| /* |
| * Copyright (c) 2010 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "hw.h" |
| #include "ar9003_phy.h" |
| |
| /** |
| * ar9003_hw_set_channel - set channel on single-chip device |
| * @ah: atheros hardware structure |
| * @chan: |
| * |
| * This is the function to change channel on single-chip devices, that is |
| * all devices after ar9280. |
| * |
| * This function takes the channel value in MHz and sets |
| * hardware channel value. Assumes writes have been enabled to analog bus. |
| * |
| * Actual Expression, |
| * |
| * For 2GHz channel, |
| * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) |
| * (freq_ref = 40MHz) |
| * |
| * For 5GHz channel, |
| * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) |
| * (freq_ref = 40MHz/(24>>amodeRefSel)) |
| * |
| * For 5GHz channels which are 5MHz spaced, |
| * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) |
| * (freq_ref = 40MHz) |
| */ |
| static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| u16 bMode, fracMode = 0, aModeRefSel = 0; |
| u32 freq, channelSel = 0, reg32 = 0; |
| struct chan_centers centers; |
| int loadSynthChannel; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| freq = centers.synth_center; |
| |
| if (freq < 4800) { /* 2 GHz, fractional mode */ |
| channelSel = CHANSEL_2G(freq); |
| /* Set to 2G mode */ |
| bMode = 1; |
| } else { |
| channelSel = CHANSEL_5G(freq); |
| /* Doubler is ON, so, divide channelSel by 2. */ |
| channelSel >>= 1; |
| /* Set to 5G mode */ |
| bMode = 0; |
| } |
| |
| /* Enable fractional mode for all channels */ |
| fracMode = 1; |
| aModeRefSel = 0; |
| loadSynthChannel = 0; |
| |
| reg32 = (bMode << 29); |
| REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); |
| |
| /* Enable Long shift Select for Synthesizer */ |
| REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4, |
| AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1); |
| |
| /* Program Synth. setting */ |
| reg32 = (channelSel << 2) | (fracMode << 30) | |
| (aModeRefSel << 28) | (loadSynthChannel << 31); |
| REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); |
| |
| /* Toggle Load Synth channel bit */ |
| loadSynthChannel = 1; |
| reg32 = (channelSel << 2) | (fracMode << 30) | |
| (aModeRefSel << 28) | (loadSynthChannel << 31); |
| REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); |
| |
| ah->curchan = chan; |
| ah->curchan_rad_index = -1; |
| |
| return 0; |
| } |
| |
| /** |
| * ar9003_hw_spur_mitigate - convert baseband spur frequency |
| * @ah: atheros hardware structure |
| * @chan: |
| * |
| * For single-chip solutions. Converts to baseband spur frequency given the |
| * input channel frequency and compute register settings below. |
| * |
| * Spur mitigation for MRC CCK |
| */ |
| static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 spur_freq[4] = { 2420, 2440, 2464, 2480 }; |
| int cur_bb_spur, negative = 0, cck_spur_freq; |
| int i; |
| |
| /* |
| * Need to verify range +/- 10 MHz in control channel, otherwise spur |
| * is out-of-band and can be ignored. |
| */ |
| |
| for (i = 0; i < 4; i++) { |
| negative = 0; |
| cur_bb_spur = spur_freq[i] - chan->channel; |
| |
| if (cur_bb_spur < 0) { |
| negative = 1; |
| cur_bb_spur = -cur_bb_spur; |
| } |
| if (cur_bb_spur < 10) { |
| cck_spur_freq = (int)((cur_bb_spur << 19) / 11); |
| |
| if (negative == 1) |
| cck_spur_freq = -cck_spur_freq; |
| |
| cck_spur_freq = cck_spur_freq & 0xfffff; |
| |
| REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, |
| AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, |
| 0x2); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, |
| 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, |
| cck_spur_freq); |
| |
| return; |
| } |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, |
| AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0); |
| REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, |
| AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0); |
| } |
| |
| /* Clean all spur register fields */ |
| static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah) |
| { |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_SPUR_FREQ_SD, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0); |
| |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0); |
| REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, |
| AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, |
| AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, |
| AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, |
| AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, |
| AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, |
| AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); |
| } |
| |
| static void ar9003_hw_spur_ofdm(struct ath_hw *ah, |
| int freq_offset, |
| int spur_freq_sd, |
| int spur_delta_phase, |
| int spur_subchannel_sd) |
| { |
| int mask_index = 0; |
| |
| /* OFDM Spur mitigation */ |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING11, |
| AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1); |
| |
| if (REG_READ_FIELD(ah, AR_PHY_MODE, |
| AR_PHY_MODE_DYNAMIC) == 0x1) |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1); |
| |
| mask_index = (freq_offset << 4) / 5; |
| if (mask_index < 0) |
| mask_index = mask_index - 1; |
| |
| mask_index = mask_index & 0x7f; |
| |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING4, |
| AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1); |
| REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, |
| AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, |
| AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index); |
| REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, |
| AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index); |
| REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, |
| AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc); |
| REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, |
| AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, |
| AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); |
| REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, |
| AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); |
| } |
| |
| static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| int freq_offset) |
| { |
| int spur_freq_sd = 0; |
| int spur_subchannel_sd = 0; |
| int spur_delta_phase = 0; |
| |
| if (IS_CHAN_HT40(chan)) { |
| if (freq_offset < 0) { |
| if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, |
| AR_PHY_GC_DYN2040_PRI_CH) == 0x0) |
| spur_subchannel_sd = 1; |
| else |
| spur_subchannel_sd = 0; |
| |
| spur_freq_sd = ((freq_offset + 10) << 9) / 11; |
| |
| } else { |
| if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, |
| AR_PHY_GC_DYN2040_PRI_CH) == 0x0) |
| spur_subchannel_sd = 0; |
| else |
| spur_subchannel_sd = 1; |
| |
| spur_freq_sd = ((freq_offset - 10) << 9) / 11; |
| |
| } |
| |
| spur_delta_phase = (freq_offset << 17) / 5; |
| |
| } else { |
| spur_subchannel_sd = 0; |
| spur_freq_sd = (freq_offset << 9) /11; |
| spur_delta_phase = (freq_offset << 18) / 5; |
| } |
| |
| spur_freq_sd = spur_freq_sd & 0x3ff; |
| spur_delta_phase = spur_delta_phase & 0xfffff; |
| |
| ar9003_hw_spur_ofdm(ah, |
| freq_offset, |
| spur_freq_sd, |
| spur_delta_phase, |
| spur_subchannel_sd); |
| } |
| |
| /* Spur mitigation for OFDM */ |
| static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| int synth_freq; |
| int range = 10; |
| int freq_offset = 0; |
| int mode; |
| u8* spurChansPtr; |
| unsigned int i; |
| struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; |
| |
| if (IS_CHAN_5GHZ(chan)) { |
| spurChansPtr = &(eep->modalHeader5G.spurChans[0]); |
| mode = 0; |
| } |
| else { |
| spurChansPtr = &(eep->modalHeader2G.spurChans[0]); |
| mode = 1; |
| } |
| |
| if (spurChansPtr[0] == 0) |
