| /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */ |
| |
| /* |
| Maintained by Valerie Henson <val_henson@linux.intel.com> |
| Copyright 2000,2001 The Linux Kernel Team |
| Written/copyright 1994-2001 by Donald Becker. |
| |
| This software may be used and distributed according to the terms |
| of the GNU General Public License, incorporated herein by reference. |
| |
| Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html} |
| for more information on this driver, or visit the project |
| Web page at http://sourceforge.net/projects/tulip/ |
| |
| */ |
| |
| |
| #define DRV_NAME "tulip" |
| #ifdef CONFIG_TULIP_NAPI |
| #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */ |
| #else |
| #define DRV_VERSION "1.1.15" |
| #endif |
| #define DRV_RELDATE "Feb 27, 2007" |
| |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include "tulip.h" |
| #include <linux/init.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <asm/unaligned.h> |
| #include <asm/uaccess.h> |
| |
| #ifdef CONFIG_SPARC |
| #include <asm/prom.h> |
| #endif |
| |
| static char version[] __devinitdata = |
| "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n"; |
| |
| |
| /* A few user-configurable values. */ |
| |
| /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ |
| static unsigned int max_interrupt_work = 25; |
| |
| #define MAX_UNITS 8 |
| /* Used to pass the full-duplex flag, etc. */ |
| static int full_duplex[MAX_UNITS]; |
| static int options[MAX_UNITS]; |
| static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */ |
| |
| /* The possible media types that can be set in options[] are: */ |
| const char * const medianame[32] = { |
| "10baseT", "10base2", "AUI", "100baseTx", |
| "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx", |
| "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII", |
| "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4", |
| "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19", |
| "","","","", "","","","", "","","","Transceiver reset", |
| }; |
| |
| /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ |
| #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \ |
| || defined(CONFIG_SPARC) || defined(__ia64__) \ |
| || defined(__sh__) || defined(__mips__) |
| static int rx_copybreak = 1518; |
| #else |
| static int rx_copybreak = 100; |
| #endif |
| |
| /* |
| Set the bus performance register. |
| Typical: Set 16 longword cache alignment, no burst limit. |
| Cache alignment bits 15:14 Burst length 13:8 |
| 0000 No alignment 0x00000000 unlimited 0800 8 longwords |
| 4000 8 longwords 0100 1 longword 1000 16 longwords |
| 8000 16 longwords 0200 2 longwords 2000 32 longwords |
| C000 32 longwords 0400 4 longwords |
| Warning: many older 486 systems are broken and require setting 0x00A04800 |
| 8 longword cache alignment, 8 longword burst. |
| ToDo: Non-Intel setting could be better. |
| */ |
| |
| #if defined(__alpha__) || defined(__ia64__) |
| static int csr0 = 0x01A00000 | 0xE000; |
| #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__) |
| static int csr0 = 0x01A00000 | 0x8000; |
| #elif defined(CONFIG_SPARC) || defined(__hppa__) |
| /* The UltraSparc PCI controllers will disconnect at every 64-byte |
| * crossing anyways so it makes no sense to tell Tulip to burst |
| * any more than that. |
| */ |
| static int csr0 = 0x01A00000 | 0x9000; |
| #elif defined(__arm__) || defined(__sh__) |
| static int csr0 = 0x01A00000 | 0x4800; |
| #elif defined(__mips__) |
| static int csr0 = 0x00200000 | 0x4000; |
| #else |
| #warning Processor architecture undefined! |
| static int csr0 = 0x00A00000 | 0x4800; |
| #endif |
| |
| /* Operational parameters that usually are not changed. */ |
| /* Time in jiffies before concluding the transmitter is hung. */ |
| #define TX_TIMEOUT (4*HZ) |
| |
| |
| MODULE_AUTHOR("The Linux Kernel Team"); |
| MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| module_param(tulip_debug, int, 0); |
| module_param(max_interrupt_work, int, 0); |
| module_param(rx_copybreak, int, 0); |
| module_param(csr0, int, 0); |
| module_param_array(options, int, NULL, 0); |
| module_param_array(full_duplex, int, NULL, 0); |
| |
| #define PFX DRV_NAME ": " |
| |
| #ifdef TULIP_DEBUG |
| int tulip_debug = TULIP_DEBUG; |
| #else |
| int tulip_debug = 1; |
| #endif |
| |
| static void tulip_timer(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct tulip_private *tp = netdev_priv(dev); |
| |
| if (netif_running(dev)) |
| schedule_work(&tp->media_work); |
| } |
| |
| /* |
| * This table use during operation for capabilities and media timer. |
| * |
| * It is indexed via the values in 'enum chips' |
| */ |
| |
| struct tulip_chip_table tulip_tbl[] = { |
| { }, /* placeholder for array, slot unused currently */ |
| { }, /* placeholder for array, slot unused currently */ |
| |
| /* DC21140 */ |
| { "Digital DS21140 Tulip", 128, 0x0001ebef, |
| HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer, |
| tulip_media_task }, |
| |
| /* DC21142, DC21143 */ |
| { "Digital DS21142/43 Tulip", 128, 0x0801fbff, |
| HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY |
| | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task }, |
| |
| /* LC82C168 */ |
| { "Lite-On 82c168 PNIC", 256, 0x0001fbef, |
| HAS_MII | HAS_PNICNWAY, pnic_timer, }, |
| |
| /* MX98713 */ |
| { "Macronix 98713 PMAC", 128, 0x0001ebef, |
| HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, |
| |
| /* MX98715 */ |
| { "Macronix 98715 PMAC", 256, 0x0001ebef, |
| HAS_MEDIA_TABLE, mxic_timer, }, |
| |
| /* MX98725 */ |
| { "Macronix 98725 PMAC", 256, 0x0001ebef, |
| HAS_MEDIA_TABLE, mxic_timer, }, |
| |
| /* AX88140 */ |
| { "ASIX AX88140", 128, 0x0001fbff, |
| HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY |
| | IS_ASIX, tulip_timer, tulip_media_task }, |
| |
| /* PNIC2 */ |
| { "Lite-On PNIC-II", 256, 0x0801fbff, |
| HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, }, |
| |
| /* COMET */ |
| { "ADMtek Comet", 256, 0x0001abef, |
| HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, }, |
| |
| /* COMPEX9881 */ |
| { "Compex 9881 PMAC", 128, 0x0001ebef, |
| HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, |
| |
| /* I21145 */ |
| { "Intel DS21145 Tulip", 128, 0x0801fbff, |
| HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI |
| | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task }, |
| |
| /* DM910X */ |
| { "Davicom DM9102/DM9102A", 128, 0x0001ebef, |
| HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI, |
| tulip_timer, tulip_media_task }, |
| |
| /* RS7112 */ |
| { "Conexant LANfinity", 256, 0x0001ebef, |
| HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task }, |
| |
| }; |
| |
| |
| static struct pci_device_id tulip_pci_tbl[] = { |
| { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 }, |
| { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 }, |
| { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 }, |
| { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 }, |
| { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, |
| /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/ |
| { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 }, |
| { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 }, |
| { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 }, |
| { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 }, |
| { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, |
| { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, |
| { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, |
| { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT }, |
| { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */ |
| { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */ |
| { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, |
| { } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(pci, tulip_pci_tbl); |
| |
| |
| /* A full-duplex map for media types. */ |
| const char tulip_media_cap[32] = |
| {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, }; |
| |
| static void tulip_tx_timeout(struct net_device *dev); |
| static void tulip_init_ring(struct net_device *dev); |
| static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| static int tulip_open(struct net_device *dev); |
| static int tulip_close(struct net_device *dev); |
| static void tulip_up(struct net_device *dev); |
| static void tulip_down(struct net_device *dev); |
| static struct net_device_stats *tulip_get_stats(struct net_device *dev); |
| static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
| static void set_rx_mode(struct net_device *dev); |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void poll_tulip(struct net_device *dev); |
| #endif |
| |
| static void tulip_set_power_state (struct tulip_private *tp, |
| int sleep, int snooze) |
| { |
| if (tp->flags & HAS_ACPI) { |
| u32 tmp, newtmp; |
| pci_read_config_dword (tp->pdev, CFDD, &tmp); |
| newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze); |
| if (sleep) |
| newtmp |= CFDD_Sleep; |
| else if (snooze) |
| newtmp |= CFDD_Snooze; |
| if (tmp != newtmp) |
| pci_write_config_dword (tp->pdev, CFDD, newtmp); |
| } |
| |
| } |
| |
| |
| static void tulip_up(struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| int next_tick = 3*HZ; |
| int i; |
| |
| #ifdef CONFIG_TULIP_NAPI |
| napi_enable(&tp->napi); |
| #endif |
| |
| /* Wake the chip from sleep/snooze mode. */ |
| tulip_set_power_state (tp, 0, 0); |
| |
| /* On some chip revs we must set the MII/SYM port before the reset!? */ |
| if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii)) |
| iowrite32(0x00040000, ioaddr + CSR6); |
| |
| /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ |
| iowrite32(0x00000001, ioaddr + CSR0); |
| pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */ |
| udelay(100); |
| |
| /* Deassert reset. |
| Wait the specified 50 PCI cycles after a reset by initializing |
| Tx and Rx queues and the address filter list. */ |
| iowrite32(tp->csr0, ioaddr + CSR0); |
| pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */ |
| udelay(100); |
| |
| if (tulip_debug > 1) |
| printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq); |
| |
| iowrite32(tp->rx_ring_dma, ioaddr + CSR3); |
| iowrite32(tp->tx_ring_dma, ioaddr + CSR4); |
| tp->cur_rx = tp->cur_tx = 0; |
| tp->dirty_rx = tp->dirty_tx = 0; |
| |
| if (tp->flags & MC_HASH_ONLY) { |
| u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr)); |
| u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4))); |
| if (tp->chip_id == AX88140) { |
| iowrite32(0, ioaddr + CSR13); |
| iowrite32(addr_low, ioaddr + CSR14); |
| iowrite32(1, ioaddr + CSR13); |
| iowrite32(addr_high, ioaddr + CSR14); |
| } else if (tp->flags & COMET_MAC_ADDR) { |
| iowrite32(addr_low, ioaddr + 0xA4); |
| iowrite32(addr_high, ioaddr + 0xA8); |
| iowrite32(0, ioaddr + 0xAC); |
| iowrite32(0, ioaddr + 0xB0); |
| } |
| } else { |
| /* This is set_rx_mode(), but without starting the transmitter. */ |
| u16 *eaddrs = (u16 *)dev->dev_addr; |
| u16 *setup_frm = &tp->setup_frame[15*6]; |
| dma_addr_t mapping; |
| |
| /* 21140 bug: you must add the broadcast address. */ |
| memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame)); |
| /* Fill the final entry of the table with our physical address. */ |
| *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; |
| *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; |
| *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; |
| |
| mapping = pci_map_single(tp->pdev, tp->setup_frame, |
| sizeof(tp->setup_frame), |
| PCI_DMA_TODEVICE); |
| tp->tx_buffers[tp->cur_tx].skb = NULL; |
| tp->tx_buffers[tp->cur_tx].mapping = mapping; |
| |
| /* Put the setup frame on the Tx list. */ |
| tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192); |
| tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping); |
| tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned); |
| |
| tp->cur_tx++; |
| } |
| |
| tp->saved_if_port = dev->if_port; |
| if (dev->if_port == 0) |
| dev->if_port = tp->default_port; |
| |
| /* Allow selecting a default media. */ |
| i = 0; |
| if (tp->mtable == NULL) |
| goto media_picked; |
| if (dev->if_port) { |
| int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 : |
| (dev->if_port == 12 ? 0 : dev->if_port); |
| for (i = 0; i < tp->mtable->leafcount; i++) |
| if (tp->mtable->mleaf[i].media == looking_for) { |
| printk(KERN_INFO "%s: Using user-specified media %s.\n", |
| dev->name, medianame[dev->if_port]); |
| goto media_picked; |
| } |
| } |
| if ((tp->mtable->defaultmedia & 0x0800) == 0) { |
| int looking_for = tp->mtable->defaultmedia & MEDIA_MASK; |
| for (i = 0; i < tp->mtable->leafcount; i++) |
| if (tp->mtable->mleaf[i].media == looking_for) { |
| printk(KERN_INFO "%s: Using EEPROM-set media %s.\n", |
| dev->name, medianame[looking_for]); |
| goto media_picked; |
| } |
| } |
| /* Start sensing first non-full-duplex media. */ |
| for (i = tp->mtable->leafcount - 1; |
| (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--) |
| ; |
| media_picked: |
| |
| tp->csr6 = 0; |
| tp->cur_index = i; |
| tp->nwayset = 0; |
| |
| if (dev->if_port) { |
| if (tp->chip_id == DC21143 && |
| (tulip_media_cap[dev->if_port] & MediaIsMII)) { |
| /* We must reset the media CSRs when we force-select MII mode. */ |
| iowrite32(0x0000, ioaddr + CSR13); |
| iowrite32(0x0000, ioaddr + CSR14); |
| iowrite32(0x0008, ioaddr + CSR15); |
| } |
| tulip_select_media(dev, 1); |
| } else if (tp->chip_id == DC21142) { |
| if (tp->mii_cnt) { |
| tulip_select_media(dev, 1); |
| if (tulip_debug > 1) |
| printk(KERN_INFO "%s: Using MII transceiver %d, status " |
| "%4.4x.\n", |
| dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1)); |
| iowrite32(csr6_mask_defstate, ioaddr + CSR6); |
| tp->csr6 = csr6_mask_hdcap; |
| dev->if_port = 11; |
| iowrite32(0x0000, ioaddr + CSR13); |
| iowrite32(0x0000, ioaddr + CSR14); |
| } else |
| t21142_start_nway(dev); |
| } else if (tp->chip_id == PNIC2) { |
