| /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/slab.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "ordered-data.h" | 
 | #include "compression.h" | 
 | #include "extent_io.h" | 
 | #include "extent_map.h" | 
 |  | 
 | struct compressed_bio { | 
 | 	/* number of bios pending for this compressed extent */ | 
 | 	atomic_t pending_bios; | 
 |  | 
 | 	/* the pages with the compressed data on them */ | 
 | 	struct page **compressed_pages; | 
 |  | 
 | 	/* inode that owns this data */ | 
 | 	struct inode *inode; | 
 |  | 
 | 	/* starting offset in the inode for our pages */ | 
 | 	u64 start; | 
 |  | 
 | 	/* number of bytes in the inode we're working on */ | 
 | 	unsigned long len; | 
 |  | 
 | 	/* number of bytes on disk */ | 
 | 	unsigned long compressed_len; | 
 |  | 
 | 	/* the compression algorithm for this bio */ | 
 | 	int compress_type; | 
 |  | 
 | 	/* number of compressed pages in the array */ | 
 | 	unsigned long nr_pages; | 
 |  | 
 | 	/* IO errors */ | 
 | 	int errors; | 
 | 	int mirror_num; | 
 |  | 
 | 	/* for reads, this is the bio we are copying the data into */ | 
 | 	struct bio *orig_bio; | 
 |  | 
 | 	/* | 
 | 	 * the start of a variable length array of checksums only | 
 | 	 * used by reads | 
 | 	 */ | 
 | 	u32 sums; | 
 | }; | 
 |  | 
 | static int btrfs_decompress_biovec(int type, struct page **pages_in, | 
 | 				   u64 disk_start, struct bio_vec *bvec, | 
 | 				   int vcnt, size_t srclen); | 
 |  | 
 | static inline int compressed_bio_size(struct btrfs_root *root, | 
 | 				      unsigned long disk_size) | 
 | { | 
 | 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); | 
 |  | 
 | 	return sizeof(struct compressed_bio) + | 
 | 		((disk_size + root->sectorsize - 1) / root->sectorsize) * | 
 | 		csum_size; | 
 | } | 
 |  | 
 | static struct bio *compressed_bio_alloc(struct block_device *bdev, | 
 | 					u64 first_byte, gfp_t gfp_flags) | 
 | { | 
 | 	int nr_vecs; | 
 |  | 
 | 	nr_vecs = bio_get_nr_vecs(bdev); | 
 | 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); | 
 | } | 
 |  | 
 | static int check_compressed_csum(struct inode *inode, | 
 | 				 struct compressed_bio *cb, | 
 | 				 u64 disk_start) | 
 | { | 
 | 	int ret; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	char *kaddr; | 
 | 	u32 csum; | 
 | 	u32 *cb_sum = &cb->sums; | 
 |  | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < cb->nr_pages; i++) { | 
 | 		page = cb->compressed_pages[i]; | 
 | 		csum = ~(u32)0; | 
 |  | 
 | 		kaddr = kmap_atomic(page); | 
 | 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); | 
 | 		btrfs_csum_final(csum, (char *)&csum); | 
 | 		kunmap_atomic(kaddr); | 
 |  | 
 | 		if (csum != *cb_sum) { | 
 | 			btrfs_info(BTRFS_I(inode)->root->fs_info, | 
 | 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", | 
 | 			   btrfs_ino(inode), disk_start, csum, *cb_sum, | 
 | 			   cb->mirror_num); | 
 | 			ret = -EIO; | 
 | 			goto fail; | 
 | 		} | 
 | 		cb_sum++; | 
 |  | 
 | 	} | 
 | 	ret = 0; | 
 | fail: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* when we finish reading compressed pages from the disk, we | 
 |  * decompress them and then run the bio end_io routines on the | 
 |  * decompressed pages (in the inode address space). | 
 |  * | 
 |  * This allows the checksumming and other IO error handling routines | 
 |  * to work normally | 
 |  * | 
 |  * The compressed pages are freed here, and it must be run | 
 |  * in process context | 
 |  */ | 
 | static void end_compressed_bio_read(struct bio *bio, int err) | 
 | { | 
 | 	struct compressed_bio *cb = bio->bi_private; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	unsigned long index; | 
 | 	int ret; | 
 |  | 
 | 	if (err) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* if there are more bios still pending for this compressed | 
 | 	 * extent, just exit | 
 | 	 */ | 
 | 	if (!atomic_dec_and_test(&cb->pending_bios)) | 
 | 		goto out; | 
 |  | 
