == bridge) { |
| pciehp_slot_list[bridge->bus] = bridge->next; |
| kfree(bridge); |
| return 0; |
| } |
| |
| while ((next->next != bridge) && (next->next != NULL)) { |
| next = next->next; |
| } |
| |
| if (next->next == bridge) { |
| next->next = bridge->next; |
| kfree(bridge); |
| return 0; |
| } else |
| return 2; |
| } |
| |
| |
| /** |
| * pciehp_slot_find - Looks for a node by bus, and device, multiple functions accessed |
| * @bus: bus to find |
| * @device: device to find |
| * @index: is 0 for first function found, 1 for the second... |
| * |
| * Returns pointer to the node if successful, %NULL otherwise. |
| */ |
| struct pci_func *pciehp_slot_find(u8 bus, u8 device, u8 index) |
| { |
| int found = -1; |
| struct pci_func *func; |
| |
| func = pciehp_slot_list[bus]; |
| dbg("%s: bus %x device %x index %x\n", |
| __FUNCTION__, bus, device, index); |
| if (func != NULL) { |
| dbg("%s: func-> bus %x device %x function %x pci_dev %p\n", |
| __FUNCTION__, func->bus, func->device, func->function, |
| func->pci_dev); |
| } else |
| dbg("%s: func == NULL\n", __FUNCTION__); |
| |
| if ((func == NULL) || ((func->device == device) && (index == 0))) |
| return func; |
| |
| if (func->device == device) |
| found++; |
| |
| while (func->next != NULL) { |
| func = func->next; |
| |
| dbg("%s: In while loop, func-> bus %x device %x function %x pci_dev %p\n", |
| __FUNCTION__, func->bus, func->device, func->function, |
| func->pci_dev); |
| if (func->device == device) |
| found++; |
| dbg("%s: while loop, found %d, index %d\n", __FUNCTION__, |
| found, index); |
| |
| if ((found == index) || (func->function == index)) { |
| dbg("%s: Found bus %x dev %x func %x\n", __FUNCTION__, |
| func->bus, func->device, func->function); |
| return func; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int is_bridge(struct pci_func * func) |
| { |
| /* Check the header type */ |
| if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) |
| return 1; |
| else |
| return 0; |
| } |
| |
| |
| /* The following routines constitute the bulk of the |
| hotplug controller logic |
| */ |
| |
| static void set_slot_off(struct controller *ctrl, struct slot * pslot) |
| { |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| /* turn off slot, turn on Amber LED, turn off Green LED if supported*/ |
| if (POWER_CTRL(ctrl->ctrlcap)) { |
| if (pslot->hpc_ops->power_off_slot(pslot)) { |
| err("%s: Issue of Slot Power Off command failed\n", __FUNCTION__); |
| up(&ctrl->crit_sect); |
| return; |
| } |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| pslot->hpc_ops->green_led_off(pslot); |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (ATTN_LED(ctrl->ctrlcap)) { |
| if (pslot->hpc_ops->set_attention_status(pslot, 1)) { |
| err("%s: Issue of Set Attention Led command failed\n", __FUNCTION__); |
| up(&ctrl->crit_sect); |
| return; |
| } |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| } |
| |
| /** |
| * board_added - Called after a board has been added to the system. |
| * |
| * Turns power on for the board |
| * Configures board |
| * |
| */ |
| static u32 board_added(struct pci_func * func, struct controller * ctrl) |
| { |
| u8 hp_slot; |
| int index; |
| u32 temp_register = 0xFFFFFFFF; |
| u32 rc = 0; |
| struct pci_func *new_func = NULL; |
| struct slot *p_slot; |
| struct resource_lists res_lists; |
| |
| p_slot = pciehp_find_slot(ctrl, func->device); |
| hp_slot = func->device - ctrl->slot_device_offset; |
| |
| dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot); |
| |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| if (POWER_CTRL(ctrl->ctrlcap)) { |
| /* Power on slot */ |
| rc = p_slot->hpc_ops->power_on_slot(p_slot); |
| if (rc) { |
| up(&ctrl->crit_sect); |
| return -1; |
| } |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->green_led_blink(p_slot); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| |
| /* Wait for ~1 second */ |
| dbg("%s: before long_delay\n", __FUNCTION__); |
| wait_for_ctrl_irq (ctrl); |
| dbg("%s: afterlong_delay\n", __FUNCTION__); |
| |
| /* Check link training status */ |
| rc = p_slot->hpc_ops->check_lnk_status(ctrl); |
| if (rc) { |
| err("%s: Failed to check link status\n", __FUNCTION__); |
| set_slot_off(ctrl, p_slot); |
| return rc; |
| } |
| |
| dbg("%s: func status = %x\n", __FUNCTION__, func->status); |
| |
| /* Check for a power fault */ |
| if (func->status == 0xFF) { |
| /* power fault occurred, but it was benign */ |
| temp_register = 0xFFFFFFFF; |
| dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register); |
| rc = POWER_FAILURE; |
| func->status = 0; |
| } else { |
| /* Get vendor/device ID u32 */ |
| rc = pci_bus_read_config_dword (ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function), |
| PCI_VENDOR_ID, &temp_register); |
| dbg("%s: pci_bus_read_config_dword returns %d\n", __FUNCTION__, rc); |
| dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register); |
| |
| if (rc != 0) { |
| /* Something's wrong here */ |
| temp_register = 0xFFFFFFFF; |
| dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register); |
| } |
| /* Preset return code. It will be changed later if things go okay. */ |
| rc = NO_ADAPTER_PRESENT; |
| } |
| |
| /* All F's is an empty slot or an invalid board */ |
| if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */ |
| res_lists.io_head = ctrl->io_head; |
| res_lists.mem_head = ctrl->mem_head; |
| res_lists.p_mem_head = ctrl->p_mem_head; |
| res_lists.bus_head = ctrl->bus_head; |
| res_lists.irqs = NULL; |
| |
| rc = configure_new_device(ctrl, func, 0, &res_lists, 0, 0); |
| dbg("%s: back from configure_new_device\n", __FUNCTION__); |
| |
| ctrl->io_head = res_lists.io_head; |
| ctrl->mem_head = res_lists.mem_head; |
| ctrl->p_mem_head = res_lists.p_mem_head; |
| ctrl->bus_head = res_lists.bus_head; |
| |
| pciehp_resource_sort_and_combine(&(ctrl->mem_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->io_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->bus_head)); |