| /* for initial startup advertise 10/100 Full and Half */ |
| tp->sym_advertise = 0x01E0; |
| /* enable autonegotiate end interrupt */ |
| iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5); |
| iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7); |
| pnic2_start_nway(dev); |
| } else if (tp->chip_id == LC82C168 && ! tp->medialock) { |
| if (tp->mii_cnt) { |
| dev->if_port = 11; |
| tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0); |
| iowrite32(0x0001, ioaddr + CSR15); |
| } else if (ioread32(ioaddr + CSR5) & TPLnkPass) |
| pnic_do_nway(dev); |
| else { |
| /* Start with 10mbps to do autonegotiation. */ |
| iowrite32(0x32, ioaddr + CSR12); |
| tp->csr6 = 0x00420000; |
| iowrite32(0x0001B078, ioaddr + 0xB8); |
| iowrite32(0x0201B078, ioaddr + 0xB8); |
| next_tick = 1*HZ; |
| } |
| } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) |
| && ! tp->medialock) { |
| dev->if_port = 0; |
| tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0); |
| iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); |
| } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) { |
| /* Provided by BOLO, Macronix - 12/10/1998. */ |
| dev->if_port = 0; |
| tp->csr6 = 0x01a80200; |
| iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); |
| iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0); |
| } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) { |
| /* Enable automatic Tx underrun recovery. */ |
| iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88); |
| dev->if_port = tp->mii_cnt ? 11 : 0; |
| tp->csr6 = 0x00040000; |
| } else if (tp->chip_id == AX88140) { |
| tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100; |
| } else |
| tulip_select_media(dev, 1); |
| |
| /* Start the chip's Tx to process setup frame. */ |
| tulip_stop_rxtx(tp); |
| barrier(); |
| udelay(5); |
| iowrite32(tp->csr6 | TxOn, ioaddr + CSR6); |
| |
| /* Enable interrupts by setting the interrupt mask. */ |
| iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5); |
| iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); |
| tulip_start_rxtx(tp); |
| iowrite32(0, ioaddr + CSR2); /* Rx poll demand */ |
| |
| if (tulip_debug > 2) { |
| printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n", |
| dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5), |
| ioread32(ioaddr + CSR6)); |
| } |
| |
| /* Set the timer to switch to check for link beat and perhaps switch |
| to an alternate media type. */ |
| tp->timer.expires = RUN_AT(next_tick); |
| add_timer(&tp->timer); |
| #ifdef CONFIG_TULIP_NAPI |
| init_timer(&tp->oom_timer); |
| tp->oom_timer.data = (unsigned long)dev; |
| tp->oom_timer.function = oom_timer; |
| #endif |
| } |
| |
| static int |
| tulip_open(struct net_device *dev) |
| { |
| int retval; |
| |
| if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) |
| return retval; |
| |
| tulip_init_ring (dev); |
| |
| tulip_up (dev); |
| |
| netif_start_queue (dev); |
| |
| return 0; |
| } |
| |
| |
| static void tulip_tx_timeout(struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| unsigned long flags; |
| |
| spin_lock_irqsave (&tp->lock, flags); |
| |
| if (tulip_media_cap[dev->if_port] & MediaIsMII) { |
| /* Do nothing -- the media monitor should handle this. */ |
| if (tulip_debug > 1) |
| printk(KERN_WARNING "%s: Transmit timeout using MII device.\n", |
| dev->name); |
| } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 |
| || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 |
| || tp->chip_id == DM910X) { |
| printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, " |
| "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n", |
| dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12), |
| ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15)); |
| tp->timeout_recovery = 1; |
| schedule_work(&tp->media_work); |
| goto out_unlock; |
| } else if (tp->chip_id == PNIC2) { |
| printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, " |
| "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n", |
| dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6), |
| (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12)); |
| } else { |
| printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 " |
| "%8.8x, resetting...\n", |
| dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12)); |
| dev->if_port = 0; |
| } |
| |
| #if defined(way_too_many_messages) |
| if (tulip_debug > 3) { |
| int i; |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| u8 *buf = (u8 *)(tp->rx_ring[i].buffer1); |
| int j; |
| printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x " |
| "%2.2x %2.2x %2.2x.\n", |
| i, (unsigned int)tp->rx_ring[i].status, |
| (unsigned int)tp->rx_ring[i].length, |
| (unsigned int)tp->rx_ring[i].buffer1, |
| (unsigned int)tp->rx_ring[i].buffer2, |
| buf[0], buf[1], buf[2]); |
| for (j = 0; buf[j] != 0xee && j < 1600; j++) |
| if (j < 100) printk(" %2.2x", buf[j]); |
| printk(" j=%d.\n", j); |
| } |
| printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring); |
| for (i = 0; i < RX_RING_SIZE; i++) |
| printk(" %8.8x", (unsigned int)tp->rx_ring[i].status); |
| printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring); |
| for (i = 0; i < TX_RING_SIZE; i++) |
| printk(" %8.8x", (unsigned int)tp->tx_ring[i].status); |
| printk("\n"); |
| } |
| #endif |
| |
| tulip_tx_timeout_complete(tp, ioaddr); |
| |
| out_unlock: |
| spin_unlock_irqrestore (&tp->lock, flags); |
| dev->trans_start = jiffies; |
| netif_wake_queue (dev); |
| } |
| |
| |
| /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ |
| static void tulip_init_ring(struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| int i; |
| |
| tp->susp_rx = 0; |
| tp->ttimer = 0; |
| tp->nir = 0; |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| tp->rx_ring[i].status = 0x00000000; |
| tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ); |
| tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1)); |
| tp->rx_buffers[i].skb = NULL; |
| tp->rx_buffers[i].mapping = 0; |
| } |
| /* Mark the last entry as wrapping the ring. */ |
| tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP); |
| tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma); |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| dma_addr_t mapping; |
| |
| /* Note the receive buffer must be longword aligned. |
| dev_alloc_skb() provides 16 byte alignment. But do *not* |
| use skb_reserve() to align the IP header! */ |
| struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ); |
| tp->rx_buffers[i].skb = skb; |
| if (skb == NULL) |
| break; |
| mapping = pci_map_single(tp->pdev, skb->data, |
| PKT_BUF_SZ, PCI_DMA_FROMDEVICE); |
| tp->rx_buffers[i].mapping = mapping; |
| skb->dev = dev; /* Mark as being used by this device. */ |
| tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */ |
| tp->rx_ring[i].buffer1 = cpu_to_le32(mapping); |
| } |
| tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); |
| |
| /* The Tx buffer descriptor is filled in as needed, but we |