 | 	inode = cb->inode; | 
 | 	ret = check_compressed_csum(inode, cb, | 
 | 				    (u64)bio->bi_iter.bi_sector << 9); | 
 | 	if (ret) | 
 | 		goto csum_failed; | 
 |  | 
 | 	/* ok, we're the last bio for this extent, lets start | 
 | 	 * the decompression. | 
 | 	 */ | 
 | 	ret = btrfs_decompress_biovec(cb->compress_type, | 
 | 				      cb->compressed_pages, | 
 | 				      cb->start, | 
 | 				      cb->orig_bio->bi_io_vec, | 
 | 				      cb->orig_bio->bi_vcnt, | 
 | 				      cb->compressed_len); | 
 | csum_failed: | 
 | 	if (ret) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* release the compressed pages */ | 
 | 	index = 0; | 
 | 	for (index = 0; index < cb->nr_pages; index++) { | 
 | 		page = cb->compressed_pages[index]; | 
 | 		page->mapping = NULL; | 
 | 		page_cache_release(page); | 
 | 	} | 
 |  | 
 | 	/* do io completion on the original bio */ | 
 | 	if (cb->errors) { | 
 | 		bio_io_error(cb->orig_bio); | 
 | 	} else { | 
 | 		int i; | 
 | 		struct bio_vec *bvec; | 
 |  | 
 | 		/* | 
 | 		 * we have verified the checksum already, set page | 
 | 		 * checked so the end_io handlers know about it | 
 | 		 */ | 
 | 		bio_for_each_segment_all(bvec, cb->orig_bio, i) | 
 | 			SetPageChecked(bvec->bv_page); | 
 |  | 
 | 		bio_endio(cb->orig_bio, 0); | 
 | 	} | 
 |  | 
 | 	/* finally free the cb struct */ | 
 | 	kfree(cb->compressed_pages); | 
 | 	kfree(cb); | 
 | out: | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the writeback bits on all of the file | 
 |  * pages for a compressed write | 
 |  */ | 
 | static noinline void end_compressed_writeback(struct inode *inode, u64 start, | 
 | 					      unsigned long ram_size) | 
 | { | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; | 
 | 	struct page *pages[16]; | 
 | 	unsigned long nr_pages = end_index - index + 1; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		ret = find_get_pages_contig(inode->i_mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nr_pages, ARRAY_SIZE(pages)), pages); | 
 | 		if (ret == 0) { | 
 | 			nr_pages -= 1; | 
 | 			index += 1; | 
 | 			continue; | 
 | 		} | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			end_page_writeback(pages[i]); | 
 | 			page_cache_release(pages[i]); | 
 | 		} | 
 | 		nr_pages -= ret; | 
 | 		index += ret; | 
 | 	} | 
 | 	/* the inode may be gone now */ | 
 | } | 
 |  | 
 | /* | 
 |  * do the cleanup once all the compressed pages hit the disk. | 
 |  * This will clear writeback on the file pages and free the compressed | 
 |  * pages. | 
 |  * | 
 |  * This also calls the writeback end hooks for the file pages so that | 
 |  * metadata and checksums can be updated in the file. | 
 |  */ | 
 | static void end_compressed_bio_write(struct bio *bio, int err) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	struct compressed_bio *cb = bio->bi_private; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	unsigned long index; | 
 |  | 
 | 	if (err) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* if there are more bios still pending for this compressed | 
 | 	 * extent, just exit | 
 | 	 */ | 
 | 	if (!atomic_dec_and_test(&cb->pending_bios)) | 
 | 		goto out; | 
 |  | 
 | 	/* ok, we're the last bio for this extent, step one is to | 
 | 	 * call back into the FS and do all the end_io operations | 
 | 	 */ | 
 | 	inode = cb->inode; | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 | 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping; | 
 | 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0], | 
 | 					 cb->start, | 
 | 					 cb->start + cb->len - 1, | 
 | 					 NULL, 1); | 
 | 	cb->compressed_pages[0]->mapping = NULL; | 
 |  | 
 | 	end_compressed_writeback(inode, cb->start, cb->len); | 
 | 	/* note, our inode could be gone now */ | 
 |  | 
 | 	/* | 
 | 	 * release the compressed pages, these came from alloc_page and | 
 | 	 * are not attached to the inode at all | 
 | 	 */ | 
 | 	index = 0; | 
 | 	for (index = 0; index < cb->nr_pages; index++) { | 
