| #ifndef __LINUX_PERCPU_H |
| #define __LINUX_PERCPU_H |
| |
| #include <linux/mmdebug.h> |
| #include <linux/preempt.h> |
| #include <linux/smp.h> |
| #include <linux/cpumask.h> |
| #include <linux/pfn.h> |
| #include <linux/init.h> |
| |
| #include <asm/percpu.h> |
| |
| /* enough to cover all DEFINE_PER_CPUs in modules */ |
| #ifdef CONFIG_MODULES |
| #define PERCPU_MODULE_RESERVE (8 << 10) |
| #else |
| #define PERCPU_MODULE_RESERVE 0 |
| #endif |
| |
| #ifndef PERCPU_ENOUGH_ROOM |
| #define PERCPU_ENOUGH_ROOM \ |
| (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ |
| PERCPU_MODULE_RESERVE) |
| #endif |
| |
| /* |
| * Must be an lvalue. Since @var must be a simple identifier, |
| * we force a syntax error here if it isn't. |
| */ |
| #define get_cpu_var(var) (*({ \ |
| preempt_disable(); \ |
| this_cpu_ptr(&var); })) |
| |
| /* |
| * The weird & is necessary because sparse considers (void)(var) to be |
| * a direct dereference of percpu variable (var). |
| */ |
| #define put_cpu_var(var) do { \ |
| (void)&(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| #define get_cpu_ptr(var) ({ \ |
| preempt_disable(); \ |
| this_cpu_ptr(var); }) |
| |
| #define put_cpu_ptr(var) do { \ |
| (void)(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| /* minimum unit size, also is the maximum supported allocation size */ |
| #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) |
| |
| /* |
| * Percpu allocator can serve percpu allocations before slab is |
| * initialized which allows slab to depend on the percpu allocator. |
| * The following two parameters decide how much resource to |
| * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or |
| * larger than PERCPU_DYNAMIC_EARLY_SIZE. |
| */ |
| #define PERCPU_DYNAMIC_EARLY_SLOTS 128 |
| #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) |
| |
| /* |
| * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy |
| * back on the first chunk for dynamic percpu allocation if arch is |
| * manually allocating and mapping it for faster access (as a part of |
| * large page mapping for example). |
| * |
| * The following values give between one and two pages of free space |
| * after typical minimal boot (2-way SMP, single disk and NIC) with |
| * both defconfig and a distro config on x86_64 and 32. More |
| * intelligent way to determine this would be nice. |
| */ |
| #if BITS_PER_LONG > 32 |
| #define PERCPU_DYNAMIC_RESERVE (20 << 10) |
| #else |
| #define PERCPU_DYNAMIC_RESERVE (12 << 10) |
| #endif |
| |
| extern void *pcpu_base_addr; |
| extern const unsigned long *pcpu_unit_offsets; |
| |
| struct pcpu_group_info { |
| int nr_units; /* aligned # of units */ |
| unsigned long base_offset; /* base address offset */ |
| unsigned int *cpu_map; /* unit->cpu map, empty |
| * entries contain NR_CPUS */ |
| }; |
| |
| struct pcpu_alloc_info { |
| size_t static_size; |
| size_t reserved_size; |
| size_t dyn_size; |
| size_t unit_size; |
| size_t atom_size; |
| size_t alloc_size; |
| size_t __ai_size; /* internal, don't use */ |
| int nr_groups; /* 0 if grouping unnecessary */ |
| struct pcpu_group_info groups[]; |
| }; |
| |
| enum pcpu_fc { |
| PCPU_FC_AUTO, |
| PCPU_FC_EMBED, |
| PCPU_FC_PAGE, |
| |
| PCPU_FC_NR, |
| }; |
| extern const char * const pcpu_fc_names[PCPU_FC_NR]; |
| |
| extern enum pcpu_fc pcpu_chosen_fc; |
| |
| typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, |
| size_t align); |
| typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); |
| typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); |
| typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); |
| |
| extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, |
| int nr_units); |
| extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); |
| |
| extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
| void *base_addr); |
| |
| #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK |
| extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
| size_t atom_size, |
| pcpu_fc_cpu_distance_fn_t cpu_distance_fn, |
| pcpu_fc_alloc_fn_t alloc_fn, |
| pcpu_fc_free_fn_t free_fn); |
| #endif |
| |
| #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
| extern int __init pcpu_page_first_chunk(size_t reserved_size, |
| pcpu_fc_alloc_fn_t alloc_fn, |
| pcpu_fc_free_fn_t free_fn, |
| pcpu_fc_populate_pte_fn_t populate_pte_fn); |
| #endif |
| |
| /* |
| * Use this to get to a cpu's version of the per-cpu object |
| * dynamically allocated. Non-atomic access to the current CPU's |
| * version should probably be combined with get_cpu()/put_cpu(). |
| */ |
| #ifdef CONFIG_SMP |
| #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) |
| #else |
| #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) |
