| /* SCTP kernel implementation |
| * Copyright (c) 1999-2000 Cisco, Inc. |
| * Copyright (c) 1999-2001 Motorola, Inc. |
| * Copyright (c) 2001-2003 International Business Machines Corp. |
| * Copyright (c) 2001 Intel Corp. |
| * Copyright (c) 2001 La Monte H.P. Yarroll |
| * |
| * This file is part of the SCTP kernel implementation |
| * |
| * This module provides the abstraction for an SCTP tranport representing |
| * a remote transport address. For local transport addresses, we just use |
| * union sctp_addr. |
| * |
| * This SCTP implementation is free software; |
| * you can redistribute it and/or modify it under the terms of |
| * the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This SCTP implementation is distributed in the hope that it |
| * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| * ************************ |
| * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GNU CC; see the file COPYING. If not, write to |
| * the Free Software Foundation, 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| * |
| * Please send any bug reports or fixes you make to the |
| * email address(es): |
| * lksctp developers <lksctp-developers@lists.sourceforge.net> |
| * |
| * Or submit a bug report through the following website: |
| * http://www.sf.net/projects/lksctp |
| * |
| * Written or modified by: |
| * La Monte H.P. Yarroll <piggy@acm.org> |
| * Karl Knutson <karl@athena.chicago.il.us> |
| * Jon Grimm <jgrimm@us.ibm.com> |
| * Xingang Guo <xingang.guo@intel.com> |
| * Hui Huang <hui.huang@nokia.com> |
| * Sridhar Samudrala <sri@us.ibm.com> |
| * Ardelle Fan <ardelle.fan@intel.com> |
| * |
| * Any bugs reported given to us we will try to fix... any fixes shared will |
| * be incorporated into the next SCTP release. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/random.h> |
| #include <net/sctp/sctp.h> |
| #include <net/sctp/sm.h> |
| |
| /* 1st Level Abstractions. */ |
| |
| /* Initialize a new transport from provided memory. */ |
| static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer, |
| const union sctp_addr *addr, |
| gfp_t gfp) |
| { |
| /* Copy in the address. */ |
| peer->ipaddr = *addr; |
| peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); |
| peer->asoc = NULL; |
| |
| peer->dst = NULL; |
| memset(&peer->saddr, 0, sizeof(union sctp_addr)); |
| |
| /* From 6.3.1 RTO Calculation: |
| * |
| * C1) Until an RTT measurement has been made for a packet sent to the |
| * given destination transport address, set RTO to the protocol |
| * parameter 'RTO.Initial'. |
| */ |
| peer->last_rto = peer->rto = msecs_to_jiffies(sctp_rto_initial); |
| peer->rtt = 0; |
| peer->rttvar = 0; |
| peer->srtt = 0; |
| peer->rto_pending = 0; |
| peer->hb_sent = 0; |
| peer->fast_recovery = 0; |
| |
| peer->last_time_heard = jiffies; |
| peer->last_time_ecne_reduced = jiffies; |
| |
| peer->init_sent_count = 0; |
| |
| peer->param_flags = SPP_HB_DISABLE | |
| SPP_PMTUD_ENABLE | |
| SPP_SACKDELAY_ENABLE; |
| peer->hbinterval = 0; |
| |
| /* Initialize the default path max_retrans. */ |
| peer->pathmaxrxt = sctp_max_retrans_path; |
| peer->error_count = 0; |
| |
| INIT_LIST_HEAD(&peer->transmitted); |
| INIT_LIST_HEAD(&peer->send_ready); |
| INIT_LIST_HEAD(&peer->transports); |
| |
| peer->T3_rtx_timer.expires = 0; |
| peer->hb_timer.expires = 0; |
| |
| setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, |
| (unsigned long)peer); |
| setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event, |
| (unsigned long)peer); |
| |