 | 		page = cb->compressed_pages[index]; | 
 | 		page->mapping = NULL; | 
 | 		page_cache_release(page); | 
 | 	} | 
 |  | 
 | 	/* finally free the cb struct */ | 
 | 	kfree(cb->compressed_pages); | 
 | 	kfree(cb); | 
 | out: | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * worker function to build and submit bios for previously compressed pages. | 
 |  * The corresponding pages in the inode should be marked for writeback | 
 |  * and the compressed pages should have a reference on them for dropping | 
 |  * when the IO is complete. | 
 |  * | 
 |  * This also checksums the file bytes and gets things ready for | 
 |  * the end io hooks. | 
 |  */ | 
 | int btrfs_submit_compressed_write(struct inode *inode, u64 start, | 
 | 				 unsigned long len, u64 disk_start, | 
 | 				 unsigned long compressed_len, | 
 | 				 struct page **compressed_pages, | 
 | 				 unsigned long nr_pages) | 
 | { | 
 | 	struct bio *bio = NULL; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct compressed_bio *cb; | 
 | 	unsigned long bytes_left; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	int pg_index = 0; | 
 | 	struct page *page; | 
 | 	u64 first_byte = disk_start; | 
 | 	struct block_device *bdev; | 
 | 	int ret; | 
 | 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
 |  | 
 | 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); | 
 | 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | 
 | 	if (!cb) | 
 | 		return -ENOMEM; | 
 | 	atomic_set(&cb->pending_bios, 0); | 
 | 	cb->errors = 0; | 
 | 	cb->inode = inode; | 
 | 	cb->start = start; | 
 | 	cb->len = len; | 
 | 	cb->mirror_num = 0; | 
 | 	cb->compressed_pages = compressed_pages; | 
 | 	cb->compressed_len = compressed_len; | 
 | 	cb->orig_bio = NULL; | 
 | 	cb->nr_pages = nr_pages; | 
 |  | 
 | 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
 |  | 
 | 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | 
 | 	if (!bio) { | 
 | 		kfree(cb); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	bio->bi_private = cb; | 
 | 	bio->bi_end_io = end_compressed_bio_write; | 
 | 	atomic_inc(&cb->pending_bios); | 
 |  | 
 | 	/* create and submit bios for the compressed pages */ | 
 | 	bytes_left = compressed_len; | 
 | 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { | 
 | 		page = compressed_pages[pg_index]; | 
 | 		page->mapping = inode->i_mapping; | 
 | 		if (bio->bi_iter.bi_size) | 
 | 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, | 
 | 							   PAGE_CACHE_SIZE, | 
 | 							   bio, 0); | 
 | 		else | 
 | 			ret = 0; | 
 |  | 
 | 		page->mapping = NULL; | 
 | 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < | 
 | 		    PAGE_CACHE_SIZE) { | 
 | 			bio_get(bio); | 
 |  | 
 | 			/* | 
 | 			 * inc the count before we submit the bio so | 
 | 			 * we know the end IO handler won't happen before | 
 | 			 * we inc the count.  Otherwise, the cb might get | 
 | 			 * freed before we're done setting it up | 
 | 			 */ | 
 | 			atomic_inc(&cb->pending_bios); | 
 | 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); | 
 | 			BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 			if (!skip_sum) { | 
 | 				ret = btrfs_csum_one_bio(root, inode, bio, | 
 | 							 start, 1); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 			} | 
 |  | 
 | 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | 
 | 			BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 			bio_put(bio); | 
 |  | 
 | 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | 
 | 			BUG_ON(!bio); | 
 | 			bio->bi_private = cb; | 
 | 			bio->bi_end_io = end_compressed_bio_write; | 
 | 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | 
 | 		} | 
 | 		if (bytes_left < PAGE_CACHE_SIZE) { | 
 | 			btrfs_info(BTRFS_I(inode)->root->fs_info, | 
 | 					"bytes left %lu compress len %lu nr %lu", | 
 | 			       bytes_left, cb->compressed_len, cb->nr_pages); | 
 | 		} | 
 | 		bytes_left -= PAGE_CACHE_SIZE; | 