| do need to clear the ownership bit. */ |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| tp->tx_buffers[i].skb = NULL; |
| tp->tx_buffers[i].mapping = 0; |
| tp->tx_ring[i].status = 0x00000000; |
| tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1)); |
| } |
| tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma); |
| } |
| |
| static int |
| tulip_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| int entry; |
| u32 flag; |
| dma_addr_t mapping; |
| |
| spin_lock_irq(&tp->lock); |
| |
| /* Calculate the next Tx descriptor entry. */ |
| entry = tp->cur_tx % TX_RING_SIZE; |
| |
| tp->tx_buffers[entry].skb = skb; |
| mapping = pci_map_single(tp->pdev, skb->data, |
| skb->len, PCI_DMA_TODEVICE); |
| tp->tx_buffers[entry].mapping = mapping; |
| tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping); |
| |
| if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ |
| flag = 0x60000000; /* No interrupt */ |
| } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { |
| flag = 0xe0000000; /* Tx-done intr. */ |
| } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { |
| flag = 0x60000000; /* No Tx-done intr. */ |
| } else { /* Leave room for set_rx_mode() to fill entries. */ |
| flag = 0xe0000000; /* Tx-done intr. */ |
| netif_stop_queue(dev); |
| } |
| if (entry == TX_RING_SIZE-1) |
| flag = 0xe0000000 | DESC_RING_WRAP; |
| |
| tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag); |
| /* if we were using Transmit Automatic Polling, we would need a |
| * wmb() here. */ |
| tp->tx_ring[entry].status = cpu_to_le32(DescOwned); |
| wmb(); |
| |
| tp->cur_tx++; |
| |
| /* Trigger an immediate transmit demand. */ |
| iowrite32(0, tp->base_addr + CSR1); |
| |
| spin_unlock_irq(&tp->lock); |
| |
| dev->trans_start = jiffies; |
| |
| return 0; |
| } |
| |
| static void tulip_clean_tx_ring(struct tulip_private *tp) |
| { |
| unsigned int dirty_tx; |
| |
| for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0; |
| dirty_tx++) { |
| int entry = dirty_tx % TX_RING_SIZE; |
| int status = le32_to_cpu(tp->tx_ring[entry].status); |
| |
| if (status < 0) { |
| tp->stats.tx_errors++; /* It wasn't Txed */ |
| tp->tx_ring[entry].status = 0; |
| } |
| |
| /* Check for Tx filter setup frames. */ |
| if (tp->tx_buffers[entry].skb == NULL) { |
| /* test because dummy frames not mapped */ |
| if (tp->tx_buffers[entry].mapping) |
| pci_unmap_single(tp->pdev, |
| tp->tx_buffers[entry].mapping, |
| sizeof(tp->setup_frame), |
| PCI_DMA_TODEVICE); |
| continue; |
| } |
| |
| pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, |
| tp->tx_buffers[entry].skb->len, |
| PCI_DMA_TODEVICE); |
| |
| /* Free the original skb. */ |
| dev_kfree_skb_irq(tp->tx_buffers[entry].skb); |
| tp->tx_buffers[entry].skb = NULL; |
| tp->tx_buffers[entry].mapping = 0; |
| } |
| } |
| |
| static void tulip_down (struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| unsigned long flags; |
| |
| flush_scheduled_work(); |
| |
| #ifdef CONFIG_TULIP_NAPI |
| napi_disable(&tp->napi); |
| #endif |
| |
| del_timer_sync (&tp->timer); |
| #ifdef CONFIG_TULIP_NAPI |
| del_timer_sync (&tp->oom_timer); |
| #endif |
| spin_lock_irqsave (&tp->lock, flags); |
| |
| /* Disable interrupts by clearing the interrupt mask. */ |
| iowrite32 (0x00000000, ioaddr + CSR7); |
| |
| /* Stop the Tx and Rx processes. */ |
| tulip_stop_rxtx(tp); |
| |
| /* prepare receive buffers */ |
| tulip_refill_rx(dev); |
| |
| /* release any unconsumed transmit buffers */ |
| tulip_clean_tx_ring(tp); |
| |
| if (ioread32 (ioaddr + CSR6) != 0xffffffff) |
| tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff; |
| |
| spin_unlock_irqrestore (&tp->lock, flags); |
| |
| init_timer(&tp->timer); |
| tp->timer.data = (unsigned long)dev; |
| tp->timer.function = tulip_tbl[tp->chip_id].media_timer; |
| |
| dev->if_port = tp->saved_if_port; |
| |
| /* Leave the driver in snooze, not sleep, mode. */ |
| tulip_set_power_state (tp, 0, 1); |
| } |
| |
| |
| static int tulip_close (struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| int i; |
| |
| netif_stop_queue (dev); |
| |
| tulip_down (dev); |
| |
| if (tulip_debug > 1) |
| printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", |
| dev->name, ioread32 (ioaddr + CSR5)); |
| |
| free_irq (dev->irq, dev); |
| |
| /* Free all the skbuffs in the Rx queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct sk_buff *skb = tp->rx_buffers[i].skb; |
| dma_addr_t mapping = tp->rx_buffers[i].mapping; |
| |
| tp->rx_buffers[i].skb = NULL; |
| tp->rx_buffers[i].mapping = 0; |
| |
| tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */ |
| tp->rx_ring[i].length = 0; |
| tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */ |
| if (skb) { |
| pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ, |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb (skb); |
| } |
| } |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| struct sk_buff *skb = tp->tx_buffers[i].skb; |
| |
| if (skb != NULL) { |
| pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping, |
| skb->len, PCI_DMA_TODEVICE); |
| dev_kfree_skb (skb); |
| } |
| tp->tx_buffers[i].skb = NULL; |
| tp->tx_buffers[i].mapping = 0; |
| } |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *tulip_get_stats(struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| |
| if (netif_running(dev)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave (&tp->lock, flags); |
| |
| tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff; |
| |
| spin_unlock_irqrestore(&tp->lock, flags); |
| } |
| |
| return &tp->stats; |
| } |
| |
| |
| static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct tulip_private *np = netdev_priv(dev); |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| strcpy(info->bus_info, pci_name(np->pdev)); |
| } |
| |
| static const struct ethtool_ops ops = { |
| .get_drvinfo = tulip_get_drvinfo |
| }; |
| |
| /* Provide ioctl() calls to examine the MII xcvr state. */ |
| static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| struct mii_ioctl_data *data = if_mii(rq); |
| const unsigned int phy_idx = 0; |
| int phy = tp->phys[phy_idx] & 0x1f; |
| unsigned int regnum = data->reg_num; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
| if (tp->mii_cnt) |
| data->phy_id = phy; |
| else if (tp->flags & HAS_NWAY) |
| data->phy_id = 32; |
| else if (tp->chip_id == COMET) |
| data->phy_id = 1; |
| else |
| return -ENODEV; |
| |
| case SIOCGMIIREG: /* Read MII PHY register. */ |
| if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { |
| int csr12 = ioread32 (ioaddr + CSR12); |
| int csr14 = ioread32 (ioaddr + CSR14); |
| switch (regnum) { |
| case 0: |
| if (((csr14<<5) & 0x1000) || |
| (dev->if_port == 5 && tp->nwayset)) |
| data->val_out = 0x1000; |
| else |
| data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0) |
| | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0); |
| break; |
| case 1: |
| data->val_out = |
| 0x1848 + |