| |
| if (rc) { |
| set_slot_off(ctrl, p_slot); |
| return rc; |
| } |
| pciehp_save_slot_config(ctrl, func); |
| |
| func->status = 0; |
| func->switch_save = 0x10; |
| func->is_a_board = 0x01; |
| |
| /* next, we will instantiate the linux pci_dev structures |
| * (with appropriate driver notification, if already present) |
| */ |
| index = 0; |
| do { |
| new_func = pciehp_slot_find(ctrl->slot_bus, func->device, index++); |
| if (new_func && !new_func->pci_dev) { |
| dbg("%s:call pci_hp_configure_dev, func %x\n", |
| __FUNCTION__, index); |
| pciehp_configure_device(ctrl, new_func); |
| } |
| } while (new_func); |
| |
| /* |
| * Some PCI Express root ports require fixup after hot-plug operation. |
| */ |
| if (pcie_mch_quirk) |
| pci_fixup_device(pci_fixup_final, ctrl->pci_dev); |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| p_slot->hpc_ops->green_led_on(p_slot); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| } |
| } else { |
| set_slot_off(ctrl, p_slot); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * remove_board - Turns off slot and LED's |
| * |
| */ |
| static u32 remove_board(struct pci_func *func, struct controller *ctrl) |
| { |
| int index; |
| u8 skip = 0; |
| u8 device; |
| u8 hp_slot; |
| u32 rc; |
| struct resource_lists res_lists; |
| struct pci_func *temp_func; |
| struct slot *p_slot; |
| |
| if (func == NULL) |
| return 1; |
| |
| if (pciehp_unconfigure_device(func)) |
| return 1; |
| |
| device = func->device; |
| |
| hp_slot = func->device - ctrl->slot_device_offset; |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot); |
| |
| if ((ctrl->add_support) && |
| !(func->bus_head || func->mem_head || func->p_mem_head || func->io_head)) { |
| /* Here we check to see if we've saved any of the board's |
| * resources already. If so, we'll skip the attempt to |
| * determine what's being used. |
| */ |
| index = 0; |
| |
| temp_func = func; |
| |
| while ((temp_func = pciehp_slot_find(temp_func->bus, temp_func->device, index++))) { |
| if (temp_func->bus_head || temp_func->mem_head |
| || temp_func->p_mem_head || temp_func->io_head) { |
| skip = 1; |
| break; |
| } |
| } |
| |
| if (!skip) |
| rc = pciehp_save_used_resources(ctrl, func, DISABLE_CARD); |
| } |
| /* Change status to shutdown */ |
| if (func->is_a_board) |
| func->status = 0x01; |
| func->configured = 0; |
| |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| if (POWER_CTRL(ctrl->ctrlcap)) { |
| /* power off slot */ |
| rc = p_slot->hpc_ops->power_off_slot(p_slot); |
| if (rc) { |
| err("%s: Issue of Slot Disable command failed\n", __FUNCTION__); |
| up(&ctrl->crit_sect); |
| return rc; |
| } |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| /* turn off Green LED */ |
| p_slot->hpc_ops->green_led_off(p_slot); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| |
| if (ctrl->add_support) { |
| while (func) { |
| res_lists.io_head = ctrl->io_head; |
| res_lists.mem_head = ctrl->mem_head; |
| res_lists.p_mem_head = ctrl->p_mem_head; |
| res_lists.bus_head = ctrl->bus_head; |
| |
| dbg("Returning resources to ctlr lists for (B/D/F) = (%#x/%#x/%#x)\n", |
| func->bus, func->device, func->function); |
| |
| pciehp_return_board_resources(func, &res_lists); |
| |
| ctrl->io_head = res_lists.io_head; |
| ctrl->mem_head = res_lists.mem_head; |
| ctrl->p_mem_head = res_lists.p_mem_head; |
| ctrl->bus_head = res_lists.bus_head; |
| |
| pciehp_resource_sort_and_combine(&(ctrl->mem_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->io_head)); |
| pciehp_resource_sort_and_combine(&(ctrl->bus_head)); |
| |
| if (is_bridge(func)) { |
| dbg("PCI Bridge Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", |
| ctrl->seg, func->bus, func->device, func->function); |
| bridge_slot_remove(func); |
| } else { |
| dbg("PCI Function Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", |
| ctrl->seg, func->bus, func->device, func->function); |
| slot_remove(func); |
| } |
| |
| func = pciehp_slot_find(ctrl->slot_bus, device, 0); |
| } |
| |
| /* Setup slot structure with entry for empty slot */ |
| func = pciehp_slot_create(ctrl->slot_bus); |
| |
| if (func == NULL) { |
| return 1; |
| } |
| |
| func->bus = ctrl->slot_bus; |
| func->device = device; |
| func->function = 0; |
| func->configured = 0; |
| func->switch_save = 0x10; |
| func->is_a_board = 0; |
| } |
| |
| return 0; |
| } |
| |
| |
| static void pushbutton_helper_thread(unsigned long data) |
| { |
| pushbutton_pending = data; |
| |
| up(&event_semaphore); |
| } |
| |
| /** |
| * pciehp_pushbutton_thread |
| * |
| * Scheduled procedure to handle blocking stuff for the pushbuttons |
| * Handles all pending events and exits. |
| * |
| */ |
| static void pciehp_pushbutton_thread(unsigned long slot) |
| { |
| struct slot *p_slot = (struct slot *) slot; |
| u8 getstatus; |
| |
| pushbutton_pending = 0; |
| |
| if (!p_slot) { |
| dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| return; |
| } |
| |
| p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| if (getstatus) { |
| p_slot->state = POWEROFF_STATE; |
| dbg("In power_down_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| |
| pciehp_disable_slot(p_slot); |
| p_slot->state = STATIC_STATE; |
| } else { |
| p_slot->state = POWERON_STATE; |
| dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| |
| if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) { |
| /* Wait for exclusive access to hardware */ |
| down(&p_slot->ctrl->crit_sect); |
| |
| p_slot->hpc_ops->green_led_off(p_slot); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (p_slot->ctrl); |
| |
| /* Done with exclusive hardware access */ |
| up(&p_slot->ctrl->crit_sect); |
| } |
| p_slot->state = STATIC_STATE; |
| } |
| |
| return; |
| } |
| |
| /** |
| * pciehp_surprise_rm_thread |
| * |
| * Scheduled procedure to handle blocking stuff for the surprise removal |
