blob: b912d45a2a4c60f4f99a2d2b464100f1d9632879 [file] [log] [blame]
/*
* Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*
* Based on stmp3xxx_spdif_dai.c
* Vladimir Barinov <vbarinov@embeddedalley.com>
* Copyright 2008 SigmaTel, Inc
* Copyright 2008 Embedded Alley Solutions, Inc
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/bitrev.h>
#include <linux/clk.h>
#include <linux/clk-private.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>
#include <sound/asoundef.h>
#include <sound/dmaengine_pcm.h>
#include <sound/soc.h>
#include "fsl_spdif.h"
#include "imx-pcm.h"
#define FSL_SPDIF_TXFIFO_WML 0x8
#define FSL_SPDIF_RXFIFO_WML 0x8
#define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
#define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL | INT_URX_OV|\
INT_QRX_FUL | INT_QRX_OV | INT_UQ_SYNC | INT_UQ_ERR |\
INT_RXFIFO_RESYNC | INT_LOSS_LOCK | INT_DPLL_LOCKED)
/* Index list for the values that has if (DPLL Locked) condition */
static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
#define SRPC_NODPLL_START1 0x5
#define SRPC_NODPLL_START2 0xc
#define DEFAULT_RXCLK_SRC 1
/*
* SPDIF control structure
* Defines channel status, subcode and Q sub
*/
struct spdif_mixer_control {
/* spinlock to access control data */
spinlock_t ctl_lock;
/* IEC958 channel tx status bit */
unsigned char ch_status[4];
/* User bits */
unsigned char subcode[2 * SPDIF_UBITS_SIZE];
/* Q subcode part of user bits */
unsigned char qsub[2 * SPDIF_QSUB_SIZE];
/* Buffer offset for U/Q */
u32 upos;
u32 qpos;
/* Ready buffer index of the two buffers */
u32 ready_buf;
};
/**
* fsl_spdif_priv: Freescale SPDIF private data
*
* @fsl_spdif_control: SPDIF control data
* @cpu_dai_drv: cpu dai driver
* @pdev: platform device pointer
* @regmap: regmap handler
* @dpll_locked: dpll lock flag
* @txrate: the best rates for playback
* @txclk_df: STC_TXCLK_DF dividers value for playback
* @sysclk_df: STC_SYSCLK_DF dividers value for playback
* @txclk_src: STC_TXCLK_SRC values for playback
* @rxclk_src: SRPC_CLKSRC_SEL values for capture
* @txclk: tx clock sources for playback
* @rxclk: rx clock sources for capture
* @coreclk: core clock for register access via DMA
* @sysclk: system clock for rx clock rate measurement
* @dma_params_tx: DMA parameters for transmit channel
* @dma_params_rx: DMA parameters for receive channel
* @name: driver name
*/
struct fsl_spdif_priv {
struct spdif_mixer_control fsl_spdif_control;
struct snd_soc_dai_driver cpu_dai_drv;
struct platform_device *pdev;
struct regmap *regmap;
bool dpll_locked;
u16 txrate[SPDIF_TXRATE_MAX];
u8 txclk_df[SPDIF_TXRATE_MAX];
u8 sysclk_df[SPDIF_TXRATE_MAX];
u8 txclk_src[SPDIF_TXRATE_MAX];
u8 rxclk_src;
struct clk *txclk[SPDIF_TXRATE_MAX];
struct clk *rxclk;
struct clk *coreclk;
struct clk *sysclk;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct snd_dmaengine_dai_dma_data dma_params_rx;
/* The name space will be allocated dynamically */
char name[0];
};
/* DPLL locked and lock loss interrupt handler */
static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
{
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
u32 locked;
regmap_read(regmap, REG_SPDIF_SRPC, &locked);
locked &= SRPC_DPLL_LOCKED;
dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
locked ? "locked" : "loss lock");
spdif_priv->dpll_locked = locked ? true : false;
}
/* Receiver found illegal symbol interrupt handler */
static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
{
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
if (!spdif_priv->dpll_locked) {
/* DPLL unlocked seems no audio stream */
regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
}
}
/* U/Q Channel receive register full */
static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