| ((csr12&0x7000) == 0x5000 ? 0x20 : 0) + |
| ((csr12&0x06) == 6 ? 0 : 4); |
| data->val_out |= 0x6048; |
| break; |
| case 4: |
| /* Advertised value, bogus 10baseTx-FD value from CSR6. */ |
| data->val_out = |
| ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) + |
| ((csr14 >> 1) & 0x20) + 1; |
| data->val_out |= ((csr14 >> 9) & 0x03C0); |
| break; |
| case 5: data->val_out = tp->lpar; break; |
| default: data->val_out = 0; break; |
| } |
| } else { |
| data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum); |
| } |
| return 0; |
| |
| case SIOCSMIIREG: /* Write MII PHY register. */ |
| if (!capable (CAP_NET_ADMIN)) |
| return -EPERM; |
| if (regnum & ~0x1f) |
| return -EINVAL; |
| if (data->phy_id == phy) { |
| u16 value = data->val_in; |
| switch (regnum) { |
| case 0: /* Check for autonegotiation on or reset. */ |
| tp->full_duplex_lock = (value & 0x9000) ? 0 : 1; |
| if (tp->full_duplex_lock) |
| tp->full_duplex = (value & 0x0100) ? 1 : 0; |
| break; |
| case 4: |
| tp->advertising[phy_idx] = |
| tp->mii_advertise = data->val_in; |
| break; |
| } |
| } |
| if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { |
| u16 value = data->val_in; |
| if (regnum == 0) { |
| if ((value & 0x1200) == 0x1200) { |
| if (tp->chip_id == PNIC2) { |
| pnic2_start_nway (dev); |
| } else { |
| t21142_start_nway (dev); |
| } |
| } |
| } else if (regnum == 4) |
| tp->sym_advertise = value; |
| } else { |
| tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in); |
| } |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| |
| /* Set or clear the multicast filter for this adaptor. |
| Note that we only use exclusion around actually queueing the |
| new frame, not around filling tp->setup_frame. This is non-deterministic |
| when re-entered but still correct. */ |
| |
| #undef set_bit_le |
| #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) |
| |
| static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| u16 hash_table[32]; |
| struct dev_mc_list *mclist; |
| int i; |
| u16 *eaddrs; |
| |
| memset(hash_table, 0, sizeof(hash_table)); |
| set_bit_le(255, hash_table); /* Broadcast entry */ |
| /* This should work on big-endian machines as well. */ |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff; |
| |
| set_bit_le(index, hash_table); |
| |
| } |
| for (i = 0; i < 32; i++) { |
| *setup_frm++ = hash_table[i]; |
| *setup_frm++ = hash_table[i]; |
| } |
| setup_frm = &tp->setup_frame[13*6]; |
| |
| /* Fill the final entry with our physical address. */ |
| eaddrs = (u16 *)dev->dev_addr; |
| *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; |
| *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; |
| *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; |
| } |
| |
| static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| struct dev_mc_list *mclist; |
| int i; |
| u16 *eaddrs; |
| |
| /* We have <= 14 addresses so we can use the wonderful |
| 16 address perfect filtering of the Tulip. */ |
| for (i = 0, mclist = dev->mc_list; i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| eaddrs = (u16 *)mclist->dmi_addr; |
| *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; |
| *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; |
| *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; |
| } |
| /* Fill the unused entries with the broadcast address. */ |
| memset(setup_frm, 0xff, (15-i)*12); |
| setup_frm = &tp->setup_frame[15*6]; |
| |
| /* Fill the final entry with our physical address. */ |
| eaddrs = (u16 *)dev->dev_addr; |
| *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; |
| *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; |
| *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; |
| } |
| |
| |
| static void set_rx_mode(struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ioaddr = tp->base_addr; |
| int csr6; |
| |
| csr6 = ioread32(ioaddr + CSR6) & ~0x00D5; |
| |
| tp->csr6 &= ~0x00D5; |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| tp->csr6 |= AcceptAllMulticast | AcceptAllPhys; |
| csr6 |= AcceptAllMulticast | AcceptAllPhys; |
| } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) { |
| /* Too many to filter well -- accept all multicasts. */ |
| tp->csr6 |= AcceptAllMulticast; |
| csr6 |= AcceptAllMulticast; |
| } else if (tp->flags & MC_HASH_ONLY) { |
| /* Some work-alikes have only a 64-entry hash filter table. */ |
| /* Should verify correctness on big-endian/__powerpc__ */ |
| struct dev_mc_list *mclist; |
| int i; |
| if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */ |
| tp->csr6 |= AcceptAllMulticast; |
| csr6 |= AcceptAllMulticast; |
| } else { |
| u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */ |
| int filterbit; |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| if (tp->flags & COMET_MAC_ADDR) |
| filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr); |
| else |
| filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; |
| filterbit &= 0x3f; |
| mc_filter[filterbit >> 5] |= 1 << (filterbit & 31); |
| if (tulip_debug > 2) { |
| printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:" |
| "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name, |
| mclist->dmi_addr[0], mclist->dmi_addr[1], |
| mclist->dmi_addr[2], mclist->dmi_addr[3], |
| mclist->dmi_addr[4], mclist->dmi_addr[5], |
| ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit); |
| } |
| } |
| if (mc_filter[0] == tp->mc_filter[0] && |
| mc_filter[1] == tp->mc_filter[1]) |
| ; /* No change. */ |
| else if (tp->flags & IS_ASIX) { |
| iowrite32(2, ioaddr + CSR13); |
| iowrite32(mc_filter[0], ioaddr + CSR14); |
| iowrite32(3, ioaddr + CSR13); |
| iowrite32(mc_filter[1], ioaddr + CSR14); |
| } else if (tp->flags & COMET_MAC_ADDR) { |
| iowrite32(mc_filter[0], ioaddr + 0xAC); |
| iowrite32(mc_filter[1], ioaddr + 0xB0); |
| } |
| tp->mc_filter[0] = mc_filter[0]; |
| tp->mc_filter[1] = mc_filter[1]; |
| } |
| } else { |
| unsigned long flags; |
| u32 tx_flags = 0x08000000 | 192; |
| |
| /* Note that only the low-address shortword of setup_frame is valid! |
| The values are doubled for big-endian architectures. */ |
| if (dev->mc_count > 14) { /* Must use a multicast hash table. */ |
| build_setup_frame_hash(tp->setup_frame, dev); |
| tx_flags = 0x08400000 | 192; |
| } else { |
| build_setup_frame_perfect(tp->setup_frame, dev); |
| } |
| |
| spin_lock_irqsave(&tp->lock, flags); |
| |
| if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { |
| /* Same setup recently queued, we need not add it. */ |
| } else { |
| unsigned int entry; |
| int dummy = -1; |
| |
| /* Now add this frame to the Tx list. */ |
| |
| entry = tp->cur_tx++ % TX_RING_SIZE; |
| |
| if (entry != 0) { |
| /* Avoid a chip errata by prefixing a dummy entry. */ |
| tp->tx_buffers[entry].skb = NULL; |
| tp->tx_buffers[entry].mapping = 0; |
| tp->tx_ring[entry].length = |
| (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0; |
| tp->tx_ring[entry].buffer1 = 0; |
| /* Must set DescOwned later to avoid race with chip */ |