| * Handles all pending events and exits. |
| * |
| */ |
| static void pciehp_surprise_rm_thread(unsigned long slot) |
| { |
| struct slot *p_slot = (struct slot *) slot; |
| u8 getstatus; |
| |
| surprise_rm_pending = 0; |
| |
| if (!p_slot) { |
| dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| return; |
| } |
| |
| p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| if (!getstatus) { |
| p_slot->state = POWEROFF_STATE; |
| dbg("In removing board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| |
| pciehp_disable_slot(p_slot); |
| p_slot->state = STATIC_STATE; |
| } else { |
| p_slot->state = POWERON_STATE; |
| dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| |
| if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) { |
| /* Wait for exclusive access to hardware */ |
| down(&p_slot->ctrl->crit_sect); |
| |
| p_slot->hpc_ops->green_led_off(p_slot); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (p_slot->ctrl); |
| |
| /* Done with exclusive hardware access */ |
| up(&p_slot->ctrl->crit_sect); |
| } |
| p_slot->state = STATIC_STATE; |
| } |
| |
| return; |
| } |
| |
| |
| |
| /* this is the main worker thread */ |
| static int event_thread(void* data) |
| { |
| struct controller *ctrl; |
| lock_kernel(); |
| daemonize("pciehpd_event"); |
| |
| unlock_kernel(); |
| |
| while (1) { |
| dbg("!!!!event_thread sleeping\n"); |
| down_interruptible (&event_semaphore); |
| dbg("event_thread woken finished = %d\n", event_finished); |
| if (event_finished || signal_pending(current)) |
| break; |
| /* Do stuff here */ |
| if (pushbutton_pending) |
| pciehp_pushbutton_thread(pushbutton_pending); |
| else if (surprise_rm_pending) |
| pciehp_surprise_rm_thread(surprise_rm_pending); |
| else |
| for (ctrl = pciehp_ctrl_list; ctrl; ctrl=ctrl->next) |
| interrupt_event_handler(ctrl); |
| } |
| dbg("event_thread signals exit\n"); |
| up(&event_exit); |
| return 0; |
| } |
| |
| int pciehp_event_start_thread(void) |
| { |
| int pid; |
| |
| /* initialize our semaphores */ |
| init_MUTEX_LOCKED(&event_exit); |
| event_finished=0; |
| |
| init_MUTEX_LOCKED(&event_semaphore); |
| pid = kernel_thread(event_thread, NULL, 0); |
| |
| if (pid < 0) { |
| err ("Can't start up our event thread\n"); |
| return -1; |
| } |
| dbg("Our event thread pid = %d\n", pid); |
| return 0; |
| } |
| |
| |
| void pciehp_event_stop_thread(void) |
| { |
| event_finished = 1; |
| dbg("event_thread finish command given\n"); |
| up(&event_semaphore); |
| dbg("wait for event_thread to exit\n"); |
| down(&event_exit); |
| } |
| |
| |
| static int update_slot_info(struct slot *slot) |
| { |
| struct hotplug_slot_info *info; |
| /* char buffer[SLOT_NAME_SIZE]; */ |
| int result; |
| |
| info = kmalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| /* make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); */ |
| |
| slot->hpc_ops->get_power_status(slot, &(info->power_status)); |
| slot->hpc_ops->get_attention_status(slot, &(info->attention_status)); |
| slot->hpc_ops->get_latch_status(slot, &(info->latch_status)); |
| slot->hpc_ops->get_adapter_status(slot, &(info->adapter_status)); |
| |
| /* result = pci_hp_change_slot_info(buffer, info); */ |
| result = pci_hp_change_slot_info(slot->hotplug_slot, info); |
| kfree (info); |
| return result; |
| } |
| |
| static void interrupt_event_handler(struct controller *ctrl) |
| { |
| int loop = 0; |
| int change = 1; |
| struct pci_func *func; |
| u8 hp_slot; |
| u8 getstatus; |
| struct slot *p_slot; |
| |
| while (change) { |
| change = 0; |
| |
| for (loop = 0; loop < 10; loop++) { |
| if (ctrl->event_queue[loop].event_type != 0) { |
| hp_slot = ctrl->event_queue[loop].hp_slot; |
| |
| func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| |
| p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| |
| dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot); |
| |
| if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) { |
| dbg("button cancel\n"); |
| del_timer(&p_slot->task_event); |
| |
| switch (p_slot->state) { |
| case BLINKINGOFF_STATE: |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->green_led_on(p_slot); |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| if (ATTN_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| break; |
| case BLINKINGON_STATE: |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->green_led_off(p_slot); |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| if (ATTN_LED(ctrl->ctrlcap)){ |
| p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| |
| break; |
| default: |
| warn("Not a valid state\n"); |
| return; |
| } |
| info(msg_button_cancel, p_slot->number); |
| p_slot->state = STATIC_STATE; |
| } |
| /* ***********Button Pressed (No action on 1st press...) */ |
| else if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { |
| |
| if (ATTN_BUTTN(ctrl->ctrlcap)) { |
| dbg("Button pressed\n"); |
| p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| if (getstatus) { |
| /* slot is on */ |
| dbg("slot is on\n"); |
| p_slot->state = BLINKINGOFF_STATE; |
| info(msg_button_off, p_slot->number); |
| } else { |
| /* slot is off */ |
| dbg("slot is off\n"); |
| p_slot->state = BLINKINGON_STATE; |
| info(msg_button_on, p_slot->number); |
| } |
| |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| /* blink green LED and turn off amber */ |
| if (PWR_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->green_led_blink(p_slot); |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (ATTN_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| |
| /* Wait for the command to complete */ |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| |
| init_timer(&p_slot->task_event); |
| p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ |
| p_slot->task_event.function = (void (*)(unsigned long)) pushbutton_helper_thread; |
| p_slot->task_event.data = (unsigned long) p_slot; |
| |
| dbg("add_timer p_slot = %p\n", (void *) p_slot); |