| #endif |
| |
| extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); |
| extern bool is_kernel_percpu_address(unsigned long addr); |
| |
| #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) |
| extern void __init setup_per_cpu_areas(void); |
| #endif |
| extern void __init percpu_init_late(void); |
| |
| extern void __percpu *__alloc_percpu(size_t size, size_t align); |
| extern void free_percpu(void __percpu *__pdata); |
| extern phys_addr_t per_cpu_ptr_to_phys(void *addr); |
| |
| #define alloc_percpu(type) \ |
| (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) |
| |
| /* |
| * Branching function to split up a function into a set of functions that |
| * are called for different scalar sizes of the objects handled. |
| */ |
| |
| extern void __bad_size_call_parameter(void); |
| |
| #ifdef CONFIG_DEBUG_PREEMPT |
| extern void __this_cpu_preempt_check(const char *op); |
| #else |
| static inline void __this_cpu_preempt_check(const char *op) { } |
| #endif |
| |
| #define __pcpu_size_call_return(stem, variable) \ |
| ({ typeof(variable) pscr_ret__; \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: pscr_ret__ = stem##1(variable);break; \ |
| case 2: pscr_ret__ = stem##2(variable);break; \ |
| case 4: pscr_ret__ = stem##4(variable);break; \ |
| case 8: pscr_ret__ = stem##8(variable);break; \ |
| default: \ |
| __bad_size_call_parameter();break; \ |
| } \ |
| pscr_ret__; \ |
| }) |
| |
| #define __pcpu_size_call_return2(stem, variable, ...) \ |
| ({ \ |
| typeof(variable) pscr2_ret__; \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ |
| case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ |
| case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ |
| case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ |
| default: \ |
| __bad_size_call_parameter(); break; \ |
| } \ |
| pscr2_ret__; \ |
| }) |
| |
| /* |
| * Special handling for cmpxchg_double. cmpxchg_double is passed two |
| * percpu variables. The first has to be aligned to a double word |
| * boundary and the second has to follow directly thereafter. |
| * We enforce this on all architectures even if they don't support |
| * a double cmpxchg instruction, since it's a cheap requirement, and it |
| * avoids breaking the requirement for architectures with the instruction. |
| */ |
| #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ |
| ({ \ |
| bool pdcrb_ret__; \ |
| __verify_pcpu_ptr(&pcp1); \ |
| BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ |
| VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ |
| VM_BUG_ON((unsigned long)(&pcp2) != \ |
| (unsigned long)(&pcp1) + sizeof(pcp1)); \ |
| switch(sizeof(pcp1)) { \ |
| case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ |
| case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ |
| default: \ |
| __bad_size_call_parameter(); break; \ |
| } \ |
| pdcrb_ret__; \ |
| }) |
| |
| #define __pcpu_size_call(stem, variable, ...) \ |
| do { \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: stem##1(variable, __VA_ARGS__);break; \ |
| case 2: stem##2(variable, __VA_ARGS__);break; \ |
| case 4: stem##4(variable, __VA_ARGS__);break; \ |
| case 8: stem##8(variable, __VA_ARGS__);break; \ |
| default: \ |
| __bad_size_call_parameter();break; \ |
| } \ |
| } while (0) |
| |
| /* |
| * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com> |
| * |
| * Optimized manipulation for memory allocated through the per cpu |
| * allocator or for addresses of per cpu variables. |
| * |
| * These operation guarantee exclusivity of access for other operations |
| * on the *same* processor. The assumption is that per cpu data is only |
| * accessed by a single processor instance (the current one). |
| * |
| * The first group is used for accesses that must be done in a |
| * preemption safe way since we know that the context is not preempt |
| * safe. Interrupts may occur. If the interrupt modifies the variable |
| * too then RMW actions will not be reliable. |
| * |
| * The arch code can provide optimized functions in two ways: |
| * |
| * 1. Override the function completely. F.e. define this_cpu_add(). |
| * The arch must then ensure that the various scalar format passed |
| * are handled correctly. |
| * |
| * 2. Provide functions for certain scalar sizes. F.e. provide |
| * this_cpu_add_2() to provide per cpu atomic operations for 2 byte |
| * sized RMW actions. If arch code does not provide operations for |
| * a scalar size then the fallback in the generic code will be |
| * used. |
| */ |
| |
| #define _this_cpu_generic_read(pcp) \ |
| ({ typeof(pcp) ret__; \ |
| preempt_disable(); \ |
| ret__ = *this_cpu_ptr(&(pcp)); \ |