| dummy = entry; |
| entry = tp->cur_tx++ % TX_RING_SIZE; |
| |
| } |
| |
| tp->tx_buffers[entry].skb = NULL; |
| tp->tx_buffers[entry].mapping = |
| pci_map_single(tp->pdev, tp->setup_frame, |
| sizeof(tp->setup_frame), |
| PCI_DMA_TODEVICE); |
| /* Put the setup frame on the Tx list. */ |
| if (entry == TX_RING_SIZE-1) |
| tx_flags |= DESC_RING_WRAP; /* Wrap ring. */ |
| tp->tx_ring[entry].length = cpu_to_le32(tx_flags); |
| tp->tx_ring[entry].buffer1 = |
| cpu_to_le32(tp->tx_buffers[entry].mapping); |
| tp->tx_ring[entry].status = cpu_to_le32(DescOwned); |
| if (dummy >= 0) |
| tp->tx_ring[dummy].status = cpu_to_le32(DescOwned); |
| if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) |
| netif_stop_queue(dev); |
| |
| /* Trigger an immediate transmit demand. */ |
| iowrite32(0, ioaddr + CSR1); |
| } |
| |
| spin_unlock_irqrestore(&tp->lock, flags); |
| } |
| |
| iowrite32(csr6, ioaddr + CSR6); |
| } |
| |
| #ifdef CONFIG_TULIP_MWI |
| static void __devinit tulip_mwi_config (struct pci_dev *pdev, |
| struct net_device *dev) |
| { |
| struct tulip_private *tp = netdev_priv(dev); |
| u8 cache; |
| u16 pci_command; |
| u32 csr0; |
| |
| if (tulip_debug > 3) |
| printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev)); |
| |
| tp->csr0 = csr0 = 0; |
| |
| /* if we have any cache line size at all, we can do MRM */ |
| csr0 |= MRM; |
| |
| /* ...and barring hardware bugs, MWI */ |
| if (!(tp->chip_id == DC21143 && tp->revision == 65)) |
| csr0 |= MWI; |
| |
| /* set or disable MWI in the standard PCI command bit. |
| * Check for the case where mwi is desired but not available |
| */ |
| if (csr0 & MWI) pci_try_set_mwi(pdev); |
| else pci_clear_mwi(pdev); |
| |
| /* read result from hardware (in case bit refused to enable) */ |
| pci_read_config_word(pdev, PCI_COMMAND, &pci_command); |
| if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE))) |
| csr0 &= ~MWI; |
| |
| /* if cache line size hardwired to zero, no MWI */ |
| pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache); |
| if ((csr0 & MWI) && (cache == 0)) { |
| csr0 &= ~MWI; |
| pci_clear_mwi(pdev); |
| } |
| |
| /* assign per-cacheline-size cache alignment and |
| * burst length values |
| */ |
| switch (cache) { |
| case 8: |
| csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift); |
| break; |
| case 16: |
| csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift); |
| break; |
| case 32: |
| csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift); |
| break; |
| default: |
| cache = 0; |
| break; |
| } |
| |
| /* if we have a good cache line size, we by now have a good |
| * csr0, so save it and exit |
| */ |
| if (cache) |
| goto out; |
| |
| /* we don't have a good csr0 or cache line size, disable MWI */ |
| if (csr0 & MWI) { |
| pci_clear_mwi(pdev); |
| csr0 &= ~MWI; |
| } |
| |
| /* sane defaults for burst length and cache alignment |
| * originally from de4x5 driver |
| */ |
| csr0 |= (8 << BurstLenShift) | (1 << CALShift); |
| |
| out: |
| tp->csr0 = csr0; |
| if (tulip_debug > 2) |
| printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n", |
| pci_name(pdev), cache, csr0); |
| } |
| #endif |
| |
| /* |
| * Chips that have the MRM/reserved bit quirk and the burst quirk. That |
| * is the DM910X and the on chip ULi devices |
| */ |
| |
| static int tulip_uli_dm_quirk(struct pci_dev *pdev) |
| { |
| if (pdev->vendor == 0x1282 && pdev->device == 0x9102) |
| return 1; |
| return 0; |
| } |
| |
| static int __devinit tulip_init_one (struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct tulip_private *tp; |
| /* See note below on the multiport cards. */ |
| static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'}; |
| static struct pci_device_id early_486_chipsets[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) }, |
| { }, |
| }; |
| static int last_irq; |
| static int multiport_cnt; /* For four-port boards w/one EEPROM */ |
| int i, irq; |
| unsigned short sum; |
| unsigned char *ee_data; |
| struct net_device *dev; |
| void __iomem *ioaddr; |
| static int board_idx = -1; |
| int chip_idx = ent->driver_data; |
| const char *chip_name = tulip_tbl[chip_idx].chip_name; |
| unsigned int eeprom_missing = 0; |
| unsigned int force_csr0 = 0; |
| |
| #ifndef MODULE |
| static int did_version; /* Already printed version info. */ |
| if (tulip_debug > 0 && did_version++ == 0) |
| printk (KERN_INFO "%s", version); |
| #endif |
| |
| board_idx++; |
| |
| /* |
| * Lan media wire a tulip chip to a wan interface. Needs a very |
| * different driver (lmc driver) |
| */ |
| |
| if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) { |
| printk (KERN_ERR PFX "skipping LMC card.\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Early DM9100's need software CRC and the DMFE driver |
| */ |
| |
| if (pdev->vendor == 0x1282 && pdev->device == 0x9100) |
| { |
| /* Read Chip revision */ |
| if (pdev->revision < 0x30) |
| { |
| printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n"); |
| return -ENODEV; |
| } |
| } |
| |
| /* |
| * Looks for early PCI chipsets where people report hangs |
| * without the workarounds being on. |
| */ |
| |
| /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache |
| aligned. Aries might need this too. The Saturn errata are not |
| pretty reading but thankfully it's an old 486 chipset. |
| |
| 2. The dreaded SiS496 486 chipset. Same workaround as Intel |
| Saturn. |
| */ |
| |
| if (pci_dev_present(early_486_chipsets)) { |
| csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift); |
| force_csr0 = 1; |
| } |
| |
| /* bugfix: the ASIX must have a burst limit or horrible things happen. */ |
| if (chip_idx == AX88140) { |
| if ((csr0 & 0x3f00) == 0) |
| csr0 |= 0x2000; |
| } |
| |
| /* PNIC doesn't have MWI/MRL/MRM... */ |
| if (chip_idx == LC82C168) |
| csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */ |
| |
| /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */ |
| if (tulip_uli_dm_quirk(pdev)) { |
| csr0 &= ~0x01f100ff; |
| #if defined(CONFIG_SPARC) |
| csr0 = (csr0 & ~0xff00) | 0xe000; |
| #endif |
| } |
| /* |
| * And back to business |
| */ |
| |
| i = pci_enable_device(pdev); |
| if (i) { |
| printk (KERN_ERR PFX |
| "Cannot enable tulip board #%d, aborting\n", |
| board_idx); |
| return i; |
| } |
| |
| irq = pdev->irq; |
| |
| /* alloc_etherdev ensures aligned and zeroed private structures */ |
| dev = alloc_etherdev (sizeof (*tp)); |
| if (!dev) { |
| printk (KERN_ERR PFX "ether device alloc failed, aborting\n"); |
| return -ENOMEM; |
| } |
| |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) { |
| printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, " |
| "aborting\n", pci_name(pdev), |
| (unsigned long long)pci_resource_len (pdev, 0), |
| (unsigned long long)pci_resource_start (pdev, 0)); |
| goto err_out_free_netdev; |
| } |
| |
| /* grab all resources from both PIO and MMIO regions, as we |
| * don't want anyone else messing around with our hardware */ |