{
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
u32 *pos, size, val, reg;
switch (name) {
case 'U':
pos = &ctrl->upos;
size = SPDIF_UBITS_SIZE;
reg = REG_SPDIF_SRU;
break;
case 'Q':
pos = &ctrl->qpos;
size = SPDIF_QSUB_SIZE;
reg = REG_SPDIF_SRQ;
break;
default:
dev_err(&pdev->dev, "unsupported channel name\n");
return;
}
dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
if (*pos >= size * 2) {
*pos = 0;
} else if (unlikely((*pos % size) + 3 > size)) {
dev_err(&pdev->dev, "User bit receivce buffer overflow\n");
return;
}
regmap_read(regmap, reg, &val);
ctrl->subcode[*pos++] = val >> 16;
ctrl->subcode[*pos++] = val >> 8;
ctrl->subcode[*pos++] = val;
}
/* U/Q Channel sync found */
static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
{
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct platform_device *pdev = spdif_priv->pdev;
dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
/* U/Q buffer reset */
if (ctrl->qpos == 0)
return;
/* Set ready to this buffer */
ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
}
/* U/Q Channel framing error */
static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
{
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
u32 val;
dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
/* Read U/Q data to clear the irq and do buffer reset */
regmap_read(regmap, REG_SPDIF_SRU, &val);
regmap_read(regmap, REG_SPDIF_SRQ, &val);
/* Drop this U/Q buffer */
ctrl->ready_buf = 0;
ctrl->upos = 0;
ctrl->qpos = 0;
}
/* Get spdif interrupt status and clear the interrupt */
static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
{
struct regmap *regmap = spdif_priv->regmap;
u32 val, val2;
regmap_read(regmap, REG_SPDIF_SIS, &val);
regmap_read(regmap, REG_SPDIF_SIE, &val2);
regmap_write(regmap, REG_SPDIF_SIC, val & val2);
return val;
}
static irqreturn_t spdif_isr(int irq, void *devid)
{
struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
struct platform_device *pdev = spdif_priv->pdev;
u32 sis;
sis = spdif_intr_status_clear(spdif_priv);
if (sis & INT_DPLL_LOCKED)
spdif_irq_dpll_lock(spdif_priv);
if (sis & INT_TXFIFO_UNOV)
dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
if (sis & INT_TXFIFO_RESYNC)
dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
if (sis & INT_CNEW)
dev_dbg(&pdev->dev, "isr: cstatus new\n");
if (sis & INT_VAL_NOGOOD)
dev_dbg(&pdev->dev, "isr: validity flag no good\n");
if (sis & INT_SYM_ERR)
spdif_irq_sym_error(spdif_priv);
if (sis & INT_BIT_ERR)
dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
if (sis & INT_URX_FUL)
spdif_irq_uqrx_full(spdif_priv, 'U');
if (sis & INT_URX_OV)
dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
if (sis & INT_QRX_FUL)
spdif_irq_uqrx_full(spdif_priv, 'Q');
if (sis & INT_QRX_OV)
dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
if (sis & INT_UQ_SYNC)
spdif_irq_uq_sync(spdif_priv);
if (sis & INT_UQ_ERR)
spdif_irq_uq_err(spdif_priv);
if (sis & INT_RXFIFO_UNOV)
dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
if (sis & INT_RXFIFO_RESYNC)
dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
if (sis & INT_LOSS_LOCK)
spdif_irq_dpll_lock(spdif_priv);
/* FIXME: Write Tx FIFO to clear TxEm */
if (sis & INT_TX_EM)
dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
/* FIXME: Read Rx FIFO to clear RxFIFOFul */
if (sis & INT_RXFIFO_FUL)
dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
return IRQ_HANDLED;
}
static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
{
struct regmap *regmap = spdif_priv->regmap;
u32 val, cycle = 1000;
regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
/*
* RESET bit would be cleared after finishing its reset procedure,
* which typically lasts 8 cycles. 1000 cycles will keep it safe.