| preempt_enable(); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_read |
| # ifndef this_cpu_read_1 |
| # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_2 |
| # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_4 |
| # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_8 |
| # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) |
| #endif |
| |
| #define _this_cpu_generic_to_op(pcp, val, op) \ |
| do { \ |
| unsigned long flags; \ |
| raw_local_irq_save(flags); \ |
| *raw_cpu_ptr(&(pcp)) op val; \ |
| raw_local_irq_restore(flags); \ |
| } while (0) |
| |
| #ifndef this_cpu_write |
| # ifndef this_cpu_write_1 |
| # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_2 |
| # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_4 |
| # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_8 |
| # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_add |
| # ifndef this_cpu_add_1 |
| # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_2 |
| # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_4 |
| # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_8 |
| # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_sub |
| # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val)) |
| #endif |
| |
| #ifndef this_cpu_inc |
| # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef this_cpu_dec |
| # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef this_cpu_and |
| # ifndef this_cpu_and_1 |
| # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_2 |
| # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_4 |
| # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_8 |
| # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_or |
| # ifndef this_cpu_or_1 |
| # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_2 |
| # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_4 |
| # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_8 |
| # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) |
| #endif |
| |
| #define _this_cpu_generic_add_return(pcp, val) \ |
| ({ \ |
| typeof(pcp) ret__; \ |
| unsigned long flags; \ |
| raw_local_irq_save(flags); \ |
| raw_cpu_add(pcp, val); \ |
| ret__ = raw_cpu_read(pcp); \ |
| raw_local_irq_restore(flags); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_add_return |
| # ifndef this_cpu_add_return_1 |
| # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef this_cpu_add_return_2 |
| # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef this_cpu_add_return_4 |
| # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef this_cpu_add_return_8 |
| # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) |
| # endif |
| # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) |
| #endif |
| |
| #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) |
| #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) |
| |
| #define _this_cpu_generic_xchg(pcp, nval) \ |
| ({ typeof(pcp) ret__; \ |
| unsigned long flags; \ |
| raw_local_irq_save(flags); \ |
| ret__ = raw_cpu_read(pcp); \ |
| raw_cpu_write(pcp, nval); \ |
| raw_local_irq_restore(flags); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_xchg |
| # ifndef this_cpu_xchg_1 |
| # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef this_cpu_xchg_2 |
| # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef this_cpu_xchg_4 |
| # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef this_cpu_xchg_8 |
| # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) |
| # endif |
| # define this_cpu_xchg(pcp, nval) \ |
| __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) |
| #endif |
| |
| #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ |
| ({ \ |
| typeof(pcp) ret__; \ |
| unsigned long flags; \ |
| raw_local_irq_save(flags); \ |
| ret__ = raw_cpu_read(pcp); \ |
| if (ret__ == (oval)) \ |
| raw_cpu_write(pcp, nval); \ |
| raw_local_irq_restore(flags); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_cmpxchg |
| # ifndef this_cpu_cmpxchg_1 |
| # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef this_cpu_cmpxchg_2 |
| # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef this_cpu_cmpxchg_4 |
| # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef this_cpu_cmpxchg_8 |
| # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # define this_cpu_cmpxchg(pcp, oval, nval) \ |
| __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) |
| #endif |
| |
| /* |
| * cmpxchg_double replaces two adjacent scalars at once. The first |
| * two parameters are per cpu variables which have to be of the same |
| * size. A truth value is returned to indicate success or failure |
| * (since a double register result is difficult to handle). There is |
| * very limited hardware support for these operations, so only certain |
| * sizes may work. |