| /* Initialize the 64-bit random nonce sent with heartbeat. */ |
| get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); |
| |
| atomic_set(&peer->refcnt, 1); |
| peer->dead = 0; |
| |
| peer->malloced = 0; |
| |
| /* Initialize the state information for SFR-CACC */ |
| peer->cacc.changeover_active = 0; |
| peer->cacc.cycling_changeover = 0; |
| peer->cacc.next_tsn_at_change = 0; |
| peer->cacc.cacc_saw_newack = 0; |
| |
| return peer; |
| } |
| |
| /* Allocate and initialize a new transport. */ |
| struct sctp_transport *sctp_transport_new(const union sctp_addr *addr, |
| gfp_t gfp) |
| { |
| struct sctp_transport *transport; |
| |
| transport = t_new(struct sctp_transport, gfp); |
| if (!transport) |
| goto fail; |
| |
| if (!sctp_transport_init(transport, addr, gfp)) |
| goto fail_init; |
| |
| transport->malloced = 1; |
| SCTP_DBG_OBJCNT_INC(transport); |
| |
| return transport; |
| |
| fail_init: |
| kfree(transport); |
| |
| fail: |
| return NULL; |
| } |
| |
| /* This transport is no longer needed. Free up if possible, or |
| * delay until it last reference count. |
| */ |
| void sctp_transport_free(struct sctp_transport *transport) |
| { |
| transport->dead = 1; |
| |
| /* Try to delete the heartbeat timer. */ |
| if (del_timer(&transport->hb_timer)) |
| sctp_transport_put(transport); |
| |
| /* Delete the T3_rtx timer if it's active. |
| * There is no point in not doing this now and letting |
| * structure hang around in memory since we know |
| * the tranport is going away. |
| */ |
| if (timer_pending(&transport->T3_rtx_timer) && |
| del_timer(&transport->T3_rtx_timer)) |
| sctp_transport_put(transport); |
| |
| |
| sctp_transport_put(transport); |
| } |
| |
| /* Destroy the transport data structure. |
| * Assumes there are no more users of this structure. |
| */ |
| static void sctp_transport_destroy(struct sctp_transport *transport) |
| { |
| SCTP_ASSERT(transport->dead, "Transport is not dead", return); |
| |
| if (transport->asoc) |
| sctp_association_put(transport->asoc); |
| |
| sctp_packet_free(&transport->packet); |
| |
| dst_release(transport->dst); |
| kfree(transport); |
| SCTP_DBG_OBJCNT_DEC(transport); |
| } |
| |
| /* Start T3_rtx timer if it is not already running and update the heartbeat |
| * timer. This routine is called every time a DATA chunk is sent. |
| */ |
| void sctp_transport_reset_timers(struct sctp_transport *transport, int force) |
| { |
| /* RFC 2960 6.3.2 Retransmission Timer Rules |
| * |
| * R1) Every time a DATA chunk is sent to any address(including a |
| * retransmission), if the T3-rtx timer of that address is not running |
| * start it running so that it will expire after the RTO of that |
| * address. |
| */ |
| |
| if (force || !timer_pending(&transport->T3_rtx_timer)) |
| if (!mod_timer(&transport->T3_rtx_timer, |
| jiffies + transport->rto)) |
| sctp_transport_hold(transport); |
| |
| /* When a data chunk is sent, reset the heartbeat interval. */ |
| if (!mod_timer(&transport->hb_timer, |
| sctp_transport_timeout(transport))) |
| sctp_transport_hold(transport); |
| } |
| |
| /* This transport has been assigned to an association. |
| * Initialize fields from the association or from the sock itself. |
| * Register the reference count in the association. |
| */ |
| void sctp_transport_set_owner(struct sctp_transport *transport, |
| struct sctp_association *asoc) |
| { |
| transport->asoc = asoc; |
| sctp_association_hold(asoc); |
| } |
| |
| /* Initialize the pmtu of a transport. */ |