*/
do {
regmap_read(regmap, REG_SPDIF_SCR, &val);
} while ((val & SCR_SOFT_RESET) && cycle--);
if (cycle)
return 0;
else
return -EBUSY;
}
static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
u8 mask, u8 cstatus)
{
ctrl->ch_status[3] &= ~mask;
ctrl->ch_status[3] |= cstatus & mask;
}
static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
{
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
u32 ch_status;
ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
(bitrev8(ctrl->ch_status[1]) << 8) |
bitrev8(ctrl->ch_status[2]);
regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
ch_status = bitrev8(ctrl->ch_status[3]) << 16;
regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
}
/* Set SPDIF PhaseConfig register for rx clock */
static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
enum spdif_gainsel gainsel, int dpll_locked)
{
struct regmap *regmap = spdif_priv->regmap;
u8 clksrc = spdif_priv->rxclk_src;
if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
return -EINVAL;
regmap_update_bits(regmap, REG_SPDIF_SRPC,
SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
return 0;
}
static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
int sample_rate)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
unsigned long csfs = 0;
u32 stc, mask, rate;
u8 clk, txclk_df, sysclk_df;
int ret;
switch (sample_rate) {
case 32000:
rate = SPDIF_TXRATE_32000;
csfs = IEC958_AES3_CON_FS_32000;
break;
case 44100:
rate = SPDIF_TXRATE_44100;
csfs = IEC958_AES3_CON_FS_44100;
break;
case 48000:
rate = SPDIF_TXRATE_48000;
csfs = IEC958_AES3_CON_FS_48000;
break;
default:
dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
return -EINVAL;
}
clk = spdif_priv->txclk_src[rate];
if (clk >= STC_TXCLK_SRC_MAX) {
dev_err(&pdev->dev, "tx clock source is out of range\n");
return -EINVAL;
}
txclk_df = spdif_priv->txclk_df[rate];
if (txclk_df == 0) {
dev_err(&pdev->dev, "the txclk_df can't be zero\n");
return -EINVAL;
}
sysclk_df = spdif_priv->sysclk_df[rate];
/* Don't mess up the clocks from other modules */
if (clk != STC_TXCLK_SPDIF_ROOT)
goto clk_set_bypass;
/*
* The S/PDIF block needs a clock of 64 * fs * txclk_df.
* So request 64 * fs * (txclk_df + 1) to get rounded.
*/
ret = clk_set_rate(spdif_priv->txclk[rate], 64 * sample_rate * (txclk_df + 1));
if (ret) {
dev_err(&pdev->dev, "failed to set tx clock rate\n");
return ret;
}
clk_set_bypass:
dev_dbg(&pdev->dev, "expected clock rate = %d\n",
(64 * sample_rate * txclk_df * sysclk_df));
dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
clk_get_rate(spdif_priv->txclk[rate]));
/* set fs field in consumer channel status */
spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
/* select clock source and divisor */
stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | STC_TXCLK_DF(txclk_df);
mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | STC_TXCLK_DF_MASK;
regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
regmap_update_bits(regmap, REG_SPDIF_STC,
STC_SYSCLK_DF_MASK, STC_SYSCLK_DF(sysclk_df));
dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
spdif_priv->txrate[rate], sample_rate);
return 0;
}
static int fsl_spdif_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct platform_device *pdev = spdif_priv->pdev;
struct regmap *regmap = spdif_priv->regmap;
u32 scr, mask, i;
int ret;
/* Reset module and interrupts only for first initialization */
if (!cpu_dai->active) {
ret = clk_prepare_enable(spdif_priv->coreclk);
if (ret) {
dev_err(&pdev->dev, "failed to enable core clock\n");
return ret;
}
ret = spdif_softreset(spdif_priv);
if (ret) {
dev_err(&pdev->dev, "failed to soft reset\n");
goto err;
}
/* Disable all the interrupts */
regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
SCR_TXFIFO_FSEL_IF8;
mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
SCR_TXFIFO_FSEL_MASK;
for (i = 0; i < SPDIF_TXRATE_MAX; i++)
clk_prepare_enable(spdif_priv->txclk[i]);
} else {
scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
clk_prepare_enable(spdif_priv->rxclk);
}
regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
/* Power up SPDIF module */
regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
return 0;
err:
clk_disable_unprepare(spdif_priv->coreclk);
return ret;
}
static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
u32 scr, mask, i;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
scr = 0;
mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
SCR_TXFIFO_FSEL_MASK;
for (i = 0; i < SPDIF_TXRATE_MAX; i++)
clk_disable_unprepare(spdif_priv->txclk[i]);
} else {
scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
clk_disable_unprepare(spdif_priv->rxclk);
}
regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
/* Power down SPDIF module only if tx&rx are both inactive */
if (!cpu_dai->active) {
spdif_intr_status_clear(spdif_priv);
regmap_update_bits(regmap, REG_SPDIF_SCR,