| if (pci_request_regions (pdev, "tulip")) |
| goto err_out_free_netdev; |
| |
| ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size); |
| |
| if (!ioaddr) |
| goto err_out_free_res; |
| |
| /* |
| * initialize private data structure 'tp' |
| * it is zeroed and aligned in alloc_etherdev |
| */ |
| tp = netdev_priv(dev); |
| tp->dev = dev; |
| |
| tp->rx_ring = pci_alloc_consistent(pdev, |
| sizeof(struct tulip_rx_desc) * RX_RING_SIZE + |
| sizeof(struct tulip_tx_desc) * TX_RING_SIZE, |
| &tp->rx_ring_dma); |
| if (!tp->rx_ring) |
| goto err_out_mtable; |
| tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE); |
| tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE; |
| |
| tp->chip_id = chip_idx; |
| tp->flags = tulip_tbl[chip_idx].flags; |
| tp->pdev = pdev; |
| tp->base_addr = ioaddr; |
| tp->revision = pdev->revision; |
| tp->csr0 = csr0; |
| spin_lock_init(&tp->lock); |
| spin_lock_init(&tp->mii_lock); |
| init_timer(&tp->timer); |
| tp->timer.data = (unsigned long)dev; |
| tp->timer.function = tulip_tbl[tp->chip_id].media_timer; |
| |
| INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task); |
| |
| dev->base_addr = (unsigned long)ioaddr; |
| |
| #ifdef CONFIG_TULIP_MWI |
| if (!force_csr0 && (tp->flags & HAS_PCI_MWI)) |
| tulip_mwi_config (pdev, dev); |
| #else |
| /* MWI is broken for DC21143 rev 65... */ |
| if (chip_idx == DC21143 && pdev->revision == 65) |
| tp->csr0 &= ~MWI; |
| #endif |
| |
| /* Stop the chip's Tx and Rx processes. */ |
| tulip_stop_rxtx(tp); |
| |
| pci_set_master(pdev); |
| |
| #ifdef CONFIG_GSC |
| if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) { |
| switch (pdev->subsystem_device) { |
| default: |
| break; |
| case 0x1061: |
| case 0x1062: |
| case 0x1063: |
| case 0x1098: |
| case 0x1099: |
| case 0x10EE: |
| tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE; |
| chip_name = "GSC DS21140 Tulip"; |
| } |
| } |
| #endif |
| |
| /* Clear the missed-packet counter. */ |
| ioread32(ioaddr + CSR8); |
| |
| /* The station address ROM is read byte serially. The register must |
| be polled, waiting for the value to be read bit serially from the |
| EEPROM. |
| */ |
| ee_data = tp->eeprom; |
| sum = 0; |
| if (chip_idx == LC82C168) { |
| for (i = 0; i < 3; i++) { |
| int value, boguscnt = 100000; |
| iowrite32(0x600 | i, ioaddr + 0x98); |
| do |
| value = ioread32(ioaddr + CSR9); |
| while (value < 0 && --boguscnt > 0); |
| put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i); |
| sum += value & 0xffff; |
| } |
| } else if (chip_idx == COMET) { |
| /* No need to read the EEPROM. */ |
| put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr); |
| put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4)); |
| for (i = 0; i < 6; i ++) |
| sum += dev->dev_addr[i]; |
| } else { |
| /* A serial EEPROM interface, we read now and sort it out later. */ |
| int sa_offset = 0; |
| int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6; |
| |
| for (i = 0; i < sizeof(tp->eeprom); i+=2) { |
| u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size); |
| ee_data[i] = data & 0xff; |
| ee_data[i + 1] = data >> 8; |
| } |
| |
| /* DEC now has a specification (see Notes) but early board makers |
| just put the address in the first EEPROM locations. */ |
| /* This does memcmp(ee_data, ee_data+16, 8) */ |
| for (i = 0; i < 8; i ++) |
| if (ee_data[i] != ee_data[16+i]) |
| sa_offset = 20; |
| if (chip_idx == CONEXANT) { |
| /* Check that the tuple type and length is correct. */ |
| if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6) |
| sa_offset = 0x19A; |
| } else if (ee_data[0] == 0xff && ee_data[1] == 0xff && |
| ee_data[2] == 0) { |
| sa_offset = 2; /* Grrr, damn Matrox boards. */ |
| multiport_cnt = 4; |
| } |
| #ifdef CONFIG_MIPS_COBALT |
| if ((pdev->bus->number == 0) && |
| ((PCI_SLOT(pdev->devfn) == 7) || |
| (PCI_SLOT(pdev->devfn) == 12))) { |
| /* Cobalt MAC address in first EEPROM locations. */ |
| sa_offset = 0; |
| /* Ensure our media table fixup get's applied */ |
| memcpy(ee_data + 16, ee_data, 8); |
| } |
| #endif |
| #ifdef CONFIG_GSC |
| /* Check to see if we have a broken srom */ |
| if (ee_data[0] == 0x61 && ee_data[1] == 0x10) { |
| /* pci_vendor_id and subsystem_id are swapped */ |
| ee_data[0] = ee_data[2]; |
| ee_data[1] = ee_data[3]; |
| ee_data[2] = 0x61; |
| ee_data[3] = 0x10; |
| |
| /* HSC-PCI boards need to be byte-swaped and shifted |
| * up 1 word. This shift needs to happen at the end |
| * of the MAC first because of the 2 byte overlap. |
| */ |
| for (i = 4; i >= 0; i -= 2) { |
| ee_data[17 + i + 3] = ee_data[17 + i]; |
| ee_data[16 + i + 5] = ee_data[16 + i]; |
| } |
| } |
| #endif |
| |
| for (i = 0; i < 6; i ++) { |
| dev->dev_addr[i] = ee_data[i + sa_offset]; |
| sum += ee_data[i + sa_offset]; |
| } |
| } |
| /* Lite-On boards have the address byte-swapped. */ |
| if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02) |
| && dev->dev_addr[1] == 0x00) |
| for (i = 0; i < 6; i+=2) { |
| char tmp = dev->dev_addr[i]; |
| dev->dev_addr[i] = dev->dev_addr[i+1]; |
| dev->dev_addr[i+1] = tmp; |
| } |
| /* On the Zynx 315 Etherarray and other multiport boards only the |
| first Tulip has an EEPROM. |
| On Sparc systems the mac address is held in the OBP property |
| "local-mac-address". |
| The addresses of the subsequent ports are derived from the first. |
| Many PCI BIOSes also incorrectly report the IRQ line, so we correct |
| that here as well. */ |
| if (sum == 0 || sum == 6*0xff) { |
| #if defined(CONFIG_SPARC) |
| struct device_node *dp = pci_device_to_OF_node(pdev); |
| const unsigned char *addr; |
| int len; |
| #endif |
| eeprom_missing = 1; |
| for (i = 0; i < 5; i++) |
| dev->dev_addr[i] = last_phys_addr[i]; |
| dev->dev_addr[i] = last_phys_addr[i] + 1; |
| #if defined(CONFIG_SPARC) |
| addr = of_get_property(dp, "local-mac-address", &len); |
| if (addr && len == 6) |
| memcpy(dev->dev_addr, addr, 6); |
| #endif |
| #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */ |
| if (last_irq) |
| irq = last_irq; |
| #endif |
| } |
| |
| for (i = 0; i < 6; i++) |
| last_phys_addr[i] = dev->dev_addr[i]; |
| last_irq = irq; |
| dev->irq = irq; |
| |
| /* The lower four bits are the media type. */ |
| if (board_idx >= 0 && board_idx < MAX_UNITS) { |
| if (options[board_idx] & MEDIA_MASK) |
| tp->default_port = options[board_idx] & MEDIA_MASK; |
| if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0) |
| tp->full_duplex = 1; |
| if (mtu[board_idx] > 0) |
| dev->mtu = mtu[board_idx]; |
| } |
| if (dev->mem_start & MEDIA_MASK) |
| tp->default_port = dev->mem_start & MEDIA_MASK; |
| if (tp->default_port) { |
| printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n", |
| board_idx, medianame[tp->default_port & MEDIA_MASK]); |
| tp->medialock = 1; |
| if (tulip_media_cap[tp->default_port] & MediaAlwaysFD) |
| tp->full_duplex = 1; |
| } |
| if (tp->full_duplex) |
| tp->full_duplex_lock = 1; |
| |
| if (tulip_media_cap[tp->default_port] & MediaIsMII) { |