| return; /* No spur in the mode */ |
| |
| if (IS_CHAN_HT40(chan)) { |
| range = 19; |
| if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, |
| AR_PHY_GC_DYN2040_PRI_CH) == 0x0) |
| synth_freq = chan->channel - 10; |
| else |
| synth_freq = chan->channel + 10; |
| } else { |
| range = 10; |
| synth_freq = chan->channel; |
| } |
| |
| ar9003_hw_spur_ofdm_clear(ah); |
| |
| for (i = 0; spurChansPtr[i] && i < 5; i++) { |
| freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq; |
| if (abs(freq_offset) < range) { |
| ar9003_hw_spur_ofdm_work(ah, chan, freq_offset); |
| break; |
| } |
| } |
| } |
| |
| static void ar9003_hw_spur_mitigate(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| ar9003_hw_spur_mitigate_mrc_cck(ah, chan); |
| ar9003_hw_spur_mitigate_ofdm(ah, chan); |
| } |
| |
| static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 pll; |
| |
| pll = SM(0x5, AR_RTC_9300_PLL_REFDIV); |
| |
| if (chan && IS_CHAN_HALF_RATE(chan)) |
| pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL); |
| else if (chan && IS_CHAN_QUARTER_RATE(chan)) |
| pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL); |
| |
| pll |= SM(0x2c, AR_RTC_9300_PLL_DIV); |
| |
| return pll; |
| } |
| |
| static void ar9003_hw_set_channel_regs(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 phymode; |
| u32 enableDacFifo = 0; |
| |
| enableDacFifo = |
| (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO); |
| |
| /* Enable 11n HT, 20 MHz */ |
| phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH | |
| AR_PHY_GC_SHORT_GI_40 | enableDacFifo; |
| |
| /* Configure baseband for dynamic 20/40 operation */ |
| if (IS_CHAN_HT40(chan)) { |
| phymode |= AR_PHY_GC_DYN2040_EN; |
| /* Configure control (primary) channel at +-10MHz */ |
| if ((chan->chanmode == CHANNEL_A_HT40PLUS) || |
| (chan->chanmode == CHANNEL_G_HT40PLUS)) |
| phymode |= AR_PHY_GC_DYN2040_PRI_CH; |
| |
| } |
| |
| /* make sure we preserve INI settings */ |
| phymode |= REG_READ(ah, AR_PHY_GEN_CTRL); |
| /* turn off Green Field detection for STA for now */ |
| phymode &= ~AR_PHY_GC_GF_DETECT_EN; |
| |
| REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode); |
| |
| /* Configure MAC for 20/40 operation */ |
| ath9k_hw_set11nmac2040(ah); |
| |
| /* global transmit timeout (25 TUs default)*/ |
| REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); |
| /* carrier sense timeout */ |
| REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); |
| } |
| |
| static void ar9003_hw_init_bb(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 synthDelay; |
| |
| /* |
| * Wait for the frequency synth to settle (synth goes on |
| * via AR_PHY_ACTIVE_EN). Read the phy active delay register. |
| * Value is in 100ns increments. |
| */ |
| synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; |
| if (IS_CHAN_B(chan)) |
| synthDelay = (4 * synthDelay) / 22; |
| else |
| synthDelay /= 10; |
| |
| /* Activate the PHY (includes baseband activate + synthesizer on) */ |
| REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); |
| |
| /* |
| * There is an issue if the AP starts the calibration before |
| * the base band timeout completes. This could result in the |
| * rx_clear false triggering. As a workaround we add delay an |
| * extra BASE_ACTIVATE_DELAY usecs to ensure this condition |
| * does not happen. |
| */ |
| udelay(synthDelay + BASE_ACTIVATE_DELAY); |
| } |
| |
| void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx) |
| { |
| switch (rx) { |
| case 0x5: |
| REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, |
| AR_PHY_SWAP_ALT_CHAIN); |
| case 0x3: |
| case 0x1: |
| case 0x2: |
| case 0x7: |
| REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx); |
| REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx); |
| break; |
| default: |
| break; |
| } |
| |
| REG_WRITE(ah, AR_SELFGEN_MASK, tx); |
| if (tx == 0x5) { |
| REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, |