SCR_LOW_POWER, SCR_LOW_POWER);
clk_disable_unprepare(spdif_priv->coreclk);
}
}
static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
struct platform_device *pdev = spdif_priv->pdev;
u32 sample_rate = params_rate(params);
int ret = 0;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = spdif_set_sample_rate(substream, sample_rate);
if (ret) {
dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
__func__, sample_rate);
return ret;
}
spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
IEC958_AES3_CON_CLOCK_1000PPM);
spdif_write_channel_status(spdif_priv);
} else {
/* Setup rx clock source */
ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
}
return ret;
}
static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
int is_playack = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
u32 intr = is_playack ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE;
u32 dmaen = is_playack ? SCR_DMA_TX_EN : SCR_DMA_RX_EN;;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static struct snd_soc_dai_ops fsl_spdif_dai_ops = {
.startup = fsl_spdif_startup,
.hw_params = fsl_spdif_hw_params,
.trigger = fsl_spdif_trigger,
.shutdown = fsl_spdif_shutdown,
};
/*
* FSL SPDIF IEC958 controller(mixer) functions
*
* Channel status get/put control
* User bit value get/put control
* Valid bit value get control
* DPLL lock status get control
* User bit sync mode selection control
*/
static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
uvalue->value.iec958.status[0] = ctrl->ch_status[0];
uvalue->value.iec958.status[1] = ctrl->ch_status[1];
uvalue->value.iec958.status[2] = ctrl->ch_status[2];
uvalue->value.iec958.status[3] = ctrl->ch_status[3];
return 0;
}
static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
ctrl->ch_status[0] = uvalue->value.iec958.status[0];
ctrl->ch_status[1] = uvalue->value.iec958.status[1];
ctrl->ch_status[2] = uvalue->value.iec958.status[2];
ctrl->ch_status[3] = uvalue->value.iec958.status[3];
spdif_write_channel_status(spdif_priv);
return 0;
}
/* Get channel status from SPDIF_RX_CCHAN register */
static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
u32 cstatus, val;
regmap_read(regmap, REG_SPDIF_SIS, &val);
if (!(val & INT_CNEW)) {
return -EAGAIN;
}
regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
ucontrol->value.iec958.status[2] = cstatus & 0xFF;
regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
ucontrol->value.iec958.status[5] = cstatus & 0xFF;
/* Clear intr */
regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
return 0;
}
/*
* Get User bits (subcode) from chip value which readed out
* in UChannel register.
*/
static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&ctrl->ctl_lock, flags);
if (ctrl->ready_buf) {
int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
memcpy(&ucontrol->value.iec958.subcode[0],
&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
} else {
ret = -EAGAIN;
}
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
return ret;
}
/* Q-subcode infomation. The byte size is SPDIF_UBITS_SIZE/8 */
static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = SPDIF_QSUB_SIZE;
return 0;
}
/* Get Q subcode from chip value which readed out in QChannel register */
static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&ctrl->ctl_lock, flags);
if (ctrl->ready_buf) {
int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
memcpy(&ucontrol->value.bytes.data[0],
&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
} else {
ret = -EAGAIN;
}
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
return ret;
}
/* Valid bit infomation */
static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
/* Get valid good bit from interrupt status register */
static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
u32 val;
val = regmap_read(regmap, REG_SPDIF_SIS, &val);
ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
return 0;
}
/* DPLL lock infomation */
static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 16000;
uinfo->value.integer.max = 96000;
return 0;
}
static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
24, 16, 12, 8, 6, 4, 3,
};
/* Get RX data clock rate given the SPDIF bus_clk */
static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
enum spdif_gainsel gainsel)
{
struct regmap *regmap = spdif_priv->regmap;
struct platform_device *pdev = spdif_priv->pdev;
u64 tmpval64, busclk_freq = 0;
u32 freqmeas, phaseconf;
u8 clksrc;
regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) {
/* Get bus clock from system */
busclk_freq = clk_get_rate(spdif_priv->sysclk);
}
/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
tmpval64 = (u64) busclk_freq * freqmeas;
do_div(tmpval64, gainsel_multi[gainsel] * 1024);
do_div(tmpval64, 128 * 1024);
dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
return (int)tmpval64;
}
/*
* Get DPLL lock or not info from stable interrupt status register.
