| #ifndef __LINUX_CPUMASK_H |
| #define __LINUX_CPUMASK_H |
| |
| /* |
| * Cpumasks provide a bitmap suitable for representing the |
| * set of CPU's in a system, one bit position per CPU number. |
| * |
| * See detailed comments in the file linux/bitmap.h describing the |
| * data type on which these cpumasks are based. |
| * |
| * For details of cpumask_scnprintf() and cpumask_parse(), |
| * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c. |
| * For details of cpulist_scnprintf() and cpulist_parse(), see |
| * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c. |
| * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c |
| * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c. |
| * |
| * The available cpumask operations are: |
| * |
| * void cpu_set(cpu, mask) turn on bit 'cpu' in mask |
| * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask |
| * void cpus_setall(mask) set all bits |
| * void cpus_clear(mask) clear all bits |
| * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask |
| * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask |
| * |
| * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection] |
| * void cpus_or(dst, src1, src2) dst = src1 | src2 [union] |
| * void cpus_xor(dst, src1, src2) dst = src1 ^ src2 |
| * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2 |
| * void cpus_complement(dst, src) dst = ~src |
| * |
| * int cpus_equal(mask1, mask2) Does mask1 == mask2? |
| * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect? |
| * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2? |
| * int cpus_empty(mask) Is mask empty (no bits sets)? |
| * int cpus_full(mask) Is mask full (all bits sets)? |
| * int cpus_weight(mask) Hamming weigh - number of set bits |
| * |
| * void cpus_shift_right(dst, src, n) Shift right |
| * void cpus_shift_left(dst, src, n) Shift left |
| * |
| * int first_cpu(mask) Number lowest set bit, or NR_CPUS |
| * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS |
| * |
| * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set |
| * CPU_MASK_ALL Initializer - all bits set |
| * CPU_MASK_NONE Initializer - no bits set |
| * unsigned long *cpus_addr(mask) Array of unsigned long's in mask |
| * |
| * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing |
| * int cpumask_parse(ubuf, ulen, mask) Parse ascii string as cpumask |
| * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing |
| * int cpulist_parse(buf, map) Parse ascii string as cpulist |
| * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit) |
| * int cpus_remap(dst, src, old, new) *dst = map(old, new)(src) |
| * |
| * for_each_cpu_mask(cpu, mask) for-loop cpu over mask |
| * |
| * int num_online_cpus() Number of online CPUs |
| * int num_possible_cpus() Number of all possible CPUs |
| * int num_present_cpus() Number of present CPUs |
| * |
| * int cpu_online(cpu) Is some cpu online? |
| * int cpu_possible(cpu) Is some cpu possible? |
| * int cpu_present(cpu) Is some cpu present (can schedule)? |
| * |
| * int any_online_cpu(mask) First online cpu in mask |
| * |
| * for_each_cpu(cpu) for-loop cpu over cpu_possible_map |
| * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map |
| * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map |
| * |
| * Subtlety: |
| * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway) |
| * to generate slightly worse code. Note for example the additional |
| * 40 lines of assembly code compiling the "for each possible cpu" |
| * loops buried in the disk_stat_read() macros calls when compiling |
| * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple |
| * one-line #define for cpu_isset(), instead of wrapping an inline |
| * inside a macro, the way we do the other calls. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/threads.h> |
| #include <linux/bitmap.h> |
| |
| typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; |
| extern cpumask_t _unused_cpumask_arg_; |
| |
| #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst)) |
| static inline void __cpu_set(int cpu, volatile cpumask_t *dstp) |
| { |
| set_bit(cpu, dstp->bits); |
| } |
| |
| #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst)) |
| static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp) |
| { |
| clear_bit(cpu, dstp->bits); |
| } |
| |
| #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS) |
| static inline void __cpus_setall(cpumask_t *dstp, int nbits) |
| { |
| bitmap_fill(dstp->bits, nbits); |
| } |
| |
| #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS) |
| static inline void __cpus_clear(cpumask_t *dstp, int nbits) |
| { |
| bitmap_zero(dstp->bits, nbits); |
| } |
| |
| /* No static inline type checking - see Subtlety (1) above. */ |
| #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits) |
| |
| #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask)) |