 | 		first_byte += PAGE_CACHE_SIZE; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	bio_get(bio); | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	if (!skip_sum) { | 
 | 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 |  | 
 | 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	bio_put(bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int add_ra_bio_pages(struct inode *inode, | 
 | 				     u64 compressed_end, | 
 | 				     struct compressed_bio *cb) | 
 | { | 
 | 	unsigned long end_index; | 
 | 	unsigned long pg_index; | 
 | 	u64 last_offset; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	int ret; | 
 | 	struct page *page; | 
 | 	unsigned long nr_pages = 0; | 
 | 	struct extent_map *em; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 end; | 
 | 	int misses = 0; | 
 |  | 
 | 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; | 
 | 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE); | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 |  | 
 | 	if (isize == 0) | 
 | 		return 0; | 
 |  | 
 | 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	while (last_offset < compressed_end) { | 
 | 		pg_index = last_offset >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		if (pg_index > end_index) | 
 | 			break; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		page = radix_tree_lookup(&mapping->page_tree, pg_index); | 
 | 		rcu_read_unlock(); | 
 | 		if (page && !radix_tree_exceptional_entry(page)) { | 
 | 			misses++; | 
 | 			if (misses > 4) | 
 | 				break; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		page = __page_cache_alloc(mapping_gfp_mask(mapping) & | 
 | 								~__GFP_FS); | 
 | 		if (!page) | 
 | 			break; | 
 |  | 
 | 		if (add_to_page_cache_lru(page, mapping, pg_index, | 
 | 								GFP_NOFS)) { | 
 | 			page_cache_release(page); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		end = last_offset + PAGE_CACHE_SIZE - 1; | 
 | 		/* | 
 | 		 * at this point, we have a locked page in the page cache | 
 | 		 * for these bytes in the file.  But, we have to make | 
 | 		 * sure they map to this compressed extent on disk. | 
 | 		 */ | 
 | 		set_page_extent_mapped(page); | 
 | 		lock_extent(tree, last_offset, end); | 
 | 		read_lock(&em_tree->lock); | 
 | 		em = lookup_extent_mapping(em_tree, last_offset, | 
 | 					   PAGE_CACHE_SIZE); | 
 | 		read_unlock(&em_tree->lock); | 
 |  | 
 | 		if (!em || last_offset < em->start || | 
 | 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || | 
 | 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { | 
 | 			free_extent_map(em); | 
 | 			unlock_extent(tree, last_offset, end); | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			break; | 
 | 		} | 
 | 		free_extent_map(em); | 
 |  | 
 | 		if (page->index == end_index) { | 
 | 			char *userpage; | 
 | 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 			if (zero_offset) { | 
 | 				int zeros; | 
 | 				zeros = PAGE_CACHE_SIZE - zero_offset; | 
 | 				userpage = kmap_atomic(page); | 
 | 				memset(userpage + zero_offset, 0, zeros); | 
 | 				flush_dcache_page(page); | 
 | 				kunmap_atomic(userpage); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ret = bio_add_page(cb->orig_bio, page, | 
 | 				   PAGE_CACHE_SIZE, 0); | 
 |  | 
 | 		if (ret == PAGE_CACHE_SIZE) { | 
 | 			nr_pages++; | 
 | 			page_cache_release(page); | 
 | 		} else { | 
 | 			unlock_extent(tree, last_offset, end); | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			break; | 
 | 		} | 
 | next: | 
 | 		last_offset += PAGE_CACHE_SIZE; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * for a compressed read, the bio we get passed has all the inode pages | 
 |  * in it.  We don't actually do IO on those pages but allocate new ones | 
 |  * to hold the compressed pages on disk. | 
 |  * | 
 |  * bio->bi_iter.bi_sector points to the compressed extent on disk | 
 |  * bio->bi_io_vec points to all of the inode pages | 
 |  * bio->bi_vcnt is a count of pages | 