* User application must use this control to get locked,
* then can do next PCM operation
*/
static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
int rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
if (spdif_priv->dpll_locked)
ucontrol->value.integer.value[0] = rate;
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
/* User bit sync mode info */
static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
/*
* User bit sync mode:
* 1 CD User channel subcode
* 0 Non-CD data
*/
static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
u32 val;
regmap_read(regmap, REG_SPDIF_SRCD, &val);
ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
return 0;
}
/*
* User bit sync mode:
* 1 CD User channel subcode
* 0 Non-CD data
*/
static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
return 0;
}
/* FSL SPDIF IEC958 controller defines */
static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
/* Status cchanel controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_info,
.get = fsl_spdif_pb_get,
.put = fsl_spdif_pb_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_info,
.get = fsl_spdif_capture_get,
},
/* User bits controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_info,
.get = fsl_spdif_subcode_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Q-subcode Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_qinfo,
.get = fsl_spdif_qget,
},
/* Valid bit error controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 V-Bit Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_vbit_info,
.get = fsl_spdif_vbit_get,
},
/* DPLL lock info get controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "RX Sample Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_rxrate_info,
.get = fsl_spdif_rxrate_get,
},
/* User bit sync mode set/get controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 USyncMode CDText",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = fsl_spdif_usync_info,
.get = fsl_spdif_usync_get,
.put = fsl_spdif_usync_put,
},
};
static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
&spdif_private->dma_params_rx);
snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
return 0;
}
static struct snd_soc_dai_driver fsl_spdif_dai = {
.probe = &fsl_spdif_dai_probe,
.playback = {
.channels_min = 2,
.channels_max = 2,
.rates = FSL_SPDIF_RATES_PLAYBACK,
.formats = FSL_SPDIF_FORMATS_PLAYBACK,
},
.capture = {
.channels_min = 2,
.channels_max = 2,
.rates = FSL_SPDIF_RATES_CAPTURE,
.formats = FSL_SPDIF_FORMATS_CAPTURE,
},
.ops = &fsl_spdif_dai_ops,
};
static const struct snd_soc_component_driver fsl_spdif_component = {
.name = "fsl-spdif",
};
/* FSL SPDIF REGMAP */
static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SPDIF_SCR:
case REG_SPDIF_SRCD:
case REG_SPDIF_SRPC:
case REG_SPDIF_SIE:
case REG_SPDIF_SIS:
case REG_SPDIF_SRL:
case REG_SPDIF_SRR:
case REG_SPDIF_SRCSH:
case REG_SPDIF_SRCSL:
case REG_SPDIF_SRU:
case REG_SPDIF_SRQ:
case REG_SPDIF_STCSCH:
case REG_SPDIF_STCSCL:
case REG_SPDIF_SRFM:
case REG_SPDIF_STC:
return true;
default:
return false;
}
}
static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SPDIF_SCR:
case REG_SPDIF_SRCD:
case REG_SPDIF_SRPC:
case REG_SPDIF_SIE:
case REG_SPDIF_SIC:
case REG_SPDIF_STL:
case REG_SPDIF_STR:
case REG_SPDIF_STCSCH:
case REG_SPDIF_STCSCL:
case REG_SPDIF_STC:
return true;
default:
return false;
}
}
static struct regmap_config fsl_spdif_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_SPDIF_STC,
.readable_reg = fsl_spdif_readable_reg,
.writeable_reg = fsl_spdif_writeable_reg,
};
static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
struct clk *clk, u64 savesub,
enum spdif_txrate index, bool round)
{
const u32 rate[] = { 32000, 44100, 48000 };
bool is_sysclk = clk == spdif_priv->sysclk;
u64 rate_ideal, rate_actual, sub;
u32 sysclk_dfmin, sysclk_dfmax;
u32 txclk_df, sysclk_df, arate;
/* The sysclk has an extra divisor [2, 512] */
sysclk_dfmin = is_sysclk ? 2 : 1;
sysclk_dfmax = is_sysclk ? 512 : 1;
for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
rate_ideal = rate[index] * (txclk_df + 1) * 64;
if (round)
rate_actual = clk_round_rate(clk, rate_ideal);
else
rate_actual = clk_get_rate(clk);
arate = rate_actual / 64;
arate /= txclk_df * sysclk_df;
if (arate == rate[index]) {
/* We are lucky */
savesub = 0;
spdif_priv->txclk_df[index] = txclk_df;
spdif_priv->sysclk_df[index] = sysclk_df;
spdif_priv->txrate[index] = arate;
goto out;
} else if (arate / rate[index] == 1) {
/* A little bigger than expect */
sub = (arate - rate[index]) * 100000;
do_div(sub, rate[index]);
if (sub >= savesub)
continue;
savesub = sub;
spdif_priv->txclk_df[index] = txclk_df;
spdif_priv->sysclk_df[index] = sysclk_df;
spdif_priv->txrate[index] = arate;
} else if (rate[index] / arate == 1) {