| void sctp_transport_pmtu(struct sctp_transport *transport) |
| { |
| struct dst_entry *dst; |
| |
| dst = transport->af_specific->get_dst(NULL, &transport->ipaddr, NULL); |
| |
| if (dst) { |
| transport->pathmtu = dst_mtu(dst); |
| dst_release(dst); |
| } else |
| transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; |
| } |
| |
| /* this is a complete rip-off from __sk_dst_check |
| * the cookie is always 0 since this is how it's used in the |
| * pmtu code |
| */ |
| static struct dst_entry *sctp_transport_dst_check(struct sctp_transport *t) |
| { |
| struct dst_entry *dst = t->dst; |
| |
| if (dst && dst->obsolete && dst->ops->check(dst, 0) == NULL) { |
| dst_release(t->dst); |
| t->dst = NULL; |
| return NULL; |
| } |
| |
| return dst; |
| } |
| |
| void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) |
| { |
| struct dst_entry *dst; |
| |
| if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { |
| printk(KERN_WARNING "%s: Reported pmtu %d too low, " |
| "using default minimum of %d\n", |
| __func__, pmtu, |
| SCTP_DEFAULT_MINSEGMENT); |
| /* Use default minimum segment size and disable |
| * pmtu discovery on this transport. |
| */ |
| t->pathmtu = SCTP_DEFAULT_MINSEGMENT; |
| } else { |
| t->pathmtu = pmtu; |
| } |
| |
| dst = sctp_transport_dst_check(t); |
| if (dst) |
| dst->ops->update_pmtu(dst, pmtu); |
| } |
| |
| /* Caches the dst entry and source address for a transport's destination |
| * address. |
| */ |
| void sctp_transport_route(struct sctp_transport *transport, |
| union sctp_addr *saddr, struct sctp_sock *opt) |
| { |
| struct sctp_association *asoc = transport->asoc; |
| struct sctp_af *af = transport->af_specific; |
| union sctp_addr *daddr = &transport->ipaddr; |
| struct dst_entry *dst; |
| |
| dst = af->get_dst(asoc, daddr, saddr); |
| |
| if (saddr) |
| memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); |
| else |
| af->get_saddr(opt, asoc, dst, daddr, &transport->saddr); |
| |
| transport->dst = dst; |
| if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) { |
| return; |
| } |
| if (dst) { |
| transport->pathmtu = dst_mtu(dst); |
| |
| /* Initialize sk->sk_rcv_saddr, if the transport is the |
| * association's active path for getsockname(). |
| */ |
| if (asoc && (!asoc->peer.primary_path || |
| (transport == asoc->peer.active_path))) |
| opt->pf->af->to_sk_saddr(&transport->saddr, |
| asoc->base.sk); |
| } else |
| transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; |
| } |
| |
| /* Hold a reference to a transport. */ |
| void sctp_transport_hold(struct sctp_transport *transport) |
| { |
| atomic_inc(&transport->refcnt); |
| } |
| |
| /* Release a reference to a transport and clean up |
| * if there are no more references. |
| */ |
| void sctp_transport_put(struct sctp_transport *transport) |
| { |
| if (atomic_dec_and_test(&transport->refcnt)) |
| sctp_transport_destroy(transport); |
| } |
| |
| /* Update transport's RTO based on the newly calculated RTT. */ |
| void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) |
| { |
| /* Check for valid transport. */ |
| SCTP_ASSERT(tp, "NULL transport", return); |
| |
| /* We should not be doing any RTO updates unless rto_pending is set. */ |
| SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return); |
| |
| if (tp->rttvar || tp->srtt) { |
| /* 6.3.1 C3) When a new RTT measurement R' is made, set |
| * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| |
| * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' |
| */ |
| |
| /* Note: The above algorithm has been rewritten to |