 |  * | 
 |  * After the compressed pages are read, we copy the bytes into the | 
 |  * bio we were passed and then call the bio end_io calls | 
 |  */ | 
 | int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct compressed_bio *cb; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | 
 | 	unsigned long compressed_len; | 
 | 	unsigned long nr_pages; | 
 | 	unsigned long pg_index; | 
 | 	struct page *page; | 
 | 	struct block_device *bdev; | 
 | 	struct bio *comp_bio; | 
 | 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; | 
 | 	u64 em_len; | 
 | 	u64 em_start; | 
 | 	struct extent_map *em; | 
 | 	int ret = -ENOMEM; | 
 | 	int faili = 0; | 
 | 	u32 *sums; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 |  | 
 | 	/* we need the actual starting offset of this extent in the file */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, | 
 | 				   page_offset(bio->bi_io_vec->bv_page), | 
 | 				   PAGE_CACHE_SIZE); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	if (!em) | 
 | 		return -EIO; | 
 |  | 
 | 	compressed_len = em->block_len; | 
 | 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | 
 | 	if (!cb) | 
 | 		goto out; | 
 |  | 
 | 	atomic_set(&cb->pending_bios, 0); | 
 | 	cb->errors = 0; | 
 | 	cb->inode = inode; | 
 | 	cb->mirror_num = mirror_num; | 
 | 	sums = &cb->sums; | 
 |  | 
 | 	cb->start = em->orig_start; | 
 | 	em_len = em->len; | 
 | 	em_start = em->start; | 
 |  | 
 | 	free_extent_map(em); | 
 | 	em = NULL; | 
 |  | 
 | 	cb->len = uncompressed_len; | 
 | 	cb->compressed_len = compressed_len; | 
 | 	cb->compress_type = extent_compress_type(bio_flags); | 
 | 	cb->orig_bio = bio; | 
 |  | 
 | 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / | 
 | 				 PAGE_CACHE_SIZE; | 
 | 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, | 
 | 				       GFP_NOFS); | 
 | 	if (!cb->compressed_pages) | 
 | 		goto fail1; | 
 |  | 
 | 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
 |  | 
 | 	for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
 | 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | | 
 | 							      __GFP_HIGHMEM); | 
 | 		if (!cb->compressed_pages[pg_index]) { | 
 | 			faili = pg_index - 1; | 
 | 			ret = -ENOMEM; | 
 | 			goto fail2; | 
 | 		} | 
 | 	} | 
 | 	faili = nr_pages - 1; | 
 | 	cb->nr_pages = nr_pages; | 
 |  | 
 | 	/* In the parent-locked case, we only locked the range we are | 
 | 	 * interested in.  In all other cases, we can opportunistically | 
 | 	 * cache decompressed data that goes beyond the requested range. */ | 
 | 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) | 
 | 		add_ra_bio_pages(inode, em_start + em_len, cb); | 
 |  | 
 | 	/* include any pages we added in add_ra-bio_pages */ | 
 | 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | 
 | 	cb->len = uncompressed_len; | 
 |  | 
 | 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); | 
 | 	if (!comp_bio) | 
 | 		goto fail2; | 
 | 	comp_bio->bi_private = cb; | 
 | 	comp_bio->bi_end_io = end_compressed_bio_read; | 
 | 	atomic_inc(&cb->pending_bios); | 
 |  | 
 | 	for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
 | 		page = cb->compressed_pages[pg_index]; | 
 | 		page->mapping = inode->i_mapping; | 
 | 		page->index = em_start >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		if (comp_bio->bi_iter.bi_size) | 
 | 			ret = tree->ops->merge_bio_hook(READ, page, 0, | 
 | 							PAGE_CACHE_SIZE, | 
 | 							comp_bio, 0); | 
 | 		else | 
 | 			ret = 0; | 
 |  | 
 | 		page->mapping = NULL; | 
 | 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < | 
 | 		    PAGE_CACHE_SIZE) { | 
 | 			bio_get(comp_bio); | 
 |  | 
 | 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); | 
 | 			BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 			/* | 
 | 			 * inc the count before we submit the bio so | 
 | 			 * we know the end IO handler won't happen before | 
 | 			 * we inc the count.  Otherwise, the cb might get | 