| static inline int __cpu_test_and_set(int cpu, cpumask_t *addr) |
| { |
| return test_and_set_bit(cpu, addr->bits); |
| } |
| |
| #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS) |
| static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS) |
| static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS) |
| static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_andnot(dst, src1, src2) \ |
| __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS) |
| static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS) |
| static inline void __cpus_complement(cpumask_t *dstp, |
| const cpumask_t *srcp, int nbits) |
| { |
| bitmap_complement(dstp->bits, srcp->bits, nbits); |
| } |
| |
| #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS) |
| static inline int __cpus_equal(const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| return bitmap_equal(src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS) |
| static inline int __cpus_intersects(const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| return bitmap_intersects(src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS) |
| static inline int __cpus_subset(const cpumask_t *src1p, |
| const cpumask_t *src2p, int nbits) |
| { |
| return bitmap_subset(src1p->bits, src2p->bits, nbits); |
| } |
| |
| #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS) |
| static inline int __cpus_empty(const cpumask_t *srcp, int nbits) |
| { |
| return bitmap_empty(srcp->bits, nbits); |
| } |
| |
| #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS) |
| static inline int __cpus_full(const cpumask_t *srcp, int nbits) |
| { |
| return bitmap_full(srcp->bits, nbits); |
| } |
| |
| #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS) |
| static inline int __cpus_weight(const cpumask_t *srcp, int nbits) |
| { |
| return bitmap_weight(srcp->bits, nbits); |
| } |
| |
| #define cpus_shift_right(dst, src, n) \ |
| __cpus_shift_right(&(dst), &(src), (n), NR_CPUS) |
| static inline void __cpus_shift_right(cpumask_t *dstp, |
| const cpumask_t *srcp, int n, int nbits) |
| { |
| bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); |
| } |
| |
| #define cpus_shift_left(dst, src, n) \ |
| __cpus_shift_left(&(dst), &(src), (n), NR_CPUS) |
| static inline void __cpus_shift_left(cpumask_t *dstp, |
| const cpumask_t *srcp, int n, int nbits) |
| { |
| bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); |
| } |
| |
| #define first_cpu(src) __first_cpu(&(src), NR_CPUS) |
| static inline int __first_cpu(const cpumask_t *srcp, int nbits) |
| { |
| return min_t(int, nbits, find_first_bit(srcp->bits, nbits)); |
| } |
| |
| #define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS) |
| static inline int __next_cpu(int n, const cpumask_t *srcp, int nbits) |
| { |
| return min_t(int, nbits, find_next_bit(srcp->bits, nbits, n+1)); |
| } |
| |
| #define cpumask_of_cpu(cpu) \ |
| ({ \ |
| typeof(_unused_cpumask_arg_) m; \ |
| if (sizeof(m) == sizeof(unsigned long)) { \ |
| m.bits[0] = 1UL<<(cpu); \ |
| } else { \ |
| cpus_clear(m); \ |
| cpu_set((cpu), m); \ |
| } \ |
| m; \ |
| }) |
| |
| #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS) |
| |
| #if NR_CPUS <= BITS_PER_LONG |
| |
| #define CPU_MASK_ALL \ |
| (cpumask_t) { { \ |
| [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ |
| } } |
| |
| #else |
| |
| #define CPU_MASK_ALL \ |
| (cpumask_t) { { \ |
| [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ |
| [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ |
| } } |
| |
| #endif |
| |
| #define CPU_MASK_NONE \ |
| (cpumask_t) { { \ |
| [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ |
| } } |
| |
| #define CPU_MASK_CPU0 \ |
| (cpumask_t) { { \ |
| [0] = 1UL \ |
| } } |
| |
| #define cpus_addr(src) ((src).bits) |
| |
| #define cpumask_scnprintf(buf, len, src) \ |
| __cpumask_scnprintf((buf), (len), &(src), NR_CPUS) |
| static inline int __cpumask_scnprintf(char *buf, int len, |
| const cpumask_t *srcp, int nbits) |
| { |
| return bitmap_scnprintf(buf, len, srcp->bits, nbits); |
| } |
| |
| #define cpumask_parse(ubuf, ulen, dst) \ |
| __cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS) |
| static inline int __cpumask_parse(const char __user *buf, int len, |
| cpumask_t *dstp, int nbits) |
| { |
| return bitmap_parse(buf, len, dstp->bits, nbits); |
| } |
| |
| #define cpulist_scnprintf(buf, len, src) \ |
| __cpulist_scnprintf((buf), (len), &(src), NR_CPUS) |
| static inline int __cpulist_scnprintf(char *buf, int len, |
| const cpumask_t *srcp, int nbits) |
| { |
| return bitmap_scnlistprintf(buf, len, srcp->bits, nbits); |
| } |
| |
| #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS) |
| static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits) |
| { |
| return bitmap_parselist(buf, dstp->bits, nbits); |
| } |
| |
| #define cpu_remap(oldbit, old, new) \ |