/* A little smaller than expect */
sub = (rate[index] - arate) * 100000;
do_div(sub, rate[index]);
if (sub >= savesub)
continue;
savesub = sub;
spdif_priv->txclk_df[index] = txclk_df;
spdif_priv->sysclk_df[index] = sysclk_df;
spdif_priv->txrate[index] = arate;
}
}
}
out:
return savesub;
}
static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
enum spdif_txrate index)
{
const u32 rate[] = { 32000, 44100, 48000 };
struct platform_device *pdev = spdif_priv->pdev;
struct device *dev = &pdev->dev;
u64 savesub = 100000, ret;
struct clk *clk;
char tmp[16];
int i;
for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
sprintf(tmp, "rxtx%d", i);
clk = devm_clk_get(&pdev->dev, tmp);
if (IS_ERR(clk)) {
dev_err(dev, "no rxtx%d clock in devicetree\n", i);
return PTR_ERR(clk);
}
if (!clk_get_rate(clk))
continue;
ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
i == STC_TXCLK_SPDIF_ROOT);
if (savesub == ret)
continue;
savesub = ret;
spdif_priv->txclk[index] = clk;
spdif_priv->txclk_src[index] = i;
/* To quick catch a divisor, we allow a 0.1% deviation */
if (savesub < 100)
break;
}
dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
spdif_priv->txclk_src[index], rate[index]);
dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
spdif_priv->txclk_df[index], rate[index]);
if (spdif_priv->txclk[index] == spdif_priv->sysclk)
dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
spdif_priv->sysclk_df[index], rate[index]);
dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
rate[index], spdif_priv->txrate[index]);
return 0;
}
static int fsl_spdif_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_spdif_priv *spdif_priv;
struct spdif_mixer_control *ctrl;
struct resource *res;
void __iomem *regs;
int irq, ret, i;
if (!np)
return -ENODEV;
spdif_priv = devm_kzalloc(&pdev->dev,
sizeof(struct fsl_spdif_priv) + strlen(np->name) + 1,
GFP_KERNEL);
if (!spdif_priv)
return -ENOMEM;
strcpy(spdif_priv->name, np->name);
spdif_priv->pdev = pdev;
/* Initialize this copy of the CPU DAI driver structure */
memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
spdif_priv->cpu_dai_drv.name = spdif_priv->name;
if (of_property_read_bool(np, "big-endian"))
fsl_spdif_regmap_config.val_format_endian = REGMAP_ENDIAN_BIG;
/* Get the addresses and IRQ */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
"core", regs, &fsl_spdif_regmap_config);
if (IS_ERR(spdif_priv->regmap)) {
dev_err(&pdev->dev, "regmap init failed\n");
return PTR_ERR(spdif_priv->regmap);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
spdif_priv->name, spdif_priv);
if (ret) {
dev_err(&pdev->dev, "could not claim irq %u\n", irq);
return ret;
}
/* Get system clock for rx clock rate calculation */
spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
if (IS_ERR(spdif_priv->sysclk)) {
dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
return PTR_ERR(spdif_priv->sysclk);
}
/* Get core clock for data register access via DMA */
spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(spdif_priv->coreclk)) {
dev_err(&pdev->dev, "no core clock in devicetree\n");
return PTR_ERR(spdif_priv->coreclk);
}
/* Select clock source for rx/tx clock */
spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
if (IS_ERR(spdif_priv->rxclk)) {
dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
return PTR_ERR(spdif_priv->rxclk);
}
spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
ret = fsl_spdif_probe_txclk(spdif_priv, i);
if (ret)
return ret;
}
/* Initial spinlock for control data */
ctrl = &spdif_priv->fsl_spdif_control;
spin_lock_init(&ctrl->ctl_lock);
/* Init tx channel status default value */
ctrl->ch_status[0] =
IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_5015;
ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
ctrl->ch_status[2] = 0x00;
ctrl->ch_status[3] =
IEC958_AES3_CON_FS_44100 | IEC958_AES3_CON_CLOCK_1000PPM;
spdif_priv->dpll_locked = false;
spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
/* Register with ASoC */
dev_set_drvdata(&pdev->dev, spdif_priv);
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
&spdif_priv->cpu_dai_drv, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
return ret;
}
ret = imx_pcm_dma_init(pdev);
if (ret)
dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
return ret;
}
static const struct of_device_id fsl_spdif_dt_ids[] = {
{ .compatible = "fsl,imx35-spdif", },
{ .compatible = "fsl,vf610-spdif", },
{}
};
MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
static struct platform_driver fsl_spdif_driver = {
.driver = {
.name = "fsl-spdif-dai",
.owner = THIS_MODULE,
.of_match_table = fsl_spdif_dt_ids,
},
.probe = fsl_spdif_probe,
};
module_platform_driver(fsl_spdif_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-spdif-dai");