| * express rto_beta and rto_alpha as inverse powers |
| * of two. |
| * For example, assuming the default value of RTO.Alpha of |
| * 1/8, rto_alpha would be expressed as 3. |
| */ |
| tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta) |
| + ((abs(tp->srtt - rtt)) >> sctp_rto_beta); |
| tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha) |
| + (rtt >> sctp_rto_alpha); |
| } else { |
| /* 6.3.1 C2) When the first RTT measurement R is made, set |
| * SRTT <- R, RTTVAR <- R/2. |
| */ |
| tp->srtt = rtt; |
| tp->rttvar = rtt >> 1; |
| } |
| |
| /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then |
| * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. |
| */ |
| if (tp->rttvar == 0) |
| tp->rttvar = SCTP_CLOCK_GRANULARITY; |
| |
| /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ |
| tp->rto = tp->srtt + (tp->rttvar << 2); |
| |
| /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min |
| * seconds then it is rounded up to RTO.Min seconds. |
| */ |
| if (tp->rto < tp->asoc->rto_min) |
| tp->rto = tp->asoc->rto_min; |
| |
| /* 6.3.1 C7) A maximum value may be placed on RTO provided it is |
| * at least RTO.max seconds. |
| */ |
| if (tp->rto > tp->asoc->rto_max) |
| tp->rto = tp->asoc->rto_max; |
| |
| tp->rtt = rtt; |
| tp->last_rto = tp->rto; |
| |
| /* Reset rto_pending so that a new RTT measurement is started when a |
| * new data chunk is sent. |
| */ |
| tp->rto_pending = 0; |
| |
| SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d " |
| "rttvar: %d, rto: %ld\n", __func__, |
| tp, rtt, tp->srtt, tp->rttvar, tp->rto); |
| } |
| |
| /* This routine updates the transport's cwnd and partial_bytes_acked |
| * parameters based on the bytes acked in the received SACK. |
| */ |
| void sctp_transport_raise_cwnd(struct sctp_transport *transport, |
| __u32 sack_ctsn, __u32 bytes_acked) |
| { |
| __u32 cwnd, ssthresh, flight_size, pba, pmtu; |
| |
| cwnd = transport->cwnd; |
| flight_size = transport->flight_size; |
| |
| /* See if we need to exit Fast Recovery first */ |
| if (transport->fast_recovery && |
| TSN_lte(transport->fast_recovery_exit, sack_ctsn)) |
| transport->fast_recovery = 0; |
| |
| /* The appropriate cwnd increase algorithm is performed if, and only |
| * if the cumulative TSN whould advanced and the congestion window is |
| * being fully utilized. |
| */ |
| if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) || |
| (flight_size < cwnd)) |
| return; |
| |
| ssthresh = transport->ssthresh; |
| pba = transport->partial_bytes_acked; |
| pmtu = transport->asoc->pathmtu; |
| |
| if (cwnd <= ssthresh) { |
| /* RFC 4960 7.2.1 |
| * o When cwnd is less than or equal to ssthresh, an SCTP |
| * endpoint MUST use the slow-start algorithm to increase |
| * cwnd only if the current congestion window is being fully |
| * utilized, an incoming SACK advances the Cumulative TSN |
| * Ack Point, and the data sender is not in Fast Recovery. |
| * Only when these three conditions are met can the cwnd be |
| * increased; otherwise, the cwnd MUST not be increased. |
| * If these conditions are met, then cwnd MUST be increased |
| * by, at most, the lesser of 1) the total size of the |
| * previously outstanding DATA chunk(s) acknowledged, and |
| * 2) the destination's path MTU. This upper bound protects |
| * against the ACK-Splitting attack outlined in [SAVAGE99]. |
| */ |
| if (transport->fast_recovery) |
| return; |
| |
| if (bytes_acked > pmtu) |
| cwnd += pmtu; |
| else |
| cwnd += bytes_acked; |
| SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, " |
| "bytes_acked: %d, cwnd: %d, ssthresh: %d, " |
| "flight_size: %d, pba: %d\n", |
| __func__, |
| transport, bytes_acked, cwnd, |
| ssthresh, flight_size, pba); |
| } else { |
| /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, |
| * upon each SACK arrival that advances the Cumulative TSN Ack |
| * Point, increase partial_bytes_acked by the total number of |
| * bytes of all new chunks acknowledged in that SACK including |
| * chunks acknowledged by the new Cumulative TSN Ack and by |
| * Gap Ack Blocks. |
| * |
| * When partial_bytes_acked is equal to or greater than cwnd |
| * and before the arrival of the SACK the sender had cwnd or |
| * more bytes of data outstanding (i.e., before arrival of the |
| * SACK, flightsize was greater than or equal to cwnd), |
| * increase cwnd by MTU, and reset partial_bytes_acked to |
| * (partial_bytes_acked - cwnd). |
| */ |
| pba += bytes_acked; |
| if (pba >= cwnd) { |
| cwnd += pmtu; |
| pba = ((cwnd < pba) ? (pba - cwnd) : 0); |
| } |
| SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: " |
| "transport: %p, bytes_acked: %d, cwnd: %d, " |
| "ssthresh: %d, flight_size: %d, pba: %d\n", |
| __func__, |
| transport, bytes_acked, cwnd, |
| ssthresh, flight_size, pba); |
| } |
| |
| transport->cwnd = cwnd; |
| transport->partial_bytes_acked = pba; |
| } |
| |
| /* This routine is used to lower the transport's cwnd when congestion is |
| * detected. |
| */ |
| void sctp_transport_lower_cwnd(struct sctp_transport *transport, |
| sctp_lower_cwnd_t reason) |
| { |
| switch (reason) { |
| case SCTP_LOWER_CWND_T3_RTX: |
| /* RFC 2960 Section 7.2.3, sctpimpguide |
| * When the T3-rtx timer expires on an address, SCTP should |
| * perform slow start by: |
| * ssthresh = max(cwnd/2, 4*MTU) |
| * cwnd = 1*MTU |
| * partial_bytes_acked = 0 |
| */ |
| transport->ssthresh = max(transport->cwnd/2, |
| 4*transport->asoc->pathmtu); |
| transport->cwnd = transport->asoc->pathmtu; |
| |
| /* T3-rtx also clears fast recovery on the transport */ |
| transport->fast_recovery = 0; |
| break; |
| |
| case SCTP_LOWER_CWND_FAST_RTX: |
| /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the |
| * destination address(es) to which the missing DATA chunks |
| * were last sent, according to the formula described in |
| * Section 7.2.3. |
| * |
| * RFC 2960 7.2.3, sctpimpguide Upon detection of packet |
| * losses from SACK (see Section 7.2.4), An endpoint |
| * should do the following: |
| * ssthresh = max(cwnd/2, 4*MTU) |
| * cwnd = ssthresh |
| * partial_bytes_acked = 0 |
| */ |
| if (transport->fast_recovery) |
| return; |
| |
| /* Mark Fast recovery */ |
| transport->fast_recovery = 1; |
| transport->fast_recovery_exit = transport->asoc->next_tsn - 1; |
| |
| transport->ssthresh = max(transport->cwnd/2, |
| 4*transport->asoc->pathmtu); |
| transport->cwnd = transport->ssthresh; |
| break; |
| |
| case SCTP_LOWER_CWND_ECNE: |
| /* RFC 2481 Section 6.1.2. |
| * If the sender receives an ECN-Echo ACK packet |
| * then the sender knows that congestion was encountered in the |
| * network on the path from the sender to the receiver. The |
| * indication of congestion should be treated just as a |
| * congestion loss in non-ECN Capable TCP. That is, the TCP |
| * source halves the congestion window "cwnd" and reduces the |
| * slow start threshold "ssthresh". |
| * A critical condition is that TCP does not react to |
| * congestion indications more than once every window of |