| AR_PHY_SWAP_ALT_CHAIN); |
| } |
| } |
| |
| /* |
| * Override INI values with chip specific configuration. |
| */ |
| static void ar9003_hw_override_ini(struct ath_hw *ah) |
| { |
| u32 val; |
| |
| /* |
| * Set the RX_ABORT and RX_DIS and clear it only after |
| * RXE is set for MAC. This prevents frames with |
| * corrupted descriptor status. |
| */ |
| REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); |
| |
| /* |
| * For AR9280 and above, there is a new feature that allows |
| * Multicast search based on both MAC Address and Key ID. By default, |
| * this feature is enabled. But since the driver is not using this |
| * feature, we switch it off; otherwise multicast search based on |
| * MAC addr only will fail. |
| */ |
| val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE); |
| REG_WRITE(ah, AR_PCU_MISC_MODE2, |
| val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE); |
| } |
| |
| static void ar9003_hw_prog_ini(struct ath_hw *ah, |
| struct ar5416IniArray *iniArr, |
| int column) |
| { |
| unsigned int i, regWrites = 0; |
| |
| /* New INI format: Array may be undefined (pre, core, post arrays) */ |
| if (!iniArr->ia_array) |
| return; |
| |
| /* |
| * New INI format: Pre, core, and post arrays for a given subsystem |
| * may be modal (> 2 columns) or non-modal (2 columns). Determine if |
| * the array is non-modal and force the column to 1. |
| */ |
| if (column >= iniArr->ia_columns) |
| column = 1; |
| |
| for (i = 0; i < iniArr->ia_rows; i++) { |
| u32 reg = INI_RA(iniArr, i, 0); |
| u32 val = INI_RA(iniArr, i, column); |
| |
| REG_WRITE(ah, reg, val); |
| |
| /* |
| * Determine if this is a shift register value, and insert the |
| * configured delay if so. |
| */ |
| if (reg >= 0x16000 && reg < 0x17000 |
| && ah->config.analog_shiftreg) |
| udelay(100); |
| |
| DO_DELAY(regWrites); |
| } |
| } |
| |
| static int ar9003_hw_process_ini(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| unsigned int regWrites = 0, i; |
| struct ieee80211_channel *channel = chan->chan; |
| u32 modesIndex, freqIndex; |
| |
| switch (chan->chanmode) { |
| case CHANNEL_A: |
| case CHANNEL_A_HT20: |
| modesIndex = 1; |
| freqIndex = 1; |
| break; |
| case CHANNEL_A_HT40PLUS: |
| case CHANNEL_A_HT40MINUS: |
| modesIndex = 2; |
| freqIndex = 1; |
| break; |
| case CHANNEL_G: |
| case CHANNEL_G_HT20: |
| case CHANNEL_B: |
| modesIndex = 4; |
| freqIndex = 2; |
| break; |
| case CHANNEL_G_HT40PLUS: |
| case CHANNEL_G_HT40MINUS: |
| modesIndex = 3; |
| freqIndex = 2; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ATH_INI_NUM_SPLIT; i++) { |
| ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex); |
| ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex); |
| ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex); |
| ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex); |
| } |
| |
| REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites); |
| REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); |
| |
| /* |
| * For 5GHz channels requiring Fast Clock, apply |
| * different modal values. |
| */ |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| REG_WRITE_ARRAY(&ah->iniModesAdditional, |
| modesIndex, regWrites); |
| |
| ar9003_hw_override_ini(ah); |
| ar9003_hw_set_channel_regs(ah, chan); |
| ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); |
| |
| /* Set TX power */ |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit)); |
| |
| return 0; |
| } |
| |
| static void ar9003_hw_set_rfmode(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 rfMode = 0; |
| |
| if (chan == NULL) |
| return; |
| |
| rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) |
| ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; |
| |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); |
| |
| REG_WRITE(ah, AR_PHY_MODE, rfMode); |
| } |
| |
| static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah) |