| u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 }; |
| tp->mii_advertise = media2advert[tp->default_port - 9]; |
| tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */ |
| } |
| |
| if (tp->flags & HAS_MEDIA_TABLE) { |
| sprintf(dev->name, "tulip%d", board_idx); /* hack */ |
| tulip_parse_eeprom(dev); |
| strcpy(dev->name, "eth%d"); /* un-hack */ |
| } |
| |
| if ((tp->flags & ALWAYS_CHECK_MII) || |
| (tp->mtable && tp->mtable->has_mii) || |
| ( ! tp->mtable && (tp->flags & HAS_MII))) { |
| if (tp->mtable && tp->mtable->has_mii) { |
| for (i = 0; i < tp->mtable->leafcount; i++) |
| if (tp->mtable->mleaf[i].media == 11) { |
| tp->cur_index = i; |
| tp->saved_if_port = dev->if_port; |
| tulip_select_media(dev, 2); |
| dev->if_port = tp->saved_if_port; |
| break; |
| } |
| } |
| |
| /* Find the connected MII xcvrs. |
| Doing this in open() would allow detecting external xcvrs |
| later, but takes much time. */ |
| tulip_find_mii (dev, board_idx); |
| } |
| |
| /* The Tulip-specific entries in the device structure. */ |
| dev->open = tulip_open; |
| dev->hard_start_xmit = tulip_start_xmit; |
| dev->tx_timeout = tulip_tx_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| #ifdef CONFIG_TULIP_NAPI |
| netif_napi_add(dev, &tp->napi, tulip_poll, 16); |
| #endif |
| dev->stop = tulip_close; |
| dev->get_stats = tulip_get_stats; |
| dev->do_ioctl = private_ioctl; |
| dev->set_multicast_list = set_rx_mode; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = &poll_tulip; |
| #endif |
| SET_ETHTOOL_OPS(dev, &ops); |
| |
| if (register_netdev(dev)) |
| goto err_out_free_ring; |
| |
| printk(KERN_INFO "%s: %s rev %d at " |
| #ifdef CONFIG_TULIP_MMIO |
| "MMIO" |
| #else |
| "Port" |
| #endif |
| " %#llx,", dev->name, chip_name, pdev->revision, |
| (unsigned long long) pci_resource_start(pdev, TULIP_BAR)); |
| pci_set_drvdata(pdev, dev); |
| |
| if (eeprom_missing) |
| printk(" EEPROM not present,"); |
| for (i = 0; i < 6; i++) |
| printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]); |
| printk(", IRQ %d.\n", irq); |
| |
| if (tp->chip_id == PNIC2) |
| tp->link_change = pnic2_lnk_change; |
| else if (tp->flags & HAS_NWAY) |
| tp->link_change = t21142_lnk_change; |
| else if (tp->flags & HAS_PNICNWAY) |
| tp->link_change = pnic_lnk_change; |
| |
| /* Reset the xcvr interface and turn on heartbeat. */ |
| switch (chip_idx) { |
| case DC21140: |
| case DM910X: |
| default: |
| if (tp->mtable) |
| iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12); |
| break; |
| case DC21142: |
| if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) { |
| iowrite32(csr6_mask_defstate, ioaddr + CSR6); |
| iowrite32(0x0000, ioaddr + CSR13); |
| iowrite32(0x0000, ioaddr + CSR14); |
| iowrite32(csr6_mask_hdcap, ioaddr + CSR6); |
| } else |
| t21142_start_nway(dev); |
| break; |
| case PNIC2: |
| /* just do a reset for sanity sake */ |
| iowrite32(0x0000, ioaddr + CSR13); |
| iowrite32(0x0000, ioaddr + CSR14); |
| break; |
| case LC82C168: |
| if ( ! tp->mii_cnt) { |
| tp->nway = 1; |
| tp->nwayset = 0; |
| iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6); |
| iowrite32(0x30, ioaddr + CSR12); |
| iowrite32(0x0001F078, ioaddr + CSR6); |
| iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */ |
| } |
| break; |
| case MX98713: |
| case COMPEX9881: |
| iowrite32(0x00000000, ioaddr + CSR6); |
| iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */ |
| iowrite32(0x00000001, ioaddr + CSR13); |
| break; |
| case MX98715: |
| case MX98725: |
| iowrite32(0x01a80000, ioaddr + CSR6); |
| iowrite32(0xFFFFFFFF, ioaddr + CSR14); |
| iowrite32(0x00001000, ioaddr + CSR12); |
| break; |
| case COMET: |
| /* No initialization necessary. */ |
| break; |
| } |
| |
| /* put the chip in snooze mode until opened */ |
| tulip_set_power_state (tp, 0, 1); |
| |
| return 0; |
| |
| err_out_free_ring: |
| pci_free_consistent (pdev, |
| sizeof (struct tulip_rx_desc) * RX_RING_SIZE + |
| sizeof (struct tulip_tx_desc) * TX_RING_SIZE, |
| tp->rx_ring, tp->rx_ring_dma); |
| |
| err_out_mtable: |
| kfree (tp->mtable); |
| pci_iounmap(pdev, ioaddr); |
| |
| err_out_free_res: |
| pci_release_regions (pdev); |
| |
| err_out_free_netdev: |
| free_netdev (dev); |
| return -ENODEV; |
| } |
| |
| |
| #ifdef CONFIG_PM |
| |
| static int tulip_suspend (struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| |
| if (!dev) |
| return -EINVAL; |
| |
| if (netif_running(dev)) |
| tulip_down(dev); |
| |
| netif_device_detach(dev); |
| free_irq(dev->irq, dev); |
| |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| |
| return 0; |
| } |
| |
| |
| static int tulip_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| int retval; |
| |
| if (!dev) |
| return -EINVAL; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| |
| if ((retval = pci_enable_device(pdev))) { |
| printk (KERN_ERR "tulip: pci_enable_device failed in resume\n"); |
| return retval; |
| } |
| |
| if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) { |
| printk (KERN_ERR "tulip: request_irq failed in resume\n"); |
| return retval; |
| } |
| |
| netif_device_attach(dev); |
| |
| if (netif_running(dev)) |
| tulip_up(dev); |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_PM */ |
| |
| |
| static void __devexit tulip_remove_one (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata (pdev); |
| struct tulip_private *tp; |
| |
| if (!dev) |
| return; |
| |
| tp = netdev_priv(dev); |
| unregister_netdev(dev); |
| pci_free_consistent (pdev, |
| sizeof (struct tulip_rx_desc) * RX_RING_SIZE + |
| sizeof (struct tulip_tx_desc) * TX_RING_SIZE, |
| tp->rx_ring, tp->rx_ring_dma); |
| kfree (tp->mtable); |
| pci_iounmap(pdev, tp->base_addr); |
| free_netdev (dev); |
| pci_release_regions (pdev); |
| pci_set_drvdata (pdev, NULL); |
| |
| /* pci_power_off (pdev, -1); */ |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| |
| static void poll_tulip (struct net_device *dev) |
| { |
| /* disable_irq here is not very nice, but with the lockless |
| interrupt handler we have no other choice. */ |
| disable_irq(dev->irq); |
| tulip_interrupt (dev->irq, dev); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| static struct pci_driver tulip_driver = { |
| .name = DRV_NAME, |
| .id_table = tulip_pci_tbl, |
| .probe = tulip_init_one, |
| .remove = __devexit_p(tulip_remove_one), |
| #ifdef CONFIG_PM |
| .suspend = tulip_suspend, |
| .resume = tulip_resume, |
| #endif /* CONFIG_PM */ |
| }; |
| |
| |
| static int __init tulip_init (void) |
| { |
| #ifdef MODULE |
| printk (KERN_INFO "%s", version); |
| #endif |
| |
| /* copy module parms into globals */ |
| tulip_rx_copybreak = rx_copybreak; |
| tulip_max_interrupt_work = max_interrupt_work; |
| |
| /* probe for and init boards */ |
| return pci_register_driver(&tulip_driver); |
| } |
| |
| |
| static void __exit tulip_cleanup (void) |
| { |
| pci_unregister_driver (&tulip_driver); |
| } |
| |
| |
| module_init(tulip_init); |
| module_exit(tulip_cleanup); |