 | 			 * freed before we're done setting it up | 
 | 			 */ | 
 | 			atomic_inc(&cb->pending_bios); | 
 |  | 
 | 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
 | 				ret = btrfs_lookup_bio_sums(root, inode, | 
 | 							comp_bio, sums); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 			} | 
 | 			sums += (comp_bio->bi_iter.bi_size + | 
 | 				 root->sectorsize - 1) / root->sectorsize; | 
 |  | 
 | 			ret = btrfs_map_bio(root, READ, comp_bio, | 
 | 					    mirror_num, 0); | 
 | 			if (ret) | 
 | 				bio_endio(comp_bio, ret); | 
 |  | 
 | 			bio_put(comp_bio); | 
 |  | 
 | 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, | 
 | 							GFP_NOFS); | 
 | 			BUG_ON(!comp_bio); | 
 | 			comp_bio->bi_private = cb; | 
 | 			comp_bio->bi_end_io = end_compressed_bio_read; | 
 |  | 
 | 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); | 
 | 		} | 
 | 		cur_disk_byte += PAGE_CACHE_SIZE; | 
 | 	} | 
 | 	bio_get(comp_bio); | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
 | 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 |  | 
 | 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); | 
 | 	if (ret) | 
 | 		bio_endio(comp_bio, ret); | 
 |  | 
 | 	bio_put(comp_bio); | 
 | 	return 0; | 
 |  | 
 | fail2: | 
 | 	while (faili >= 0) { | 
 | 		__free_page(cb->compressed_pages[faili]); | 
 | 		faili--; | 
 | 	} | 
 |  | 
 | 	kfree(cb->compressed_pages); | 
 | fail1: | 
 | 	kfree(cb); | 
 | out: | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; | 
 | static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; | 
 | static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; | 
 | static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; | 
 | static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; | 
 |  | 
 | static struct btrfs_compress_op *btrfs_compress_op[] = { | 
 | 	&btrfs_zlib_compress, | 
 | 	&btrfs_lzo_compress, | 
 | }; | 
 |  | 
 | void __init btrfs_init_compress(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { | 
 | 		INIT_LIST_HEAD(&comp_idle_workspace[i]); | 
 | 		spin_lock_init(&comp_workspace_lock[i]); | 
 | 		atomic_set(&comp_alloc_workspace[i], 0); | 
 | 		init_waitqueue_head(&comp_workspace_wait[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * this finds an available workspace or allocates a new one | 
 |  * ERR_PTR is returned if things go bad. | 
 |  */ | 
 | static struct list_head *find_workspace(int type) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int cpus = num_online_cpus(); | 
 | 	int idx = type - 1; | 
 |  | 
 | 	struct list_head *idle_workspace	= &comp_idle_workspace[idx]; | 
 | 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx]; | 
 | 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx]; | 
 | 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx]; | 
 | 	int *num_workspace			= &comp_num_workspace[idx]; | 
 | again: | 
 | 	spin_lock(workspace_lock); | 
 | 	if (!list_empty(idle_workspace)) { | 
 | 		workspace = idle_workspace->next; | 
 | 		list_del(workspace); | 
 | 		(*num_workspace)--; | 
 | 		spin_unlock(workspace_lock); | 
 | 		return workspace; | 
 |  | 
 | 	} | 
 | 	if (atomic_read(alloc_workspace) > cpus) { | 
 | 		DEFINE_WAIT(wait); | 
 |  | 
 | 		spin_unlock(workspace_lock); | 
 | 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace) | 
 | 			schedule(); | 
 | 		finish_wait(workspace_wait, &wait); | 
 | 		goto again; | 
 | 	} | 
 | 	atomic_inc(alloc_workspace); | 
 | 	spin_unlock(workspace_lock); | 
 |  | 
 | 	workspace = btrfs_compress_op[idx]->alloc_workspace(); | 
 | 	if (IS_ERR(workspace)) { | 
 | 		atomic_dec(alloc_workspace); | 
 | 		wake_up(workspace_wait); | 
 | 	} | 
 | 	return workspace; | 
 | } | 
 |  | 
 | /* | 
 |  * put a workspace struct back on the list or free it if we have enough | 
 |  * idle ones sitting around | 
 |  */ | 
 | static void free_workspace(int type, struct list_head *workspace) | 
 | { | 
 | 	int idx = type - 1; | 