| { |
| REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); |
| } |
| |
| static void ar9003_hw_set_delta_slope(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 coef_scaled, ds_coef_exp, ds_coef_man; |
| u32 clockMhzScaled = 0x64000000; |
| struct chan_centers centers; |
| |
| /* |
| * half and quarter rate can divide the scaled clock by 2 or 4 |
| * scale for selected channel bandwidth |
| */ |
| if (IS_CHAN_HALF_RATE(chan)) |
| clockMhzScaled = clockMhzScaled >> 1; |
| else if (IS_CHAN_QUARTER_RATE(chan)) |
| clockMhzScaled = clockMhzScaled >> 2; |
| |
| /* |
| * ALGO -> coef = 1e8/fcarrier*fclock/40; |
| * scaled coef to provide precision for this floating calculation |
| */ |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| coef_scaled = clockMhzScaled / centers.synth_center; |
| |
| ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, |
| &ds_coef_exp); |
| |
| REG_RMW_FIELD(ah, AR_PHY_TIMING3, |
| AR_PHY_TIMING3_DSC_MAN, ds_coef_man); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING3, |
| AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); |
| |
| /* |
| * For Short GI, |
| * scaled coeff is 9/10 that of normal coeff |
| */ |
| coef_scaled = (9 * coef_scaled) / 10; |
| |
| ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, |
| &ds_coef_exp); |
| |
| /* for short gi */ |
| REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, |
| AR_PHY_SGI_DSC_MAN, ds_coef_man); |
| REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, |
| AR_PHY_SGI_DSC_EXP, ds_coef_exp); |
| } |
| |
| static bool ar9003_hw_rfbus_req(struct ath_hw *ah) |
| { |
| REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); |
| return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, |
| AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); |
| } |
| |
| /* |
| * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN). |
| * Read the phy active delay register. Value is in 100ns increments. |
| */ |
| static void ar9003_hw_rfbus_done(struct ath_hw *ah) |
| { |
| u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; |
| if (IS_CHAN_B(ah->curchan)) |
| synthDelay = (4 * synthDelay) / 22; |
| else |
| synthDelay /= 10; |
| |
| udelay(synthDelay + BASE_ACTIVATE_DELAY); |
| |
| REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); |
| } |
| |
| /* |
| * Set the interrupt and GPIO values so the ISR can disable RF |
| * on a switch signal. Assumes GPIO port and interrupt polarity |
| * are set prior to call. |
| */ |
| static void ar9003_hw_enable_rfkill(struct ath_hw *ah) |
| { |
| /* Connect rfsilent_bb_l to baseband */ |
| REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, |
| AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); |
| /* Set input mux for rfsilent_bb_l to GPIO #0 */ |
| REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, |
| AR_GPIO_INPUT_MUX2_RFSILENT); |
| |
| /* |
| * Configure the desired GPIO port for input and |
| * enable baseband rf silence. |
| */ |
| ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); |
| REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); |
| } |
| |
| static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value) |
| { |
| u32 v = REG_READ(ah, AR_PHY_CCK_DETECT); |
| if (value) |
| v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; |
| else |
| v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; |
| REG_WRITE(ah, AR_PHY_CCK_DETECT, v); |
| } |
| |
| static bool ar9003_hw_ani_control(struct ath_hw *ah, |
| enum ath9k_ani_cmd cmd, int param) |
| { |
| struct ar5416AniState *aniState = ah->curani; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| switch (cmd & ah->ani_function) { |
| case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{ |
| u32 level = param; |
| |
| if (level >= ARRAY_SIZE(ah->totalSizeDesired)) { |
| ath_print(common, ATH_DBG_ANI, |
| "level out of range (%u > %u)\n", |
| level, |
| (unsigned)ARRAY_SIZE(ah->totalSizeDesired)); |