| */ |
| #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| ({ \ |
| int ret__; \ |
| unsigned long flags; \ |
| raw_local_irq_save(flags); \ |
| ret__ = raw_cpu_generic_cmpxchg_double(pcp1, pcp2, \ |
| oval1, oval2, nval1, nval2); \ |
| raw_local_irq_restore(flags); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_cmpxchg_double |
| # ifndef this_cpu_cmpxchg_double_1 |
| # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef this_cpu_cmpxchg_double_2 |
| # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef this_cpu_cmpxchg_double_4 |
| # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef this_cpu_cmpxchg_double_8 |
| # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) |
| #endif |
| |
| /* |
| * Generic percpu operations for contexts where we do not want to do |
| * any checks for preemptiosn. |
| * |
| * If there is no other protection through preempt disable and/or |
| * disabling interupts then one of these RMW operations can show unexpected |
| * behavior because the execution thread was rescheduled on another processor |
| * or an interrupt occurred and the same percpu variable was modified from |
| * the interrupt context. |
| */ |
| #ifndef raw_cpu_read |
| # ifndef raw_cpu_read_1 |
| # define raw_cpu_read_1(pcp) (*raw_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef raw_cpu_read_2 |
| # define raw_cpu_read_2(pcp) (*raw_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef raw_cpu_read_4 |
| # define raw_cpu_read_4(pcp) (*raw_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef raw_cpu_read_8 |
| # define raw_cpu_read_8(pcp) (*raw_cpu_ptr(&(pcp))) |
| # endif |
| # define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, (pcp)) |
| #endif |
| |
| #define raw_cpu_generic_to_op(pcp, val, op) \ |
| do { \ |
| *raw_cpu_ptr(&(pcp)) op val; \ |
| } while (0) |
| |
| |
| #ifndef raw_cpu_write |
| # ifndef raw_cpu_write_1 |
| # define raw_cpu_write_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef raw_cpu_write_2 |
| # define raw_cpu_write_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef raw_cpu_write_4 |
| # define raw_cpu_write_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef raw_cpu_write_8 |
| # define raw_cpu_write_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, (pcp), (val)) |
| #endif |
| |
| #ifndef raw_cpu_add |
| # ifndef raw_cpu_add_1 |
| # define raw_cpu_add_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef raw_cpu_add_2 |
| # define raw_cpu_add_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef raw_cpu_add_4 |
| # define raw_cpu_add_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef raw_cpu_add_8 |
| # define raw_cpu_add_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, (pcp), (val)) |
| #endif |
| |
| #ifndef raw_cpu_sub |
| # define raw_cpu_sub(pcp, val) raw_cpu_add((pcp), -(val)) |
| #endif |
| |
| #ifndef raw_cpu_inc |
| # define raw_cpu_inc(pcp) raw_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef raw_cpu_dec |
| # define raw_cpu_dec(pcp) raw_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef raw_cpu_and |
| # ifndef raw_cpu_and_1 |
| # define raw_cpu_and_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef raw_cpu_and_2 |
| # define raw_cpu_and_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef raw_cpu_and_4 |
| # define raw_cpu_and_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef raw_cpu_and_8 |
| # define raw_cpu_and_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, (pcp), (val)) |
| #endif |
| |
| #ifndef raw_cpu_or |
| # ifndef raw_cpu_or_1 |
| # define raw_cpu_or_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef raw_cpu_or_2 |
| # define raw_cpu_or_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef raw_cpu_or_4 |
| # define raw_cpu_or_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef raw_cpu_or_8 |
| # define raw_cpu_or_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, (pcp), (val)) |
| #endif |
| |
| #define raw_cpu_generic_add_return(pcp, val) \ |
| ({ \ |
| raw_cpu_add(pcp, val); \ |
| raw_cpu_read(pcp); \ |
| }) |
| |
| #ifndef raw_cpu_add_return |
| # ifndef raw_cpu_add_return_1 |
| # define raw_cpu_add_return_1(pcp, val) raw_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef raw_cpu_add_return_2 |
| # define raw_cpu_add_return_2(pcp, val) raw_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef raw_cpu_add_return_4 |
| # define raw_cpu_add_return_4(pcp, val) raw_cpu_generic_add_return(pcp, val) |
| # endif |
| # ifndef raw_cpu_add_return_8 |
| # define raw_cpu_add_return_8(pcp, val) raw_cpu_generic_add_return(pcp, val) |
| # endif |
| # define raw_cpu_add_return(pcp, val) \ |
| __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val) |