| __cpu_remap((oldbit), &(old), &(new), NR_CPUS) |
| static inline int __cpu_remap(int oldbit, |
| const cpumask_t *oldp, const cpumask_t *newp, int nbits) |
| { |
| return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); |
| } |
| |
| #define cpus_remap(dst, src, old, new) \ |
| __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS) |
| static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp, |
| const cpumask_t *oldp, const cpumask_t *newp, int nbits) |
| { |
| bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); |
| } |
| |
| #if NR_CPUS > 1 |
| #define for_each_cpu_mask(cpu, mask) \ |
| for ((cpu) = first_cpu(mask); \ |
| (cpu) < NR_CPUS; \ |
| (cpu) = next_cpu((cpu), (mask))) |
| #else /* NR_CPUS == 1 */ |
| #define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++) |
| #endif /* NR_CPUS */ |
| |
| /* |
| * The following particular system cpumasks and operations manage |
| * possible, present and online cpus. Each of them is a fixed size |
| * bitmap of size NR_CPUS. |
| * |
| * #ifdef CONFIG_HOTPLUG_CPU |
| * cpu_possible_map - has bit 'cpu' set iff cpu is populatable |
| * cpu_present_map - has bit 'cpu' set iff cpu is populated |
| * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler |
| * #else |
| * cpu_possible_map - has bit 'cpu' set iff cpu is populated |
| * cpu_present_map - copy of cpu_possible_map |
| * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler |
| * #endif |
| * |
| * In either case, NR_CPUS is fixed at compile time, as the static |
| * size of these bitmaps. The cpu_possible_map is fixed at boot |
| * time, as the set of CPU id's that it is possible might ever |
| * be plugged in at anytime during the life of that system boot. |
| * The cpu_present_map is dynamic(*), representing which CPUs |
| * are currently plugged in. And cpu_online_map is the dynamic |
| * subset of cpu_present_map, indicating those CPUs available |
| * for scheduling. |
| * |
| * If HOTPLUG is enabled, then cpu_possible_map is forced to have |
| * all NR_CPUS bits set, otherwise it is just the set of CPUs that |
| * ACPI reports present at boot. |
| * |
| * If HOTPLUG is enabled, then cpu_present_map varies dynamically, |
| * depending on what ACPI reports as currently plugged in, otherwise |
| * cpu_present_map is just a copy of cpu_possible_map. |
| * |
| * (*) Well, cpu_present_map is dynamic in the hotplug case. If not |
| * hotplug, it's a copy of cpu_possible_map, hence fixed at boot. |
| * |
| * Subtleties: |
| * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode |
| * assumption that their single CPU is online. The UP |
| * cpu_{online,possible,present}_maps are placebos. Changing them |
| * will have no useful affect on the following num_*_cpus() |
| * and cpu_*() macros in the UP case. This ugliness is a UP |
| * optimization - don't waste any instructions or memory references |
| * asking if you're online or how many CPUs there are if there is |
| * only one CPU. |
| * 2) Most SMP arch's #define some of these maps to be some |
| * other map specific to that arch. Therefore, the following |
| * must be #define macros, not inlines. To see why, examine |
| * the assembly code produced by the following. Note that |
| * set1() writes phys_x_map, but set2() writes x_map: |
| * int x_map, phys_x_map; |
| * #define set1(a) x_map = a |
| * inline void set2(int a) { x_map = a; } |
| * #define x_map phys_x_map |
| * main(){ set1(3); set2(5); } |
| */ |
| |
| extern cpumask_t cpu_possible_map; |
| extern cpumask_t cpu_online_map; |
| extern cpumask_t cpu_present_map; |
| |
| #if NR_CPUS > 1 |
| #define num_online_cpus() cpus_weight(cpu_online_map) |
| #define num_possible_cpus() cpus_weight(cpu_possible_map) |
| #define num_present_cpus() cpus_weight(cpu_present_map) |
| #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map) |
| #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map) |
| #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map) |
| #else |
| #define num_online_cpus() 1 |
| #define num_possible_cpus() 1 |
| #define num_present_cpus() 1 |
| #define cpu_online(cpu) ((cpu) == 0) |
| #define cpu_possible(cpu) ((cpu) == 0) |
| #define cpu_present(cpu) ((cpu) == 0) |
| #endif |
| |
| #define any_online_cpu(mask) \ |
| ({ \ |
| int cpu; \ |
| for_each_cpu_mask(cpu, (mask)) \ |
| if (cpu_online(cpu)) \ |
| break; \ |
| cpu; \ |
| }) |
| |
| #define for_each_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map) |
| #define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map) |
| #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map) |
| |
| /* Find the highest possible smp_processor_id() */ |
| #define highest_possible_processor_id() \ |
| ({ \ |
| unsigned int cpu, highest = 0; \ |
| for_each_cpu_mask(cpu, cpu_possible_map) \ |
| highest = cpu; \ |
| highest; \ |
| }) |
| |
| |
| #endif /* __LINUX_CPUMASK_H */ |