| return false; |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, |
| AR_PHY_DESIRED_SZ_TOT_DES, |
| ah->totalSizeDesired[level]); |
| REG_RMW_FIELD(ah, AR_PHY_AGC, |
| AR_PHY_AGC_COARSE_LOW, |
| ah->coarse_low[level]); |
| REG_RMW_FIELD(ah, AR_PHY_AGC, |
| AR_PHY_AGC_COARSE_HIGH, |
| ah->coarse_high[level]); |
| REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, |
| AR_PHY_FIND_SIG_FIRPWR, ah->firpwr[level]); |
| |
| if (level > aniState->noiseImmunityLevel) |
| ah->stats.ast_ani_niup++; |
| else if (level < aniState->noiseImmunityLevel) |
| ah->stats.ast_ani_nidown++; |
| aniState->noiseImmunityLevel = level; |
| break; |
| } |
| case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ |
| const int m1ThreshLow[] = { 127, 50 }; |
| const int m2ThreshLow[] = { 127, 40 }; |
| const int m1Thresh[] = { 127, 0x4d }; |
| const int m2Thresh[] = { 127, 0x40 }; |
| const int m2CountThr[] = { 31, 16 }; |
| const int m2CountThrLow[] = { 63, 48 }; |
| u32 on = param ? 1 : 0; |
| |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, |
| AR_PHY_SFCORR_LOW_M1_THRESH_LOW, |
| m1ThreshLow[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, |
| AR_PHY_SFCORR_LOW_M2_THRESH_LOW, |
| m2ThreshLow[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR, |
| AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR, |
| AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR, |
| AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, |
| AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, |
| m2CountThrLow[on]); |
| |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]); |
| REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, |
| AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]); |
| |
| if (on) |
| REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, |
| AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); |
| else |
| REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, |
| AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); |
| |
| if (!on != aniState->ofdmWeakSigDetectOff) { |
| if (on) |
| ah->stats.ast_ani_ofdmon++; |
| else |
| ah->stats.ast_ani_ofdmoff++; |
| aniState->ofdmWeakSigDetectOff = !on; |
| } |
| break; |
| } |
| case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{ |
| const int weakSigThrCck[] = { 8, 6 }; |
| u32 high = param ? 1 : 0; |
| |
| REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT, |
| AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, |
| weakSigThrCck[high]); |
| if (high != aniState->cckWeakSigThreshold) { |
| if (high) |
| ah->stats.ast_ani_cckhigh++; |
| else |
| ah->stats.ast_ani_ccklow++; |
| aniState->cckWeakSigThreshold = high; |
| } |
| break; |
| } |
| case ATH9K_ANI_FIRSTEP_LEVEL:{ |
| const int firstep[] = { 0, 4, 8 }; |
| u32 level = param; |
| |
| if (level >= ARRAY_SIZE(firstep)) { |
| ath_print(common, ATH_DBG_ANI, |
| "level out of range (%u > %u)\n", |
| level, |
| (unsigned) ARRAY_SIZE(firstep)); |
| return false; |
| } |
| REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, |
| AR_PHY_FIND_SIG_FIRSTEP, |
| firstep[level]); |
| if (level > aniState->firstepLevel) |
| ah->stats.ast_ani_stepup++; |
| else if (level < aniState->firstepLevel) |
| ah->stats.ast_ani_stepdown++; |
| aniState->firstepLevel = level; |
| break; |
| } |
| case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ |
| const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 }; |
| u32 level = param; |
| |
| if (level >= ARRAY_SIZE(cycpwrThr1)) { |
| ath_print(common, ATH_DBG_ANI, |
| "level out of range (%u > %u)\n", |
| level, |
| (unsigned) ARRAY_SIZE(cycpwrThr1)); |
| return false; |
| } |
| REG_RMW_FIELD(ah, AR_PHY_TIMING5, |
| AR_PHY_TIMING5_CYCPWR_THR1, |
| cycpwrThr1[level]); |
| if (level > aniState->spurImmunityLevel) |
| ah->stats.ast_ani_spurup++; |
| else if (level < aniState->spurImmunityLevel) |
| ah->stats.ast_ani_spurdown++; |