| #endif |
| |
| #define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1) |
| #define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1) |
| |
| #define raw_cpu_generic_xchg(pcp, nval) \ |
| ({ typeof(pcp) ret__; \ |
| ret__ = raw_cpu_read(pcp); \ |
| raw_cpu_write(pcp, nval); \ |
| ret__; \ |
| }) |
| |
| #ifndef raw_cpu_xchg |
| # ifndef raw_cpu_xchg_1 |
| # define raw_cpu_xchg_1(pcp, nval) raw_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef raw_cpu_xchg_2 |
| # define raw_cpu_xchg_2(pcp, nval) raw_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef raw_cpu_xchg_4 |
| # define raw_cpu_xchg_4(pcp, nval) raw_cpu_generic_xchg(pcp, nval) |
| # endif |
| # ifndef raw_cpu_xchg_8 |
| # define raw_cpu_xchg_8(pcp, nval) raw_cpu_generic_xchg(pcp, nval) |
| # endif |
| # define raw_cpu_xchg(pcp, nval) \ |
| __pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval) |
| #endif |
| |
| #define raw_cpu_generic_cmpxchg(pcp, oval, nval) \ |
| ({ \ |
| typeof(pcp) ret__; \ |
| ret__ = raw_cpu_read(pcp); \ |
| if (ret__ == (oval)) \ |
| raw_cpu_write(pcp, nval); \ |
| ret__; \ |
| }) |
| |
| #ifndef raw_cpu_cmpxchg |
| # ifndef raw_cpu_cmpxchg_1 |
| # define raw_cpu_cmpxchg_1(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef raw_cpu_cmpxchg_2 |
| # define raw_cpu_cmpxchg_2(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef raw_cpu_cmpxchg_4 |
| # define raw_cpu_cmpxchg_4(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # ifndef raw_cpu_cmpxchg_8 |
| # define raw_cpu_cmpxchg_8(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) |
| # endif |
| # define raw_cpu_cmpxchg(pcp, oval, nval) \ |
| __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval) |
| #endif |
| |
| #define raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| ({ \ |
| int __ret = 0; \ |
| if (raw_cpu_read(pcp1) == (oval1) && \ |
| raw_cpu_read(pcp2) == (oval2)) { \ |
| raw_cpu_write(pcp1, (nval1)); \ |
| raw_cpu_write(pcp2, (nval2)); \ |
| __ret = 1; \ |
| } \ |
| (__ret); \ |
| }) |
| |
| #ifndef raw_cpu_cmpxchg_double |
| # ifndef raw_cpu_cmpxchg_double_1 |
| # define raw_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef raw_cpu_cmpxchg_double_2 |
| # define raw_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef raw_cpu_cmpxchg_double_4 |
| # define raw_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # ifndef raw_cpu_cmpxchg_double_8 |
| # define raw_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) |
| # endif |
| # define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) |
| #endif |
| |
| /* |
| * Generic percpu operations for context that are safe from preemption/interrupts. |
| */ |
| #ifndef __this_cpu_read |
| # define __this_cpu_read(pcp) \ |
| (__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp))) |
| #endif |
| |
| #ifndef __this_cpu_write |
| # define __this_cpu_write(pcp, val) \ |
| do { __this_cpu_preempt_check("write"); \ |
| __pcpu_size_call(raw_cpu_write_, (pcp), (val)); \ |
| } while (0) |
| #endif |
| |
| #ifndef __this_cpu_add |
| # define __this_cpu_add(pcp, val) \ |
| do { __this_cpu_preempt_check("add"); \ |
| __pcpu_size_call(raw_cpu_add_, (pcp), (val)); \ |
| } while (0) |
| #endif |
| |
| #ifndef __this_cpu_sub |
| # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val)) |
| #endif |
| |
| #ifndef __this_cpu_inc |
| # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef __this_cpu_dec |
| # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef __this_cpu_and |
| # define __this_cpu_and(pcp, val) \ |
| do { __this_cpu_preempt_check("and"); \ |
| __pcpu_size_call(raw_cpu_and_, (pcp), (val)); \ |
| } while (0) |
| |
| #endif |
| |
| #ifndef __this_cpu_or |
| # define __this_cpu_or(pcp, val) \ |
| do { __this_cpu_preempt_check("or"); \ |
| __pcpu_size_call(raw_cpu_or_, (pcp), (val)); \ |
| } while (0) |
| #endif |
| |
| #ifndef __this_cpu_add_return |
| # define __this_cpu_add_return(pcp, val) \ |
| (__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)) |
| #endif |
| |
| #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) |
| #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) |
| #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) |
| |
| #ifndef __this_cpu_xchg |
| # define __this_cpu_xchg(pcp, nval) \ |
| (__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)) |
| #endif |
| |
| #ifndef __this_cpu_cmpxchg |
| # define __this_cpu_cmpxchg(pcp, oval, nval) \ |
| (__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)) |
| #endif |
| |
| #ifndef __this_cpu_cmpxchg_double |
| # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ |
| (__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))) |
| #endif |
| |
| #endif /* __LINUX_PERCPU_H */ |