| /* |
| * Copyright (c) by Jaroslav Kysela <perex@suse.cz> |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <sound/driver.h> |
| #include <linux/time.h> |
| #include <sound/core.h> |
| #include <sound/gus.h> |
| #define __GUS_TABLES_ALLOC__ |
| #include "gus_tables.h" |
| |
| EXPORT_SYMBOL(snd_gf1_atten_table); /* for snd-gus-synth module */ |
| |
| unsigned short snd_gf1_lvol_to_gvol_raw(unsigned int vol) |
| { |
| unsigned short e, m, tmp; |
| |
| if (vol > 65535) |
| vol = 65535; |
| tmp = vol; |
| e = 7; |
| if (tmp < 128) { |
| while (e > 0 && tmp < (1 << e)) |
| e--; |
| } else { |
| while (tmp > 255) { |
| tmp >>= 1; |
| e++; |
| } |
| } |
| m = vol - (1 << e); |
| if (m > 0) { |
| if (e > 8) |
| m >>= e - 8; |
| else if (e < 8) |
| m <<= 8 - e; |
| m &= 255; |
| } |
| return (e << 8) | m; |
| } |
| |
| #if 0 |
| |
| unsigned int snd_gf1_gvol_to_lvol_raw(unsigned short gf1_vol) |
| { |
| unsigned int rvol; |
| unsigned short e, m; |
| |
| if (!gf1_vol) |
| return 0; |
| e = gf1_vol >> 8; |
| m = (unsigned char) gf1_vol; |
| rvol = 1 << e; |
| if (e > 8) |
| return rvol | (m << (e - 8)); |
| return rvol | (m >> (8 - e)); |
| } |
| |
| unsigned int snd_gf1_calc_ramp_rate(snd_gus_card_t * gus, |
| unsigned short start, |
| unsigned short end, |
| unsigned int us) |
| { |
| static unsigned char vol_rates[19] = |
| { |
| 23, 24, 26, 28, 29, 31, 32, 34, |
| 36, 37, 39, 40, 42, 44, 45, 47, |
| 49, 50, 52 |
| }; |
| unsigned short range, increment, value, i; |
| |
| start >>= 4; |
| end >>= 4; |
| if (start < end) |
| us /= end - start; |
| else |
| us /= start - end; |
| range = 4; |
| value = gus->gf1.enh_mode ? |
| vol_rates[0] : |
| vol_rates[gus->gf1.active_voices - 14]; |
| for (i = 0; i < 3; i++) { |
| if (us < value) { |
| range = i; |
| break; |
| } else |
| value <<= 3; |
| } |
| if (range == 4) { |
| range = 3; |
| increment = 1; |
| } else |
| increment = (value + (value >> 1)) / us; |
| return (range << 6) | (increment & 0x3f); |
| } |
| |
| #endif /* 0 */ |
| |
| unsigned short snd_gf1_translate_freq(snd_gus_card_t * gus, unsigned int freq16) |
| { |
| freq16 >>= 3; |
| if (freq16 < 50) |
| freq16 = 50; |
| if (freq16 & 0xf8000000) { |
| freq16 = ~0xf8000000; |
| snd_printk("snd_gf1_translate_freq: overflow - freq = 0x%x\n", freq16); |
| } |
| return ((freq16 << 9) + (gus->gf1.playback_freq >> 1)) / gus->gf1.playback_freq; |
| } |
| |
| #if 0 |
| |
| short snd_gf1_compute_vibrato(short cents, unsigned short fc_register) |
| { |
| static short vibrato_table[] = |
| { |
| 0, 0, 32, 592, 61, 1175, 93, 1808, |
| 124, 2433, 152, 3007, 182, 3632, 213, 4290, |
| 241, 4834, 255, 5200 |
| }; |
| |
| long depth; |
| short *vi1, *vi2, pcents, v1; |
| |
| pcents = cents < 0 ? -cents : cents; |
| for (vi1 = vibrato_table, vi2 = vi1 + 2; pcents > *vi2; vi1 = vi2, vi2 += 2); |
| v1 = *(vi1 + 1); |
| /* The FC table above is a list of pairs. The first number in the pair */ |
| /* is the cents index from 0-255 cents, and the second number in the */ |
| /* pair is the FC adjustment needed to change the pitch by the indexed */ |
| /* number of cents. The table was created for an FC of 32768. */ |
| /* The following expression does a linear interpolation against the */ |
| /* approximated log curve in the table above, and then scales the number */ |
| /* by the FC before the LFO. This calculation also adjusts the output */ |
| /* value to produce the appropriate depth for the hardware. The depth */ |
| /* is 2 * desired FC + 1. */ |
| depth = (((int) (*(vi2 + 1) - *vi1) * (pcents - *vi1) / (*vi2 - *vi1)) + v1) * fc_register >> 14; |
| if (depth) |
| depth++; |
| if (depth > 255) |
| depth = 255; |
| return cents < 0 ? -(short) depth : (short) depth; |
| } |
| |
| unsigned short snd_gf1_compute_pitchbend(unsigned short pitchbend, unsigned short sens) |
| { |
| static long log_table[] = {1024, 1085, 1149, 1218, 1290, 1367, 1448, 1534, 1625, 1722, 1825, 1933}; |
| int wheel, sensitivity; |
| unsigned int mantissa, f1, f2; |
| unsigned short semitones, f1_index, f2_index, f1_power, f2_power; |
| char bend_down = 0; |
| int bend; |
| |
| if (!sens) |
| return 1024; |
| wheel = (int) pitchbend - 8192; |
| sensitivity = ((int) sens * wheel) / 128; |
| if (sensitivity < 0) { |
| bend_down = 1; |
| sensitivity = -sensitivity; |
| } |
| semitones = (unsigned int) (sensitivity >> 13); |
| mantissa = sensitivity % 8192; |
| f1_index = semitones % 12; |
| f2_index = (semitones + 1) % 12; |
| f1_power = semitones / 12; |
| f2_power = (semitones + 1) / 12; |
| f1 = log_table[f1_index] << f1_power; |
| f2 = log_table[f2_index] << f2_power; |
| bend = (int) ((((f2 - f1) * mantissa) >> 13) + f1); |
| if (bend_down) |
| bend = 1048576L / bend; |
| return bend; |
| } |
| |
| unsigned short snd_gf1_compute_freq(unsigned int freq, |
| unsigned int rate, |
| unsigned short mix_rate) |
| { |
| unsigned int fc; |
| int scale = 0; |
| |
| while (freq >= 4194304L) { |
| scale++; |
| freq >>= 1; |
| } |
| fc = (freq << 10) / rate; |
| if (fc > 97391L) { |
| fc = 97391; |
| snd_printk("patch: (1) fc frequency overflow - %u\n", fc); |
| } |
| fc = (fc * 44100UL) / mix_rate; |
| while (scale--) |
| fc <<= 1; |
| if (fc > 65535L) { |
| fc = 65535; |
| snd_printk("patch: (2) fc frequency overflow - %u\n", fc); |
| } |
| return (unsigned short) fc; |
| } |
| |
| #endif /* 0 */ |