| aniState->spurImmunityLevel = level; |
| break; |
| } |
| case ATH9K_ANI_PRESENT: |
| break; |
| default: |
| ath_print(common, ATH_DBG_ANI, |
| "invalid cmd %u\n", cmd); |
| return false; |
| } |
| |
| ath_print(common, ATH_DBG_ANI, "ANI parameters:\n"); |
| ath_print(common, ATH_DBG_ANI, |
| "noiseImmunityLevel=%d, spurImmunityLevel=%d, " |
| "ofdmWeakSigDetectOff=%d\n", |
| aniState->noiseImmunityLevel, |
| aniState->spurImmunityLevel, |
| !aniState->ofdmWeakSigDetectOff); |
| ath_print(common, ATH_DBG_ANI, |
| "cckWeakSigThreshold=%d, " |
| "firstepLevel=%d, listenTime=%d\n", |
| aniState->cckWeakSigThreshold, |
| aniState->firstepLevel, |
| aniState->listenTime); |
| ath_print(common, ATH_DBG_ANI, |
| "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n", |
| aniState->cycleCount, |
| aniState->ofdmPhyErrCount, |
| aniState->cckPhyErrCount); |
| |
| return true; |
| } |
| |
| static void ar9003_hw_nf_sanitize_2g(struct ath_hw *ah, s16 *nf) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (*nf > ah->nf_2g_max) { |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "2 GHz NF (%d) > MAX (%d), " |
| "correcting to MAX", |
| *nf, ah->nf_2g_max); |
| *nf = ah->nf_2g_max; |
| } else if (*nf < ah->nf_2g_min) { |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "2 GHz NF (%d) < MIN (%d), " |
| "correcting to MIN", |
| *nf, ah->nf_2g_min); |
| *nf = ah->nf_2g_min; |
| } |
| } |
| |
| static void ar9003_hw_nf_sanitize_5g(struct ath_hw *ah, s16 *nf) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (*nf > ah->nf_5g_max) { |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "5 GHz NF (%d) > MAX (%d), " |
| "correcting to MAX", |
| *nf, ah->nf_5g_max); |
| *nf = ah->nf_5g_max; |
| } else if (*nf < ah->nf_5g_min) { |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "5 GHz NF (%d) < MIN (%d), " |
| "correcting to MIN", |
| *nf, ah->nf_5g_min); |
| *nf = ah->nf_5g_min; |
| } |
| } |
| |
| static void ar9003_hw_nf_sanitize(struct ath_hw *ah, s16 *nf) |
| { |
| if (IS_CHAN_2GHZ(ah->curchan)) |
| ar9003_hw_nf_sanitize_2g(ah, nf); |
| else |
| ar9003_hw_nf_sanitize_5g(ah, nf); |
| } |
| |
| static void ar9003_hw_do_getnf(struct ath_hw *ah, |
| int16_t nfarray[NUM_NF_READINGS]) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int16_t nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_CCA_0), AR_PHY_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ctl] [chain 0] is %d\n", nf); |
| nfarray[0] = nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_CCA_1), AR_PHY_CH1_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ctl] [chain 1] is %d\n", nf); |
| nfarray[1] = nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_CCA_2), AR_PHY_CH2_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ctl] [chain 2] is %d\n", nf); |
| nfarray[2] = nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ext] [chain 0] is %d\n", nf); |
| nfarray[3] = nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_1), AR_PHY_CH1_EXT_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ext] [chain 1] is %d\n", nf); |
| nfarray[4] = nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_2), AR_PHY_CH2_EXT_MINCCA_PWR); |
| if (nf & 0x100) |
| nf = 0 - ((nf ^ 0x1ff) + 1); |
| ar9003_hw_nf_sanitize(ah, &nf); |
| ath_print(common, ATH_DBG_CALIBRATE, |
| "NF calibrated [ext] [chain 2] is %d\n", nf); |
| nfarray[5] = nf; |
| } |
| |
| void ar9003_hw_set_nf_limits(struct ath_hw *ah) |
| { |
| ah->nf_2g_max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ; |
| ah->nf_2g_min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ; |
| ah->nf_5g_max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ; |
| ah->nf_5g_min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ; |
| } |
| |
| /* |
| * Find out which of the RX chains are enabled |
| */ |
| static u32 ar9003_hw_get_rx_chainmask(struct ath_hw *ah) |
| { |
| u32 chain = REG_READ(ah, AR_PHY_RX_CHAINMASK); |
| /* |
| * The bits [2:0] indicate the rx chain mask and are to be |
| * interpreted as follows: |
| * 00x => Only chain 0 is enabled |
| * 01x => Chain 1 and 0 enabled |
| * 1xx => Chain 2,1 and 0 enabled |
| */ |
| return chain & 0x7; |
| } |
| |
| static void ar9003_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| struct ath9k_nfcal_hist *h; |
| unsigned i, j; |
| int32_t val; |
| const u32 ar9300_cca_regs[6] = { |
| AR_PHY_CCA_0, |
| AR_PHY_CCA_1, |
| AR_PHY_CCA_2, |
| AR_PHY_EXT_CCA, |
| AR_PHY_EXT_CCA_1, |
| AR_PHY_EXT_CCA_2, |
| }; |
| u8 chainmask, rx_chain_status; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| rx_chain_status = ar9003_hw_get_rx_chainmask(ah); |
| |
| chainmask = 0x3F; |
| h = ah->nfCalHist; |
| |
| for (i = 0; i < NUM_NF_READINGS; i++) { |
| if (chainmask & (1 << i)) { |
| val = REG_READ(ah, ar9300_cca_regs[i]); |
| val &= 0xFFFFFE00; |
| val |= (((u32) (h[i].privNF) << 1) & 0x1ff); |
| REG_WRITE(ah, ar9300_cca_regs[i], val); |
| } |
| } |
| |
| /* |
| * Load software filtered NF value into baseband internal minCCApwr |
| * variable. |
| */ |
| REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, |
| AR_PHY_AGC_CONTROL_ENABLE_NF); |
| REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, |
| AR_PHY_AGC_CONTROL_NO_UPDATE_NF); |
| REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); |
| |
| /* |
| * Wait for load to complete, should be fast, a few 10s of us. |
| * The max delay was changed from an original 250us to 10000us |
| * since 250us often results in NF load timeout and causes deaf |
| * condition during stress testing 12/12/2009 |
| */ |
| for (j = 0; j < 1000; j++) { |
| if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & |
| AR_PHY_AGC_CONTROL_NF) == 0) |
| break; |
| udelay(10); |
| } |
| |
| /* |
| * We timed out waiting for the noisefloor to load, probably due to an |
| * in-progress rx. Simply return here and allow the load plenty of time |
| * to complete before the next calibration interval. We need to avoid |
| * trying to load -50 (which happens below) while the previous load is |
| * still in progress as this can cause rx deafness. Instead by returning |
| * here, the baseband nf cal will just be capped by our present |
| * noisefloor until the next calibration timer. |
| */ |
| if (j == 1000) { |
| ath_print(common, ATH_DBG_ANY, "Timeout while waiting for nf " |
| "to load: AR_PHY_AGC_CONTROL=0x%x\n", |
| REG_READ(ah, AR_PHY_AGC_CONTROL)); |
| return; |
| } |
| |
| /* |
| * Restore maxCCAPower register parameter again so that we're not capped |
| * by the median we just loaded. This will be initial (and max) value |
| * of next noise floor calibration the baseband does. |
| */ |
| for (i = 0; i < NUM_NF_READINGS; i++) { |
| if (chainmask & (1 << i)) { |
| val = REG_READ(ah, ar9300_cca_regs[i]); |
| val &= 0xFFFFFE00; |
| val |= (((u32) (-50) << 1) & 0x1ff); |
| REG_WRITE(ah, ar9300_cca_regs[i], val); |
| } |
| } |
| } |
| |
| void ar9003_hw_attach_phy_ops(struct ath_hw *ah) |
| { |
| struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); |
| |
| priv_ops->rf_set_freq = ar9003_hw_set_channel; |
| priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate; |
| priv_ops->compute_pll_control = ar9003_hw_compute_pll_control; |
| priv_ops->set_channel_regs = ar9003_hw_set_channel_regs; |
| priv_ops->init_bb = ar9003_hw_init_bb; |
| priv_ops->process_ini = ar9003_hw_process_ini; |
| priv_ops->set_rfmode = ar9003_hw_set_rfmode; |
| priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive; |
| priv_ops->set_delta_slope = ar9003_hw_set_delta_slope; |
| priv_ops->rfbus_req = ar9003_hw_rfbus_req; |
| priv_ops->rfbus_done = ar9003_hw_rfbus_done; |
| priv_ops->enable_rfkill = ar9003_hw_enable_rfkill; |
| priv_ops->set_diversity = ar9003_hw_set_diversity; |
| priv_ops->ani_control = ar9003_hw_ani_control; |
| priv_ops->do_getnf = ar9003_hw_do_getnf; |
| priv_ops->loadnf = ar9003_hw_loadnf; |
| } |