| * data (or more loosely more than once every round-trip time). |
| */ |
| if (time_after(jiffies, transport->last_time_ecne_reduced + |
| transport->rtt)) { |
| transport->ssthresh = max(transport->cwnd/2, |
| 4*transport->asoc->pathmtu); |
| transport->cwnd = transport->ssthresh; |
| transport->last_time_ecne_reduced = jiffies; |
| } |
| break; |
| |
| case SCTP_LOWER_CWND_INACTIVE: |
| /* RFC 2960 Section 7.2.1, sctpimpguide |
| * When the endpoint does not transmit data on a given |
| * transport address, the cwnd of the transport address |
| * should be adjusted to max(cwnd/2, 4*MTU) per RTO. |
| * NOTE: Although the draft recommends that this check needs |
| * to be done every RTO interval, we do it every hearbeat |
| * interval. |
| */ |
| transport->cwnd = max(transport->cwnd/2, |
| 4*transport->asoc->pathmtu); |
| break; |
| } |
| |
| transport->partial_bytes_acked = 0; |
| SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: " |
| "%d ssthresh: %d\n", __func__, |
| transport, reason, |
| transport->cwnd, transport->ssthresh); |
| } |
| |
| /* Apply Max.Burst limit to the congestion window: |
| * sctpimpguide-05 2.14.2 |
| * D) When the time comes for the sender to |
| * transmit new DATA chunks, the protocol parameter Max.Burst MUST |
| * first be applied to limit how many new DATA chunks may be sent. |
| * The limit is applied by adjusting cwnd as follows: |
| * if ((flightsize+ Max.Burst * MTU) < cwnd) |
| * cwnd = flightsize + Max.Burst * MTU |
| */ |
| |
| void sctp_transport_burst_limited(struct sctp_transport *t) |
| { |
| struct sctp_association *asoc = t->asoc; |
| u32 old_cwnd = t->cwnd; |
| u32 max_burst_bytes; |
| |
| if (t->burst_limited) |
| return; |
| |
| max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); |
| if (max_burst_bytes < old_cwnd) { |
| t->cwnd = max_burst_bytes; |
| t->burst_limited = old_cwnd; |
| } |
| } |
| |
| /* Restore the old cwnd congestion window, after the burst had it's |
| * desired effect. |
| */ |
| void sctp_transport_burst_reset(struct sctp_transport *t) |
| { |
| if (t->burst_limited) { |
| t->cwnd = t->burst_limited; |
| t->burst_limited = 0; |
| } |
| } |
| |
| /* What is the next timeout value for this transport? */ |
| unsigned long sctp_transport_timeout(struct sctp_transport *t) |
| { |
| unsigned long timeout; |
| timeout = t->rto + sctp_jitter(t->rto); |
| if (t->state != SCTP_UNCONFIRMED) |
| timeout += t->hbinterval; |
| timeout += jiffies; |
| return timeout; |
| } |
| |
| /* Reset transport variables to their initial values */ |
| void sctp_transport_reset(struct sctp_transport *t) |
| { |
| struct sctp_association *asoc = t->asoc; |
| |
| /* RFC 2960 (bis), Section 5.2.4 |
| * All the congestion control parameters (e.g., cwnd, ssthresh) |
| * related to this peer MUST be reset to their initial values |
| * (see Section 6.2.1) |
| */ |
| t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); |
| t->burst_limited = 0; |
| t->ssthresh = asoc->peer.i.a_rwnd; |
| t->last_rto = t->rto = asoc->rto_initial; |
| t->rtt = 0; |
| t->srtt = 0; |
| t->rttvar = 0; |
| |
| /* Reset these additional varibles so that we have a clean |
| * slate. |
| */ |
| t->partial_bytes_acked = 0; |
| t->flight_size = 0; |
| t->error_count = 0; |
| t->rto_pending = 0; |
| t->hb_sent = 0; |
| t->fast_recovery = 0; |
| |
| /* Initialize the state information for SFR-CACC */ |
| t->cacc.changeover_active = 0; |
| t->cacc.cycling_changeover = 0; |
| t->cacc.next_tsn_at_change = 0; |
| t->cacc.cacc_saw_newack = 0; |
| } |