 | 	struct list_head *idle_workspace	= &comp_idle_workspace[idx]; | 
 | 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx]; | 
 | 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx]; | 
 | 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx]; | 
 | 	int *num_workspace			= &comp_num_workspace[idx]; | 
 |  | 
 | 	spin_lock(workspace_lock); | 
 | 	if (*num_workspace < num_online_cpus()) { | 
 | 		list_add(workspace, idle_workspace); | 
 | 		(*num_workspace)++; | 
 | 		spin_unlock(workspace_lock); | 
 | 		goto wake; | 
 | 	} | 
 | 	spin_unlock(workspace_lock); | 
 |  | 
 | 	btrfs_compress_op[idx]->free_workspace(workspace); | 
 | 	atomic_dec(alloc_workspace); | 
 | wake: | 
 | 	smp_mb(); | 
 | 	if (waitqueue_active(workspace_wait)) | 
 | 		wake_up(workspace_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * cleanup function for module exit | 
 |  */ | 
 | static void free_workspaces(void) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { | 
 | 		while (!list_empty(&comp_idle_workspace[i])) { | 
 | 			workspace = comp_idle_workspace[i].next; | 
 | 			list_del(workspace); | 
 | 			btrfs_compress_op[i]->free_workspace(workspace); | 
 | 			atomic_dec(&comp_alloc_workspace[i]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * given an address space and start/len, compress the bytes. | 
 |  * | 
 |  * pages are allocated to hold the compressed result and stored | 
 |  * in 'pages' | 
 |  * | 
 |  * out_pages is used to return the number of pages allocated.  There | 
 |  * may be pages allocated even if we return an error | 
 |  * | 
 |  * total_in is used to return the number of bytes actually read.  It | 
 |  * may be smaller then len if we had to exit early because we | 
 |  * ran out of room in the pages array or because we cross the | 
 |  * max_out threshold. | 
 |  * | 
 |  * total_out is used to return the total number of compressed bytes | 
 |  * | 
 |  * max_out tells us the max number of bytes that we're allowed to | 
 |  * stuff into pages | 
 |  */ | 
 | int btrfs_compress_pages(int type, struct address_space *mapping, | 
 | 			 u64 start, unsigned long len, | 
 | 			 struct page **pages, | 
 | 			 unsigned long nr_dest_pages, | 
 | 			 unsigned long *out_pages, | 
 | 			 unsigned long *total_in, | 
 | 			 unsigned long *total_out, | 
 | 			 unsigned long max_out) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	workspace = find_workspace(type); | 
 | 	if (IS_ERR(workspace)) | 
 | 		return PTR_ERR(workspace); | 
 |  | 
 | 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, | 
 | 						      start, len, pages, | 
 | 						      nr_dest_pages, out_pages, | 
 | 						      total_in, total_out, | 
 | 						      max_out); | 
 | 	free_workspace(type, workspace); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * pages_in is an array of pages with compressed data. | 
 |  * | 
 |  * disk_start is the starting logical offset of this array in the file | 
 |  * | 
 |  * bvec is a bio_vec of pages from the file that we want to decompress into | 
 |  * | 
 |  * vcnt is the count of pages in the biovec | 
 |  * | 
 |  * srclen is the number of bytes in pages_in | 
 |  * | 
 |  * The basic idea is that we have a bio that was created by readpages. | 
 |  * The pages in the bio are for the uncompressed data, and they may not | 
 |  * be contiguous.  They all correspond to the range of bytes covered by | 
 |  * the compressed extent. | 
 |  */ | 
 | static int btrfs_decompress_biovec(int type, struct page **pages_in, | 
 | 				   u64 disk_start, struct bio_vec *bvec, | 
 | 				   int vcnt, size_t srclen) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	workspace = find_workspace(type); | 
 | 	if (IS_ERR(workspace)) | 
 | 		return PTR_ERR(workspace); | 
 |  | 
 | 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, | 
 | 							 disk_start, | 
 | 							 bvec, vcnt, srclen); | 
 | 	free_workspace(type, workspace); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a less complex decompression routine.  Our compressed data fits in a | 