| add_timer(&p_slot->task_event); |
| } |
| } |
| /***********POWER FAULT********************/ |
| else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { |
| if (POWER_CTRL(ctrl->ctrlcap)) { |
| dbg("power fault\n"); |
| /* Wait for exclusive access to hardware */ |
| down(&ctrl->crit_sect); |
| |
| if (ATTN_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->set_attention_status(p_slot, 1); |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| if (PWR_LED(ctrl->ctrlcap)) { |
| p_slot->hpc_ops->green_led_off(p_slot); |
| wait_for_ctrl_irq (ctrl); |
| } |
| |
| /* Done with exclusive hardware access */ |
| up(&ctrl->crit_sect); |
| } |
| } |
| /***********SURPRISE REMOVAL********************/ |
| else if ((ctrl->event_queue[loop].event_type == INT_PRESENCE_ON) || |
| (ctrl->event_queue[loop].event_type == INT_PRESENCE_OFF)) { |
| if (HP_SUPR_RM(ctrl->ctrlcap)) { |
| dbg("Surprise Removal\n"); |
| if (p_slot) { |
| surprise_rm_pending = (unsigned long) p_slot; |
| up(&event_semaphore); |
| update_slot_info(p_slot); |
| } |
| } |
| } else { |
| /* refresh notification */ |
| if (p_slot) |
| update_slot_info(p_slot); |
| } |
| |
| ctrl->event_queue[loop].event_type = 0; |
| |
| change = 1; |
| } |
| } /* End of FOR loop */ |
| } |
| } |
| |
| |
| int pciehp_enable_slot(struct slot *p_slot) |
| { |
| u8 getstatus = 0; |
| int rc; |
| struct pci_func *func; |
| |
| func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); |
| if (!func) { |
| dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| return 1; |
| } |
| |
| /* Check to see if (latch closed, card present, power off) */ |
| down(&p_slot->ctrl->crit_sect); |
| |
| rc = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| if (rc || !getstatus) { |
| info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| if (MRL_SENS(p_slot->ctrl->ctrlcap)) { |
| rc = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| if (rc || getstatus) { |
| info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| } |
| |
| if (POWER_CTRL(p_slot->ctrl->ctrlcap)) { |
| rc = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| if (rc || getstatus) { |
| info("%s: already enabled on slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| } |
| up(&p_slot->ctrl->crit_sect); |
| |
| slot_remove(func); |
| |
| func = pciehp_slot_create(p_slot->bus); |
| if (func == NULL) |
| return 1; |
| |
| func->bus = p_slot->bus; |
| func->device = p_slot->device; |
| func->function = 0; |
| func->configured = 0; |
| func->is_a_board = 1; |
| |
| /* We have to save the presence info for these slots */ |
| p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| func->switch_save = !getstatus? 0x10:0; |
| |
| rc = board_added(func, p_slot->ctrl); |
| if (rc) { |
| if (is_bridge(func)) |
| bridge_slot_remove(func); |
| else |
| slot_remove(func); |
| |
| /* Setup slot structure with entry for empty slot */ |
| func = pciehp_slot_create(p_slot->bus); |
| if (func == NULL) |
| return 1; /* Out of memory */ |
| |
| func->bus = p_slot->bus; |
| func->device = p_slot->device; |
| func->function = 0; |
| func->configured = 0; |
| func->is_a_board = 1; |
| |
| /* We have to save the presence info for these slots */ |
| p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| func->switch_save = !getstatus? 0x10:0; |
| } |
| |
| if (p_slot) |
| update_slot_info(p_slot); |
| |
| return rc; |
| } |
| |
| |
| int pciehp_disable_slot(struct slot *p_slot) |
| { |
| u8 class_code, header_type, BCR; |
| u8 index = 0; |
| u8 getstatus = 0; |
| u32 rc = 0; |
| int ret = 0; |
| unsigned int devfn; |
| struct pci_bus *pci_bus = p_slot->ctrl->pci_dev->subordinate; |
| struct pci_func *func; |
| |
| if (!p_slot->ctrl) |
| return 1; |
| |
| /* Check to see if (latch closed, card present, power on) */ |
| down(&p_slot->ctrl->crit_sect); |
| |
| if (!HP_SUPR_RM(p_slot->ctrl->ctrlcap)) { |
| ret = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| if (ret || !getstatus) { |
| info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| } |
| |
| if (MRL_SENS(p_slot->ctrl->ctrlcap)) { |
| ret = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| if (ret || getstatus) { |
| info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| } |
| |
| if (POWER_CTRL(p_slot->ctrl->ctrlcap)) { |
| ret = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| if (ret || !getstatus) { |
| info("%s: already disabled slot(%x)\n", __FUNCTION__, p_slot->number); |
| up(&p_slot->ctrl->crit_sect); |
| return 1; |
| } |
| } |
| |
| up(&p_slot->ctrl->crit_sect); |
| |
| func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); |
| |
| /* Make sure there are no video controllers here |
| * for all func of p_slot |
| */ |
| while (func && !rc) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| /* Check the Class Code */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); |
| if (rc) |
| return rc; |
| |
| if (class_code == PCI_BASE_CLASS_DISPLAY) { |
| /* Display/Video adapter (not supported) */ |
| rc = REMOVE_NOT_SUPPORTED; |
| } else { |
| /* See if it's a bridge */ |
| rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| if (rc) |
| return rc; |
| |
| /* If it's a bridge, check the VGA Enable bit */ |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); |
| if (rc) |
| return rc; |
| |
| /* If the VGA Enable bit is set, remove isn't supported */ |
| if (BCR & PCI_BRIDGE_CTL_VGA) { |
| rc = REMOVE_NOT_SUPPORTED; |
| } |
| } |
| } |
| |
| func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); |
| } |
| |
| func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); |
| if ((func != NULL) && !rc) { |
| rc = remove_board(func, p_slot->ctrl); |
| } else if (!rc) |
| rc = 1; |
| |
| if (p_slot) |
| update_slot_info(p_slot); |
| |
| return rc; |
| } |
| |
| |
| /** |
| * configure_new_device - Configures the PCI header information of one board. |
| * |
| * @ctrl: pointer to controller structure |
| * @func: pointer to function structure |
| * @behind_bridge: 1 if this is a recursive call, 0 if not |
| * @resources: pointer to set of resource lists |
| * |
| * Returns 0 if success |
| * |
| */ |
| static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, |
| u8 behind_bridge, struct resource_lists * resources, u8 bridge_bus, u8 bridge_dev) |
| { |
| u8 temp_byte, function, max_functions, stop_it; |
| int rc; |
| u32 ID; |
| struct pci_func *new_slot; |
| struct pci_bus lpci_bus, *pci_bus; |
| int index; |
| |
| new_slot = func; |
| |
| dbg("%s\n", __FUNCTION__); |
| memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); |
| pci_bus = &lpci_bus; |
| pci_bus->number = func->bus; |
| |
| /* Check for Multi-function device */ |
| rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); |
| if (rc) { |
| dbg("%s: rc = %d\n", __FUNCTION__, rc); |
| return rc; |
| } |
| |
| if (temp_byte & 0x80) /* Multi-function device */ |
| max_functions = 8; |
| else |
| max_functions = 1; |
| |
| function = 0; |
| |
| do { |
| rc = configure_new_function(ctrl, new_slot, behind_bridge, |
| resources, bridge_bus, bridge_dev); |
| |
| if (rc) { |
| dbg("configure_new_function failed: %d\n", rc); |
| index = 0; |
| |
| while (new_slot) { |
| new_slot = pciehp_slot_find(new_slot->bus, |
| new_slot->device, index++); |
| |
| if (new_slot) |
| pciehp_return_board_resources(new_slot, |
| resources); |
| } |
| |
| return rc; |
| } |
| |
| function++; |
| |
| stop_it = 0; |
| |
| /* The following loop skips to the next present function |
| * and creates a board structure |
| */ |
| |
| while ((function < max_functions) && (!stop_it)) { |
| pci_bus_read_config_dword(pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); |
| |
| if (ID == 0xFFFFFFFF) { /* There's nothing there. */ |
| function++; |
| } else { /* There's something there */ |
| /* Setup slot structure. */ |
| new_slot = pciehp_slot_create(func->bus); |
| |
| if (new_slot == NULL) { |
| /* Out of memory */ |
| return 1; |
| } |
| |
| new_slot->bus = func->bus; |
| new_slot->device = func->device; |
| new_slot->function = function; |
| new_slot->is_a_board = 1; |
| new_slot->status = 0; |
| |
| stop_it++; |
| } |
| } |
| |
| } while (function < max_functions); |
| dbg("returning from %s\n", __FUNCTION__); |
| |
| return 0; |
| } |
| |
| /* |
| * Configuration logic that involves the hotplug data structures and |
| * their bookkeeping |
| */ |
| |
| /** |
| * configure_bridge: fill bridge's registers, either configure or disable it. |
| */ |
| static int |
| configure_bridge(struct pci_bus *pci_bus, unsigned int devfn, |
| struct pci_resource *mem_node, |
| struct pci_resource **hold_mem_node, |
| int base_addr, int limit_addr) |
| { |
| u16 temp_word; |
| u32 rc; |
| |
| if (mem_node) { |
| memcpy(*hold_mem_node, mem_node, sizeof(struct pci_resource)); |
| mem_node->next = NULL; |
| |
| /* set Mem base and Limit registers */ |
| RES_CHECK(mem_node->base, 16); |
| temp_word = (u16)(mem_node->base >> 16); |
| rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word); |
| |
| RES_CHECK(mem_node->base + mem_node->length - 1, 16); |
| temp_word = (u16)((mem_node->base + mem_node->length - 1) >> 16); |
| rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word); |
| } else { |
| temp_word = 0xFFFF; |
| rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word); |
| |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word); |
| |
| kfree(*hold_mem_node); |
| *hold_mem_node = NULL; |
| } |
| return rc; |
| } |
| |
| static int |
| configure_new_bridge(struct controller *ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources, |
| struct pci_bus *pci_bus) |
| { |
| int cloop; |
| u8 temp_byte; |
| u8 device; |
| u16 temp_word; |
| u32 rc; |
| u32 ID; |
| unsigned int devfn; |
| struct pci_resource *mem_node; |
| struct pci_resource *p_mem_node; |
| struct pci_resource *io_node; |
| struct pci_resource *bus_node; |
| struct pci_resource *hold_mem_node; |
| struct pci_resource *hold_p_mem_node; |
| struct pci_resource *hold_IO_node; |
| struct pci_resource *hold_bus_node; |
| struct irq_mapping irqs; |
| struct pci_func *new_slot; |
| struct resource_lists temp_resources; |
| |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| /* set Primary bus */ |
| dbg("set Primary bus = 0x%x\n", func->bus); |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); |
| if (rc) |
| return rc; |
| |
| /* find range of busses to use */ |
| bus_node = get_max_resource(&resources->bus_head, 1L); |
| |
| /* If we don't have any busses to allocate, we can't continue */ |
| if (!bus_node) { |
| err("Got NO bus resource to use\n"); |
| return -ENOMEM; |
| } |
| dbg("Got ranges of buses to use: base:len=0x%x:%x\n", bus_node->base, bus_node->length); |
| |
| /* set Secondary bus */ |
| temp_byte = (u8)bus_node->base; |
| dbg("set Secondary bus = 0x%x\n", temp_byte); |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* set subordinate bus */ |
| temp_byte = (u8)(bus_node->base + bus_node->length - 1); |
| dbg("set subordinate bus = 0x%x\n", temp_byte); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| if (rc) |
| return rc; |
| |
| /* Set HP parameters (Cache Line Size, Latency Timer) */ |
| rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_BRIDGE); |
| if (rc) |
| return rc; |
| |
| /* Setup the IO, memory, and prefetchable windows */ |
| |
| io_node = get_max_resource(&(resources->io_head), 0x1000L); |
| if (io_node) { |
| dbg("io_node(base, len, next) (%x, %x, %p)\n", io_node->base, |
| io_node->length, io_node->next); |
| } |
| |
| mem_node = get_max_resource(&(resources->mem_head), 0x100000L); |
| if (mem_node) { |
| dbg("mem_node(base, len, next) (%x, %x, %p)\n", mem_node->base, |
| mem_node->length, mem_node->next); |
| } |
| |
| if (resources->p_mem_head) |
| p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000L); |
| else { |
| /* |
| * In some platform implementation, MEM and PMEM are not |
| * distinguished, and hence ACPI _CRS has only MEM entries |
| * for both MEM and PMEM. |
| */ |
| dbg("using MEM for PMEM\n"); |
| p_mem_node = get_max_resource(&(resources->mem_head), 0x100000L); |
| } |
| if (p_mem_node) { |
| dbg("p_mem_node(base, len, next) (%x, %x, %p)\n", p_mem_node->base, |
| p_mem_node->length, p_mem_node->next); |
| } |
| |
| /* set up the IRQ info */ |
| if (!resources->irqs) { |
| irqs.barber_pole = 0; |
| irqs.interrupt[0] = 0; |
| irqs.interrupt[1] = 0; |
| irqs.interrupt[2] = 0; |
| irqs.interrupt[3] = 0; |
| irqs.valid_INT = 0; |
| } else { |
| irqs.barber_pole = resources->irqs->barber_pole; |
| irqs.interrupt[0] = resources->irqs->interrupt[0]; |
| irqs.interrupt[1] = resources->irqs->interrupt[1]; |
| irqs.interrupt[2] = resources->irqs->interrupt[2]; |
| irqs.interrupt[3] = resources->irqs->interrupt[3]; |
| irqs.valid_INT = resources->irqs->valid_INT; |
| } |
| |
| /* set up resource lists that are now aligned on top and bottom |
| * for anything behind the bridge. |
| */ |
| temp_resources.bus_head = bus_node; |
| temp_resources.io_head = io_node; |
| temp_resources.mem_head = mem_node; |
| temp_resources.p_mem_head = p_mem_node; |
| temp_resources.irqs = &irqs; |
| |
| /* Make copies of the nodes we are going to pass down so that |
| * if there is a problem,we can just use these to free resources |
| */ |
| hold_bus_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| hold_IO_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| hold_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| hold_p_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| |
| if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { |
| kfree(hold_bus_node); |
| kfree(hold_IO_node); |
| kfree(hold_mem_node); |
| kfree(hold_p_mem_node); |
| |
| return 1; |
| } |
| |
| memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); |
| |
| bus_node->base += 1; |
| bus_node->length -= 1; |
| bus_node->next = NULL; |
| |
| /* If we have IO resources copy them and fill in the bridge's |
| * IO range registers |
| */ |
| if (io_node) { |
| memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); |
| io_node->next = NULL; |
| |
| /* set IO base and Limit registers */ |
| RES_CHECK(io_node->base, 8); |
| temp_byte = (u8)(io_node->base >> 8); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| |
| RES_CHECK(io_node->base + io_node->length - 1, 8); |
| temp_byte = (u8)((io_node->base + io_node->length - 1) >> 8); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| } else { |
| kfree(hold_IO_node); |
| hold_IO_node = NULL; |
| } |
| |
| /* If we have memory resources copy them and fill in the bridge's |
| * memory range registers. Otherwise, fill in the range |
| * registers with values that disable them. |
| */ |
| rc = configure_bridge(pci_bus, devfn, mem_node, &hold_mem_node, |
| PCI_MEMORY_BASE, PCI_MEMORY_LIMIT); |
| |
| /* If we have prefetchable memory resources copy them and |
| * fill in the bridge's memory range registers. Otherwise, |
| * fill in the range registers with values that disable them. |
| */ |
| rc = configure_bridge(pci_bus, devfn, p_mem_node, &hold_p_mem_node, |
| PCI_PREF_MEMORY_BASE, PCI_PREF_MEMORY_LIMIT); |
| |
| /* Adjust this to compensate for extra adjustment in first loop */ |
| irqs.barber_pole--; |
| |
| rc = 0; |
| |
| /* Here we actually find the devices and configure them */ |
| for (device = 0; (device <= 0x1F) && !rc; device++) { |
| irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; |
| |
| ID = 0xFFFFFFFF; |
| pci_bus->number = hold_bus_node->base; |
| pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); |
| pci_bus->number = func->bus; |
| |
| if (ID != 0xFFFFFFFF) { /* device Present */ |
| /* Setup slot structure. */ |
| new_slot = pciehp_slot_create(hold_bus_node->base); |
| |
| if (new_slot == NULL) { |
| /* Out of memory */ |
| rc = -ENOMEM; |
| continue; |
| } |
| |
| new_slot->bus = hold_bus_node->base; |
| new_slot->device = device; |
| new_slot->function = 0; |
| new_slot->is_a_board = 1; |
| new_slot->status = 0; |
| |
| rc = configure_new_device(ctrl, new_slot, 1, |
| &temp_resources, func->bus, |
| func->device); |
| dbg("configure_new_device rc=0x%x\n",rc); |
| } /* End of IF (device in slot?) */ |
| } /* End of FOR loop */ |
| |
| if (rc) { |
| pciehp_destroy_resource_list(&temp_resources); |
| |
| return_resource(&(resources->bus_head), hold_bus_node); |
| return_resource(&(resources->io_head), hold_IO_node); |
| return_resource(&(resources->mem_head), hold_mem_node); |
| return_resource(&(resources->p_mem_head), hold_p_mem_node); |
| return(rc); |
| } |
| |
| /* save the interrupt routing information */ |
| if (resources->irqs) { |
| resources->irqs->interrupt[0] = irqs.interrupt[0]; |
| resources->irqs->interrupt[1] = irqs.interrupt[1]; |
| resources->irqs->interrupt[2] = irqs.interrupt[2]; |
| resources->irqs->interrupt[3] = irqs.interrupt[3]; |
| resources->irqs->valid_INT = irqs.valid_INT; |
| } else if (!behind_bridge) { |
| /* We need to hook up the interrupts here */ |
| for (cloop = 0; cloop < 4; cloop++) { |
| if (irqs.valid_INT & (0x01 << cloop)) { |
| rc = pciehp_set_irq(func->bus, func->device, |
| 0x0A + cloop, irqs.interrupt[cloop]); |
| if (rc) { |
| pciehp_destroy_resource_list (&temp_resources); |
| return_resource(&(resources->bus_head), hold_bus_node); |
| return_resource(&(resources->io_head), hold_IO_node); |
| return_resource(&(resources->mem_head), hold_mem_node); |
| return_resource(&(resources->p_mem_head), hold_p_mem_node); |
| return rc; |
| } |
| } |
| } /* end of for loop */ |
| } |
| |
| /* Return unused bus resources |
| * First use the temporary node to store information for the board |
| */ |
| if (hold_bus_node && bus_node && temp_resources.bus_head) { |
| hold_bus_node->length = bus_node->base - hold_bus_node->base; |
| |
| hold_bus_node->next = func->bus_head; |
| func->bus_head = hold_bus_node; |
| |
| temp_byte = (u8)(temp_resources.bus_head->base - 1); |
| |
| /* set subordinate bus */ |
| dbg("re-set subordinate bus = 0x%x\n", temp_byte); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| |
| if (temp_resources.bus_head->length == 0) { |
| kfree(temp_resources.bus_head); |
| temp_resources.bus_head = NULL; |
| } else { |
| dbg("return bus res of b:d(0x%x:%x) base:len(0x%x:%x)\n", |
| func->bus, func->device, temp_resources.bus_head->base, temp_resources.bus_head->length); |
| return_resource(&(resources->bus_head), temp_resources.bus_head); |
| } |
| } |
| |
| /* If we have IO space available and there is some left, |
| * return the unused portion |
| */ |
| if (hold_IO_node && temp_resources.io_head) { |
| io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), |
| &hold_IO_node, 0x1000); |
| |
| /* Check if we were able to split something off */ |
| if (io_node) { |
| hold_IO_node->base = io_node->base + io_node->length; |
| |
| RES_CHECK(hold_IO_node->base, 8); |
| temp_byte = (u8)((hold_IO_node->base) >> 8); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| |
| return_resource(&(resources->io_head), io_node); |
| } |
| |
| io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); |
| |
| /* Check if we were able to split something off */ |
| if (io_node) { |
| /* First use the temporary node to store information for the board */ |
| hold_IO_node->length = io_node->base - hold_IO_node->base; |
| |
| /* If we used any, add it to the board's list */ |
| if (hold_IO_node->length) { |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| |
| RES_CHECK(io_node->base - 1, 8); |
| temp_byte = (u8)((io_node->base - 1) >> 8); |
| rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| |
| return_resource(&(resources->io_head), io_node); |
| } else { |
| /* it doesn't need any IO */ |
| temp_byte = 0x00; |
| rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| |
| return_resource(&(resources->io_head), io_node); |
| kfree(hold_IO_node); |
| } |
| } else { |
| /* it used most of the range */ |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| } |
| } else if (hold_IO_node) { |
| /* it used the whole range */ |
| hold_IO_node->next = func->io_head; |
| func->io_head = hold_IO_node; |
| } |
| |
| /* If we have memory space available and there is some left, |
| * return the unused portion |
| */ |
| if (hold_mem_node && temp_resources.mem_head) { |
| mem_node = do_pre_bridge_resource_split(&(temp_resources.mem_head), &hold_mem_node, 0x100000L); |
| |
| /* Check if we were able to split something off */ |
| if (mem_node) { |
| hold_mem_node->base = mem_node->base + mem_node->length; |
| |
| RES_CHECK(hold_mem_node->base, 16); |
| temp_word = (u16)((hold_mem_node->base) >> 16); |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); |
| |
| return_resource(&(resources->mem_head), mem_node); |
| } |
| |
| mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000L); |
| |
| /* Check if we were able to split something off */ |
| if (mem_node) { |
| /* First use the temporary node to store information for the board */ |
| hold_mem_node->length = mem_node->base - hold_mem_node->base; |
| |
| if (hold_mem_node->length) { |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| |
| /* configure end address */ |
| RES_CHECK(mem_node->base - 1, 16); |
| temp_word = (u16)((mem_node->base - 1) >> 16); |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| |
| /* Return unused resources to the pool */ |
| return_resource(&(resources->mem_head), mem_node); |
| } else { |
| /* it doesn't need any Mem */ |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->mem_head), mem_node); |
| kfree(hold_mem_node); |
| } |
| } else { |
| /* it used most of the range */ |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| } |
| } else if (hold_mem_node) { |
| /* it used the whole range */ |
| hold_mem_node->next = func->mem_head; |
| func->mem_head = hold_mem_node; |
| } |
| |
| /* If we have prefetchable memory space available and there is some |
| * left at the end, return the unused portion |
| */ |
| if (hold_p_mem_node && temp_resources.p_mem_head) { |
| p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), |
| &hold_p_mem_node, 0x100000L); |
| |
| /* Check if we were able to split something off */ |
| if (p_mem_node) { |
| hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; |
| |
| RES_CHECK(hold_p_mem_node->base, 16); |
| temp_word = (u16)((hold_p_mem_node->base) >> 16); |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| } |
| |
| p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000L); |
| |
| /* Check if we were able to split something off */ |
| if (p_mem_node) { |
| /* First use the temporary node to store information for the board */ |
| hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; |
| |
| /* If we used any, add it to the board's list */ |
| if (hold_p_mem_node->length) { |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| |
| RES_CHECK(p_mem_node->base - 1, 16); |
| temp_word = (u16)((p_mem_node->base - 1) >> 16); |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| } else { |
| /* it doesn't need any PMem */ |
| temp_word = 0x0000; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| |
| return_resource(&(resources->p_mem_head), p_mem_node); |
| kfree(hold_p_mem_node); |
| } |
| } else { |
| /* it used the most of the range */ |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| } |
| } else if (hold_p_mem_node) { |
| /* it used the whole range */ |
| hold_p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = hold_p_mem_node; |
| } |
| |
| /* We should be configuring an IRQ and the bridge's base address |
| * registers if it needs them. Although we have never seen such |
| * a device |
| */ |
| |
| pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_BRIDGE); |
| |
| dbg("PCI Bridge Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); |
| |
| return rc; |
| } |
| |
| /** |
| * configure_new_function - Configures the PCI header information of one device |
| * |
| * @ctrl: pointer to controller structure |
| * @func: pointer to function structure |
| * @behind_bridge: 1 if this is a recursive call, 0 if not |
| * @resources: pointer to set of resource lists |
| * |
| * Calls itself recursively for bridged devices. |
| * Returns 0 if success |
| * |
| */ |
| static int |
| configure_new_function(struct controller *ctrl, struct pci_func *func, |
| u8 behind_bridge, struct resource_lists *resources, |
| u8 bridge_bus, u8 bridge_dev) |
| { |
| int cloop; |
| u8 temp_byte; |
| u8 class_code; |
| u16 temp_word; |
| u32 rc; |
| u32 temp_register; |
| u32 base; |
| unsigned int devfn; |
| struct pci_resource *mem_node; |
| struct pci_resource *io_node; |
| struct pci_bus lpci_bus, *pci_bus; |
| |
| memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); |
| pci_bus = &lpci_bus; |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| /* Check for Bridge */ |
| rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); |
| if (rc) |
| return rc; |
| dbg("%s: bus %x dev %x func %x temp_byte = %x\n", __FUNCTION__, |
| func->bus, func->device, func->function, temp_byte); |
| |
| if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ |
| rc = configure_new_bridge(ctrl, func, behind_bridge, resources, |
| pci_bus); |
| |
| if (rc) |
| return rc; |
| } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { |
| /* Standard device */ |
| u64 base64; |
| rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); |
| |
| if (class_code == PCI_BASE_CLASS_DISPLAY) |
| return DEVICE_TYPE_NOT_SUPPORTED; |
| |
| /* Figure out IO and memory needs */ |
| for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) { |
| temp_register = 0xFFFFFFFF; |
| |
| rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); |
| dbg("Bar[%x]=0x%x on bus:dev:func(0x%x:%x:%x)\n", cloop, temp_register, |
| func->bus, func->device, func->function); |
| |
| if (!temp_register) |
| continue; |
| |
| base64 = 0L; |
| if (temp_register & PCI_BASE_ADDRESS_SPACE_IO) { |
| /* Map IO */ |
| |
| /* set base = amount of IO space */ |
| base = temp_register & 0xFFFFFFFC; |
| base = ~base + 1; |
| |
| dbg("NEED IO length(0x%x)\n", base); |
| io_node = get_io_resource(&(resources->io_head),(ulong)base); |
| |
| /* allocate the resource to the board */ |
| if (io_node) { |
| dbg("Got IO base=0x%x(length=0x%x)\n", io_node->base, io_node->length); |
| base = (u32)io_node->base; |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } else { |
| err("Got NO IO resource(length=0x%x)\n", base); |
| return -ENOMEM; |
| } |
| } else { /* map MEM */ |
| int prefetchable = 1; |
| struct pci_resource **res_node = &func->p_mem_head; |
| char *res_type_str = "PMEM"; |
| u32 temp_register2; |
| |
| if (!(temp_register & PCI_BASE_ADDRESS_MEM_PREFETCH)) { |
| prefetchable = 0; |
| res_node = &func->mem_head; |
| res_type_str++; |
| } |
| |
| base = temp_register & 0xFFFFFFF0; |
| base = ~base + 1; |
| |
| switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) { |
| case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| dbg("NEED 32 %s bar=0x%x(length=0x%x)\n", res_type_str, temp_register, base); |
| |
| if (prefetchable && resources->p_mem_head) |
| mem_node=get_resource(&(resources->p_mem_head), (ulong)base); |
| else { |
| if (prefetchable) |
| dbg("using MEM for PMEM\n"); |
| mem_node = get_resource(&(resources->mem_head), (ulong)base); |
| } |
| |
| /* allocate the resource to the board */ |
| if (mem_node) { |
| base = (u32)mem_node->base; |
| mem_node->next = *res_node; |
| *res_node = mem_node; |
| dbg("Got 32 %s base=0x%x(length=0x%x)\n", res_type_str, mem_node->base, |
| mem_node->length); |
| } else { |
| err("Got NO 32 %s resource(length=0x%x)\n", res_type_str, base); |
| return -ENOMEM; |
| } |
| break; |
| case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| rc = pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2); |
| dbg("NEED 64 %s bar=0x%x:%x(length=0x%x)\n", res_type_str, temp_register2, |
| temp_register, base); |
| |
| if (prefetchable && resources->p_mem_head) |
| mem_node = get_resource(&(resources->p_mem_head), (ulong)base); |
| else { |
| if (prefetchable) |
| dbg("using MEM for PMEM\n"); |
| mem_node = get_resource(&(resources->mem_head), (ulong)base); |
| } |
| |
| /* allocate the resource to the board */ |
| if (mem_node) { |
| base64 = mem_node->base; |
| mem_node->next = *res_node; |
| *res_node = mem_node; |
| dbg("Got 64 %s base=0x%x:%x(length=%x)\n", res_type_str, (u32)(base64 >> 32), |
| (u32)base64, mem_node->length); |
| } else { |
| err("Got NO 64 %s resource(length=0x%x)\n", res_type_str, base); |
| return -ENOMEM; |
| } |
| break; |
| default: |
| dbg("reserved BAR type=0x%x\n", temp_register); |
| break; |
| } |
| |
| } |
| |
| if (base64) { |
| rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); |
| cloop += 4; |
| base64 >>= 32; |
| |
| if (base64) { |
| dbg("%s: high dword of base64(0x%x) set to 0\n", __FUNCTION__, (u32)base64); |
| base64 = 0x0L; |
| } |
| |
| rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); |
| } else { |
| rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); |
| } |
| } /* End of base register loop */ |
| |
| /* disable ROM base Address */ |
| temp_word = 0x00L; |
| rc = pci_bus_write_config_word (pci_bus, devfn, PCI_ROM_ADDRESS, temp_word); |
| |
| /* Set HP parameters (Cache Line Size, Latency Timer) */ |
| rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_NORMAL); |
| if (rc) |
| return rc; |
| |
| pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_NORMAL); |
| |
| dbg("PCI function Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, |
| func->function); |
| } /* End of Not-A-Bridge else */ |
| else { |
| /* It's some strange type of PCI adapter (Cardbus?) */ |
| return DEVICE_TYPE_NOT_SUPPORTED; |
| } |
| |
| func->configured = 1; |
| |
| return 0; |
| } |