 |  * single page, and we want to read a single page out of it. | 
 |  * start_byte tells us the offset into the compressed data we're interested in | 
 |  */ | 
 | int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, | 
 | 		     unsigned long start_byte, size_t srclen, size_t destlen) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	workspace = find_workspace(type); | 
 | 	if (IS_ERR(workspace)) | 
 | 		return PTR_ERR(workspace); | 
 |  | 
 | 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, | 
 | 						  dest_page, start_byte, | 
 | 						  srclen, destlen); | 
 |  | 
 | 	free_workspace(type, workspace); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_exit_compress(void) | 
 | { | 
 | 	free_workspaces(); | 
 | } | 
 |  | 
 | /* | 
 |  * Copy uncompressed data from working buffer to pages. | 
 |  * | 
 |  * buf_start is the byte offset we're of the start of our workspace buffer. | 
 |  * | 
 |  * total_out is the last byte of the buffer | 
 |  */ | 
 | int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, | 
 | 			      unsigned long total_out, u64 disk_start, | 
 | 			      struct bio_vec *bvec, int vcnt, | 
 | 			      unsigned long *pg_index, | 
 | 			      unsigned long *pg_offset) | 
 | { | 
 | 	unsigned long buf_offset; | 
 | 	unsigned long current_buf_start; | 
 | 	unsigned long start_byte; | 
 | 	unsigned long working_bytes = total_out - buf_start; | 
 | 	unsigned long bytes; | 
 | 	char *kaddr; | 
 | 	struct page *page_out = bvec[*pg_index].bv_page; | 
 |  | 
 | 	/* | 
 | 	 * start byte is the first byte of the page we're currently | 
 | 	 * copying into relative to the start of the compressed data. | 
 | 	 */ | 
 | 	start_byte = page_offset(page_out) - disk_start; | 
 |  | 
 | 	/* we haven't yet hit data corresponding to this page */ | 
 | 	if (total_out <= start_byte) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * the start of the data we care about is offset into | 
 | 	 * the middle of our working buffer | 
 | 	 */ | 
 | 	if (total_out > start_byte && buf_start < start_byte) { | 
 | 		buf_offset = start_byte - buf_start; | 
 | 		working_bytes -= buf_offset; | 
 | 	} else { | 
 | 		buf_offset = 0; | 
 | 	} | 
 | 	current_buf_start = buf_start; | 
 |  | 
 | 	/* copy bytes from the working buffer into the pages */ | 
 | 	while (working_bytes > 0) { | 
 | 		bytes = min(PAGE_CACHE_SIZE - *pg_offset, | 
 | 			    PAGE_CACHE_SIZE - buf_offset); | 
 | 		bytes = min(bytes, working_bytes); | 
 | 		kaddr = kmap_atomic(page_out); | 
 | 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); | 
 | 		if (*pg_index == (vcnt - 1) && *pg_offset == 0) | 
 | 			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes); | 
 | 		kunmap_atomic(kaddr); | 
 | 		flush_dcache_page(page_out); | 
 |  | 
 | 		*pg_offset += bytes; | 
 | 		buf_offset += bytes; | 
 | 		working_bytes -= bytes; | 
 | 		current_buf_start += bytes; | 
 |  | 
 | 		/* check if we need to pick another page */ | 
 | 		if (*pg_offset == PAGE_CACHE_SIZE) { | 
 | 			(*pg_index)++; | 
 | 			if (*pg_index >= vcnt) | 
 | 				return 0; | 
 |  | 
 | 			page_out = bvec[*pg_index].bv_page; | 
 | 			*pg_offset = 0; | 
 | 			start_byte = page_offset(page_out) - disk_start; | 
 |  | 
 | 			/* | 
 | 			 * make sure our new page is covered by this | 
 | 			 * working buffer | 
 | 			 */ | 
 | 			if (total_out <= start_byte) | 
 | 				return 1; | 
 |  | 
 | 			/* | 
 | 			 * the next page in the biovec might not be adjacent | 
 | 			 * to the last page, but it might still be found | 
 | 			 * inside this working buffer. bump our offset pointer | 
 | 			 */ | 
 | 			if (total_out > start_byte && | 
 | 			    current_buf_start < start_byte) { | 
 | 				buf_offset = start_byte - buf_start; | 
 | 				working_bytes = total_out - start_byte; | 
 | 				current_buf_start = buf_start + buf_offset; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } |