blob: 27d2c9b8a0344889089bd302eb469f98381be79d [file] [log] [blame]
/*
* core.c - DesignWare HS OTG Controller common routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The Core code provides basic services for accessing and managing the
* DWC_otg hardware. These services are used by both the Host Controller
* Driver and the Peripheral Controller Driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/**
* dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
* used in both device and host modes
*
* @hsotg: Programming view of the DWC_otg controller
*/
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
/* Clear any pending OTG Interrupts */
writel(0xffffffff, hsotg->regs + GOTGINT);
/* Clear any pending interrupts */
writel(0xffffffff, hsotg->regs + GINTSTS);
/* Enable the interrupts in the GINTMSK */
intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
if (hsotg->core_params->dma_enable <= 0)
intmsk |= GINTSTS_RXFLVL;
intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP |
GINTSTS_SESSREQINT;
writel(intmsk, hsotg->regs + GINTMSK);
}
/*
* Initializes the FSLSPClkSel field of the HCFG register depending on the
* PHY type
*/
static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
u32 hcfg, val;
if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->core_params->ulpi_fs_ls > 0) ||
hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* Full speed PHY */
val = HCFG_FSLSPCLKSEL_48_MHZ;
} else {
/* High speed PHY running at full speed or high speed */
val = HCFG_FSLSPCLKSEL_30_60_MHZ;
}
dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
hcfg = readl(hsotg->regs + HCFG);
hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
writel(hcfg, hsotg->regs + HCFG);
}
/*
* Do core a soft reset of the core. Be careful with this because it
* resets all the internal state machines of the core.
*/
static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Wait for AHB master IDLE state */
do {
usleep_range(20000, 40000);
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 50) {
dev_warn(hsotg->dev,
"%s() HANG! AHB Idle GRSTCTL=%0x\n",
__func__, greset);
return -EBUSY;
}
} while (!(greset & GRSTCTL_AHBIDLE));
/* Core Soft Reset */
count = 0;
greset |= GRSTCTL_CSFTRST;
writel(greset, hsotg->regs + GRSTCTL);
do {
usleep_range(20000, 40000);
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 50) {
dev_warn(hsotg->dev,
"%s() HANG! Soft Reset GRSTCTL=%0x\n",
__func__, greset);
return -EBUSY;
}
} while (greset & GRSTCTL_CSFTRST);
/*
* NOTE: This long sleep is _very_ important, otherwise the core will
* not stay in host mode after a connector ID change!
*/
usleep_range(150000, 200000);
return 0;
}
static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, i2cctl;
int retval = 0;
/*
* core_init() is now called on every switch so only call the
* following for the first time through
*/
if (select_phy) {
dev_dbg(hsotg->dev, "FS PHY selected\n");
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_PHYSEL;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset after a PHY select */
retval = dwc2_core_reset(hsotg);
if (retval) {
dev_err(hsotg->dev, "%s() Reset failed, aborting",
__func__);
return retval;
}
}
/*
* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
* do this on HNP Dev/Host mode switches (done in dev_init and
* host_init).
*/
if (dwc2_is_host_mode(hsotg))
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->core_params->i2c_enable > 0) {
dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
/* Program GUSBCFG.OtgUtmiFsSel to I2C */
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Program GI2CCTL.I2CEn */
i2cctl = readl(hsotg->regs + GI2CCTL);
i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
i2cctl &= ~GI2CCTL_I2CEN;
writel(i2cctl, hsotg->regs + GI2CCTL);
i2cctl |= GI2CCTL_I2CEN;
writel(i2cctl, hsotg->regs + GI2CCTL);
}
return retval;
}
static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg;
int retval = 0;
if (!select_phy)
return 0;
usbcfg = readl(hsotg->regs + GUSBCFG);
/*
* HS PHY parameters. These parameters are preserved during soft reset
* so only program the first time. Do a soft reset immediately after
* setting phyif.
*/
switch (hsotg->core_params->phy_type) {
case DWC2_PHY_TYPE_PARAM_ULPI:
/* ULPI interface */
dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
if (hsotg->core_params->phy_ulpi_ddr > 0)
usbcfg |= GUSBCFG_DDRSEL;
break;
case DWC2_PHY_TYPE_PARAM_UTMI:
/* UTMI+ interface */
dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
if (hsotg->core_params->phy_utmi_width == 16)
usbcfg |= GUSBCFG_PHYIF16;
break;
default:
dev_err(hsotg->dev, "FS PHY selected at HS!\n");
break;
}
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset after setting the PHY parameters */
retval = dwc2_core_reset(hsotg);
if (retval) {
dev_err(hsotg->dev, "%s() Reset failed, aborting",
__func__);
return retval;
}
return retval;
}
static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg;
int retval = 0;
if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* If FS mode with FS PHY */
retval = dwc2_fs_phy_init(hsotg, select_phy);
if (retval)
return retval;
} else {
/* High speed PHY */
retval = dwc2_hs_phy_init(hsotg, select_phy);
if (retval)
return retval;
}
if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->core_params->ulpi_fs_ls > 0) {
dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_ULPI_FS_LS;
usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
writel(usbcfg, hsotg->regs + GUSBCFG);
} else {
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg &= ~GUSBCFG_ULPI_FS_LS;
usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
writel(usbcfg, hsotg->regs + GUSBCFG);
}
return retval;
}
static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
switch (hsotg->hw_params.arch) {
case GHWCFG2_EXT_DMA_ARCH:
dev_err(hsotg->dev, "External DMA Mode not supported\n");
return -EINVAL;
case GHWCFG2_INT_DMA_ARCH:
dev_dbg(hsotg->dev, "Internal DMA Mode\n");
if (hsotg->core_params->ahbcfg != -1) {
ahbcfg &= GAHBCFG_CTRL_MASK;
ahbcfg |= hsotg->core_params->ahbcfg &
~GAHBCFG_CTRL_MASK;
}
break;
case GHWCFG2_SLAVE_ONLY_ARCH:
default:
dev_dbg(hsotg->dev, "Slave Only Mode\n");
break;
}
dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
hsotg->core_params->dma_enable,
hsotg->core_params->dma_desc_enable);
if (hsotg->core_params->dma_enable > 0) {
if (hsotg->core_params->dma_desc_enable > 0)
dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
else
dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
} else {
dev_dbg(hsotg->dev, "Using Slave mode\n");
hsotg->core_params->dma_desc_enable = 0;
}
if (hsotg->core_params->dma_enable > 0)
ahbcfg |= GAHBCFG_DMA_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
return 0;
}
static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
switch (hsotg->hw_params.op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
if (hsotg->core_params->otg_cap ==
DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_HNPCAP;
if (hsotg->core_params->otg_cap !=
DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_SRPCAP;
break;
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
if (hsotg->core_params->otg_cap !=
DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_SRPCAP;
break;
case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
default:
break;
}
writel(usbcfg, hsotg->regs + GUSBCFG);
}
/**
* dwc2_core_init() - Initializes the DWC_otg controller registers and
* prepares the core for device mode or host mode operation
*
* @hsotg: Programming view of the DWC_otg controller
* @select_phy: If true then also set the Phy type
* @irq: If >= 0, the irq to register
*/
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
{
u32 usbcfg, otgctl;
int retval;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
usbcfg = readl(hsotg->regs + GUSBCFG);
/* Set ULPI External VBUS bit if needed */
usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
if (hsotg->core_params->phy_ulpi_ext_vbus ==
DWC2_PHY_ULPI_EXTERNAL_VBUS)
usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
/* Set external TS Dline pulsing bit if needed */
usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
if (hsotg->core_params->ts_dline > 0)
usbcfg |= GUSBCFG_TERMSELDLPULSE;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset the Controller */
retval = dwc2_core_reset(hsotg);
if (retval) {
dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
__func__);
return retval;
}
/*
* This needs to happen in FS mode before any other programming occurs
*/
retval = dwc2_phy_init(hsotg, select_phy);
if (retval)
return retval;
/* Program the GAHBCFG Register */
retval = dwc2_gahbcfg_init(hsotg);
if (retval)
return retval;
/* Program the GUSBCFG register */
dwc2_gusbcfg_init(hsotg);
/* Program the GOTGCTL register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_OTGVER;
if (hsotg->core_params->otg_ver > 0)
otgctl |= GOTGCTL_OTGVER;
writel(otgctl, hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
/* Clear the SRP success bit for FS-I2c */
hsotg->srp_success = 0;
if (irq >= 0) {
dev_dbg(hsotg->dev, "registering common handler for irq%d\n",
irq);
retval = devm_request_irq(hsotg->dev, irq,
dwc2_handle_common_intr, IRQF_SHARED,
dev_name(hsotg->dev), hsotg);
if (retval)
return retval;
}
/* Enable common interrupts */
dwc2_enable_common_interrupts(hsotg);
/*
* Do device or host intialization based on mode during PCD and
* HCD initialization
*/
if (dwc2_is_host_mode(hsotg)) {
dev_dbg(hsotg->dev, "Host Mode\n");
hsotg->op_state = OTG_STATE_A_HOST;
} else {
dev_dbg(hsotg->dev, "Device Mode\n");
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
}
return 0;
}
/**
* dwc2_enable_host_interrupts() - Enables the Host mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
dev_dbg(hsotg->dev, "%s()\n", __func__);
/* Disable all interrupts */
writel(0, hsotg->regs + GINTMSK);
writel(0, hsotg->regs + HAINTMSK);
/* Enable the common interrupts */
dwc2_enable_common_interrupts(hsotg);
/* Enable host mode interrupts without disturbing common interrupts */
intmsk = readl(hsotg->regs + GINTMSK);
intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
writel(intmsk, hsotg->regs + GINTMSK);
}
/**
* dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk = readl(hsotg->regs + GINTMSK);
/* Disable host mode interrupts without disturbing common interrupts */
intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
writel(intmsk, hsotg->regs + GINTMSK);
}
/*
* dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
* For system that have a total fifo depth that is smaller than the default
* RX + TX fifo size.
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
{
struct dwc2_core_params *params = hsotg->core_params;
struct dwc2_hw_params *hw = &hsotg->hw_params;
u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
total_fifo_size = hw->total_fifo_size;
rxfsiz = params->host_rx_fifo_size;
nptxfsiz = params->host_nperio_tx_fifo_size;
ptxfsiz = params->host_perio_tx_fifo_size;
/*
* Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
* allocation with support for high bandwidth endpoints. Synopsys
* defines MPS(Max Packet size) for a periodic EP=1024, and for
* non-periodic as 512.
*/
if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
/*
* For Buffer DMA mode/Scatter Gather DMA mode
* 2 * ((Largest Packet size / 4) + 1 + 1) + n
* with n = number of host channel.
* 2 * ((1024/4) + 2) = 516
*/
rxfsiz = 516 + hw->host_channels;
/*
* min non-periodic tx fifo depth
* 2 * (largest non-periodic USB packet used / 4)
* 2 * (512/4) = 256
*/
nptxfsiz = 256;
/*
* min periodic tx fifo depth
* (largest packet size*MC)/4
* (1024 * 3)/4 = 768
*/
ptxfsiz = 768;
params->host_rx_fifo_size = rxfsiz;
params->host_nperio_tx_fifo_size = nptxfsiz;
params->host_perio_tx_fifo_size = ptxfsiz;
}
/*
* If the summation of RX, NPTX and PTX fifo sizes is still
* bigger than the total_fifo_size, then we have a problem.
*
* We won't be able to allocate as many endpoints. Right now,
* we're just printing an error message, but ideally this FIFO
* allocation algorithm would be improved in the future.
*
* FIXME improve this FIFO allocation algorithm.
*/
if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
dev_err(hsotg->dev, "invalid fifo sizes\n");
}
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
struct dwc2_core_params *params = hsotg->core_params;
u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
if (!params->enable_dynamic_fifo)
return;
dwc2_calculate_dynamic_fifo(hsotg);
/* Rx FIFO */
grxfsiz = readl(hsotg->regs + GRXFSIZ);
dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
grxfsiz |= params->host_rx_fifo_size <<
GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
writel(grxfsiz, hsotg->regs + GRXFSIZ);
dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
/* Non-periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
readl(hsotg->regs + GNPTXFSIZ));
nptxfsiz = params->host_nperio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
nptxfsiz |= params->host_rx_fifo_size <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
readl(hsotg->regs + GNPTXFSIZ));
/* Periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
readl(hsotg->regs + HPTXFSIZ));
hptxfsiz = params->host_perio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
hptxfsiz |= (params->host_rx_fifo_size +
params->host_nperio_tx_fifo_size) <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
readl(hsotg->regs + HPTXFSIZ));
if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
/*
* Global DFIFOCFG calculation for Host mode -
* include RxFIFO, NPTXFIFO and HPTXFIFO
*/
dfifocfg = readl(hsotg->regs + GDFIFOCFG);
dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
dfifocfg |= (params->host_rx_fifo_size +
params->host_nperio_tx_fifo_size +
params->host_perio_tx_fifo_size) <<
GDFIFOCFG_EPINFOBASE_SHIFT &
GDFIFOCFG_EPINFOBASE_MASK;
writel(dfifocfg, hsotg->regs + GDFIFOCFG);
}
}
/**
* dwc2_core_host_init() - Initializes the DWC_otg controller registers for
* Host mode
*
* @hsotg: Programming view of DWC_otg controller
*
* This function flushes the Tx and Rx FIFOs and flushes any entries in the
* request queues. Host channels are reset to ensure that they are ready for
* performing transfers.
*/
void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
u32 hcfg, hfir, otgctl;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
/* Restart the Phy Clock */
writel(0, hsotg->regs + PCGCTL);
/* Initialize Host Configuration Register */
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
hcfg = readl(hsotg->regs + HCFG);
hcfg |= HCFG_FSLSSUPP;
writel(hcfg, hsotg->regs + HCFG);
}
/*
* This bit allows dynamic reloading of the HFIR register during
* runtime. This bit needs to be programmed during initial configuration
* and its value must not be changed during runtime.
*/
if (hsotg->core_params->reload_ctl > 0) {
hfir = readl(hsotg->regs + HFIR);
hfir |= HFIR_RLDCTRL;
writel(hfir, hsotg->regs + HFIR);
}
if (hsotg->core_params->dma_desc_enable > 0) {
u32 op_mode = hsotg->hw_params.op_mode;
if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
!hsotg->hw_params.dma_desc_enable ||
op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
dev_err(hsotg->dev,
"Hardware does not support descriptor DMA mode -\n");
dev_err(hsotg->dev,
"falling back to buffer DMA mode.\n");
hsotg->core_params->dma_desc_enable = 0;
} else {
hcfg = readl(hsotg->regs + HCFG);
hcfg |= HCFG_DESCDMA;
writel(hcfg, hsotg->regs + HCFG);
}
}
/* Configure data FIFO sizes */
dwc2_config_fifos(hsotg);
/* TODO - check this */
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
writel(otgctl, hsotg->regs + GOTGCTL);
/* Make sure the FIFOs are flushed */
dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
dwc2_flush_rx_fifo(hsotg);
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
writel(otgctl, hsotg->regs + GOTGCTL);
if (hsotg->core_params->dma_desc_enable <= 0) {
int num_channels, i;
u32 hcchar;
/* Flush out any leftover queued requests */
num_channels = hsotg->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
hcchar = readl(hsotg->regs + HCCHAR(i));
hcchar &= ~HCCHAR_CHENA;
hcchar |= HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
writel(hcchar, hsotg->regs + HCCHAR(i));
}
/* Halt all channels to put them into a known state */
for (i = 0; i < num_channels; i++) {
int count = 0;
hcchar = readl(hsotg->regs + HCCHAR(i));
hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
writel(hcchar, hsotg->regs + HCCHAR(i));
dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
__func__, i);
do {
hcchar = readl(hsotg->regs + HCCHAR(i));
if (++count > 1000) {
dev_err(hsotg->dev,
"Unable to clear enable on channel %d\n",
i);
break;
}
udelay(1);
} while (hcchar & HCCHAR_CHENA);
}
}
/* Turn on the vbus power */
dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
if (hsotg->op_state == OTG_STATE_A_HOST) {
u32 hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
!!(hprt0 & HPRT0_PWR));
if (!(hprt0 & HPRT0_PWR)) {
hprt0 |= HPRT0_PWR;
writel(hprt0, hsotg->regs + HPRT0);
}
}
dwc2_enable_host_interrupts(hsotg);
}
static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
switch (chan->ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
dev_vdbg(hsotg->dev, "control/bulk\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_BBLERR;
} else {
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_NYET;
if (chan->do_ping)
hcintmsk |= HCINTMSK_ACK;
}
if (chan->do_split) {
hcintmsk |= HCINTMSK_NAK;
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
break;
case USB_ENDPOINT_XFER_INT:
if (dbg_perio())
dev_vdbg(hsotg->dev, "intr\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
hcintmsk |= HCINTMSK_FRMOVRUN;
if (chan->ep_is_in)
hcintmsk |= HCINTMSK_BBLERR;
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
if (chan->do_split) {
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
break;
case USB_ENDPOINT_XFER_ISOC:
if (dbg_perio())
dev_vdbg(hsotg->dev, "isoc\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_FRMOVRUN;
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_BBLERR;
}
break;
default:
dev_err(hsotg->dev, "## Unknown EP type ##\n");
break;
}
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
/*
* For Descriptor DMA mode core halts the channel on AHB error.
* Interrupt is not required.
*/
if (hsotg->core_params->dma_desc_enable <= 0) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcintmsk |= HCINTMSK_AHBERR;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA enabled\n");
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
hcintmsk |= HCINTMSK_XFERCOMPL;
}
if (chan->error_state && !chan->do_split &&
chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "setting ACK\n");
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_type != USB_ENDPOINT_XFER_INT)
hcintmsk |= HCINTMSK_NAK;
}
}
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 intmsk;
if (hsotg->core_params->dma_enable > 0) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA enabled\n");
dwc2_hc_enable_dma_ints(hsotg, chan);
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA disabled\n");
dwc2_hc_enable_slave_ints(hsotg, chan);
}
/* Enable the top level host channel interrupt */
intmsk = readl(hsotg->regs + HAINTMSK);
intmsk |= 1 << chan->hc_num;
writel(intmsk, hsotg->regs + HAINTMSK);
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
/* Make sure host channel interrupts are enabled */
intmsk = readl(hsotg->regs + GINTMSK);
intmsk |= GINTSTS_HCHINT;
writel(intmsk, hsotg->regs + GINTMSK);
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
}
/**
* dwc2_hc_init() - Prepares a host channel for transferring packets to/from
* a specific endpoint
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The HCCHARn register is set up with the characteristics specified in chan.
* Host channel interrupts that may need to be serviced while this transfer is
* in progress are enabled.
*/
void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u8 hc_num = chan->hc_num;
u32 hcintmsk;
u32 hcchar;
u32 hcsplt = 0;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Clear old interrupt conditions for this host channel */
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
writel(hcintmsk, hsotg->regs + HCINT(hc_num));
/* Enable channel interrupts required for this transfer */
dwc2_hc_enable_ints(hsotg, chan);
/*
* Program the HCCHARn register with the endpoint characteristics for
* the current transfer
*/
hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
if (chan->ep_is_in)
hcchar |= HCCHAR_EPDIR;
if (chan->speed == USB_SPEED_LOW)
hcchar |= HCCHAR_LSPDDEV;
hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
writel(hcchar, hsotg->regs + HCCHAR(hc_num));
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
hc_num, hcchar);
dev_vdbg(hsotg->dev, "%s: Channel %d\n",
__func__, hc_num);
dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
chan->dev_addr);
dev_vdbg(hsotg->dev, " Ep Num: %d\n",
chan->ep_num);
dev_vdbg(hsotg->dev, " Is In: %d\n",
chan->ep_is_in);
dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
chan->speed == USB_SPEED_LOW);
dev_vdbg(hsotg->dev, " Ep Type: %d\n",
chan->ep_type);
dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
chan->max_packet);
}
/* Program the HCSPLT register for SPLITs */
if (chan->do_split) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev,
"Programming HC %d with split --> %s\n",
hc_num,
chan->complete_split ? "CSPLIT" : "SSPLIT");
if (chan->complete_split)
hcsplt |= HCSPLT_COMPSPLT;
hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
HCSPLT_XACTPOS_MASK;
hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
HCSPLT_HUBADDR_MASK;
hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
HCSPLT_PRTADDR_MASK;
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, " comp split %d\n",
chan->complete_split);
dev_vdbg(hsotg->dev, " xact pos %d\n",
chan->xact_pos);
dev_vdbg(hsotg->dev, " hub addr %d\n",
chan->hub_addr);
dev_vdbg(hsotg->dev, " hub port %d\n",
chan->hub_port);
dev_vdbg(hsotg->dev, " is_in %d\n",
chan->ep_is_in);
dev_vdbg(hsotg->dev, " Max Pkt %d\n",
chan->max_packet);
dev_vdbg(hsotg->dev, " xferlen %d\n",
chan->xfer_len);
}
}
writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
}
/**
* dwc2_hc_halt() - Attempts to halt a host channel
*
* @hsotg: Controller register interface
* @chan: Host channel to halt
* @halt_status: Reason for halting the channel
*
* This function should only be called in Slave mode or to abort a transfer in
* either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
* controller halts the channel when the transfer is complete or a condition
* occurs that requires application intervention.
*
* In slave mode, checks for a free request queue entry, then sets the Channel
* Enable and Channel Disable bits of the Host Channel Characteristics
* register of the specified channel to intiate the halt. If there is no free
* request queue entry, sets only the Channel Disable bit of the HCCHARn
* register to flush requests for this channel. In the latter case, sets a
* flag to indicate that the host channel needs to be halted when a request
* queue slot is open.
*
* In DMA mode, always sets the Channel Enable and Channel Disable bits of the
* HCCHARn register. The controller ensures there is space in the request
* queue before submitting the halt request.
*
* Some time may elapse before the core flushes any posted requests for this
* host channel and halts. The Channel Halted interrupt handler completes the
* deactivation of the host channel.
*/
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status)
{
u32 nptxsts, hptxsts, hcchar;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
halt_status == DWC2_HC_XFER_AHB_ERR) {
/*
* Disable all channel interrupts except Ch Halted. The QTD
* and QH state associated with this transfer has been cleared
* (in the case of URB_DEQUEUE), so the channel needs to be
* shut down carefully to prevent crashes.
*/
u32 hcintmsk = HCINTMSK_CHHLTD;
dev_vdbg(hsotg->dev, "dequeue/error\n");
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
/*
* Make sure no other interrupts besides halt are currently
* pending. Handling another interrupt could cause a crash due
* to the QTD and QH state.
*/
writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
/*
* Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
* even if the channel was already halted for some other
* reason
*/
chan->halt_status = halt_status;
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
if (!(hcchar & HCCHAR_CHENA)) {
/*
* The channel is either already halted or it hasn't
* started yet. In DMA mode, the transfer may halt if
* it finishes normally or a condition occurs that
* requires driver intervention. Don't want to halt
* the channel again. In either Slave or DMA mode,
* it's possible that the transfer has been assigned
* to a channel, but not started yet when an URB is
* dequeued. Don't want to halt a channel that hasn't
* started yet.
*/
return;
}
}
if (chan->halt_pending) {
/*
* A halt has already been issued for this channel. This might
* happen when a transfer is aborted by a higher level in
* the stack.
*/
dev_vdbg(hsotg->dev,
"*** %s: Channel %d, chan->halt_pending already set ***\n",
__func__, chan->hc_num);
return;
}
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
/* No need to set the bit in DDMA for disabling the channel */
/* TODO check it everywhere channel is disabled */
if (hsotg->core_params->dma_desc_enable <= 0) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcchar |= HCCHAR_CHENA;
} else {
if (dbg_hc(chan))
dev_dbg(hsotg->dev, "desc DMA enabled\n");
}
hcchar |= HCCHAR_CHDIS;
if (hsotg->core_params->dma_enable <= 0) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA not enabled\n");
hcchar |= HCCHAR_CHENA;
/* Check for space in the request queue to issue the halt */
if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
chan->ep_type == USB_ENDPOINT_XFER_BULK) {
dev_vdbg(hsotg->dev, "control/bulk\n");
nptxsts = readl(hsotg->regs + GNPTXSTS);
if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
} else {
if (dbg_perio())
dev_vdbg(hsotg->dev, "isoc/intr\n");
hptxsts = readl(hsotg->regs + HPTXSTS);
if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
hsotg->queuing_high_bandwidth) {
if (dbg_perio())
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
}
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA enabled\n");
}
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
chan->halt_status = halt_status;
if (hcchar & HCCHAR_CHENA) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Channel enabled\n");
chan->halt_pending = 1;
chan->halt_on_queue = 0;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Channel disabled\n");
chan->halt_on_queue = 1;
}
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
hcchar);
dev_vdbg(hsotg->dev, " halt_pending: %d\n",
chan->halt_pending);
dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
chan->halt_on_queue);
dev_vdbg(hsotg->dev, " halt_status: %d\n",
chan->halt_status);
}
}
/**
* dwc2_hc_cleanup() - Clears the transfer state for a host channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to clean up
*
* This function is normally called after a transfer is done and the host
* channel is being released
*/
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u32 hcintmsk;
chan->xfer_started = 0;
/*
* Clear channel interrupt enables and any unhandled channel interrupt
* conditions
*/
writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
}
/**
* dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
* which frame a periodic transfer should occur
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to set up and its properties
* @hcchar: Current value of the HCCHAR register for the specified host channel
*
* This function has no effect on non-periodic transfers
*/
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, u32 *hcchar)
{
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
/* 1 if _next_ frame is odd, 0 if it's even */
if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
*hcchar |= HCCHAR_ODDFRM;
}
}
static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
/* Set up the initial PID for the transfer */
if (chan->speed == USB_SPEED_HIGH) {
if (chan->ep_is_in) {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else if (chan->multi_count == 2)
chan->data_pid_start = DWC2_HC_PID_DATA1;
else
chan->data_pid_start = DWC2_HC_PID_DATA2;
} else {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else
chan->data_pid_start = DWC2_HC_PID_MDATA;
}
} else {
chan->data_pid_start = DWC2_HC_PID_DATA0;
}
}
/**
* dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
* the Host Channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. For a channel associated
* with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
* associated with a periodic EP, the periodic Tx FIFO is written.
*
* Upon return the xfer_buf and xfer_count fields in chan are incremented by
* the number of bytes written to the Tx FIFO.
*/
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 i;
u32 remaining_count;
u32 byte_count;
u32 dword_count;
u32 __iomem *data_fifo;
u32 *data_buf = (u32 *)chan->xfer_buf;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
remaining_count = chan->xfer_len - chan->xfer_count;
if (remaining_count > chan->max_packet)
byte_count = chan->max_packet;
else
byte_count = remaining_count;
dword_count = (byte_count + 3) / 4;
if (((unsigned long)data_buf & 0x3) == 0) {
/* xfer_buf is DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++)
writel(*data_buf, data_fifo);
} else {
/* xfer_buf is not DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++) {
u32 data = data_buf[0] | data_buf[1] << 8 |
data_buf[2] << 16 | data_buf[3] << 24;
writel(data, data_fifo);
}
}
chan->xfer_count += byte_count;
chan->xfer_buf += byte_count;
}
/**
* dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
* channel and starts the transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel. The xfer_len value
* may be reduced to accommodate the max widths of the XferSize and
* PktCnt fields in the HCTSIZn register. The multi_count value may be
* changed to reflect the final xfer_len value.
*
* This function may be called in either Slave mode or DMA mode. In Slave mode,
* the caller must ensure that there is sufficient space in the request queue
* and Tx Data FIFO.
*
* For an OUT transfer in Slave mode, it loads a data packet into the
* appropriate FIFO. If necessary, additional data packets are loaded in the
* Host ISR.
*
* For an IN transfer in Slave mode, a data packet is requested. The data
* packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
* additional data packets are requested in the Host ISR.
*
* For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
* register along with a packet count of 1 and the channel is enabled. This
* causes a single PING transaction to occur. Other fields in HCTSIZ are
* simply set to 0 since no data transfer occurs in this case.
*
* For a PING transfer in DMA mode, the HCTSIZ register is initialized with
* all the information required to perform the subsequent data transfer. In
* addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
* controller performs the entire PING protocol, then starts the data
* transfer.
*/
void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
u32 hcchar;
u32 hctsiz = 0;
u16 num_packets;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (chan->do_ping) {
if (hsotg->core_params->dma_enable <= 0) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "ping, no DMA\n");
dwc2_hc_do_ping(hsotg, chan);
chan->xfer_started = 1;
return;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "ping, DMA\n");
hctsiz |= TSIZ_DOPNG;
}
}
if (chan->do_split) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "split\n");
num_packets = 1;
if (chan->complete_split && !chan->ep_is_in)
/*
* For CSPLIT OUT Transfer, set the size to 0 so the
* core doesn't expect any data written to the FIFO
*/
chan->xfer_len = 0;
else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
chan->xfer_len = chan->max_packet;
else if (!chan->ep_is_in && chan->xfer_len > 188)
chan->xfer_len = 188;
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "no split\n");
/*
* Ensure that the transfer length and packet count will fit
* in the widths allocated for them in the HCTSIZn register
*/
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
/*
* Make sure the transfer size is no larger than one
* (micro)frame's worth of data. (A check was done
* when the periodic transfer was accepted to ensure
* that a (micro)frame's worth of data can be
* programmed into a channel.)
*/
u32 max_periodic_len =
chan->multi_count * chan->max_packet;
if (chan->xfer_len > max_periodic_len)
chan->xfer_len = max_periodic_len;
} else if (chan->xfer_len > max_hc_xfer_size) {
/*
* Make sure that xfer_len is a multiple of max packet
* size
*/
chan->xfer_len =
max_hc_xfer_size - chan->max_packet + 1;
}
if (chan->xfer_len > 0) {
num_packets = (chan->xfer_len + chan->max_packet - 1) /
chan->max_packet;
if (num_packets > max_hc_pkt_count) {
num_packets = max_hc_pkt_count;
chan->xfer_len = num_packets * chan->max_packet;
}
} else {
/* Need 1 packet for transfer length of 0 */
num_packets = 1;
}
if (chan->ep_is_in)
/*
* Always program an integral # of max packets for IN
* transfers
*/
chan->xfer_len = num_packets * chan->max_packet;
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
/*
* Make sure that the multi_count field matches the
* actual transfer length
*/
chan->multi_count = num_packets;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
}
chan->start_pkt_count = num_packets;
hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
hctsiz, chan->hc_num);
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
(hctsiz & TSIZ_XFERSIZE_MASK) >>
TSIZ_XFERSIZE_SHIFT);
dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
(hctsiz & TSIZ_PKTCNT_MASK) >>
TSIZ_PKTCNT_SHIFT);
dev_vdbg(hsotg->dev, " Start PID: %d\n",
(hctsiz & TSIZ_SC_MC_PID_MASK) >>
TSIZ_SC_MC_PID_SHIFT);
}
if (hsotg->core_params->dma_enable > 0) {
dma_addr_t dma_addr;
if (chan->align_buf) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "align_buf\n");
dma_addr = chan->align_buf;
} else {
dma_addr = chan->xfer_dma;
}
writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
(unsigned long)dma_addr, chan->hc_num);
}
/* Start the split */
if (chan->do_split) {
u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
hcsplt |= HCSPLT_SPLTENA;
writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
}
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK;
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
(hcchar & HCCHAR_MULTICNT_MASK) >>
HCCHAR_MULTICNT_SHIFT);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
if (hsotg->core_params->dma_enable <= 0 &&
!chan->ep_is_in && chan->xfer_len > 0)
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
}
/**
* dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
* host channel and starts the transfer in Descriptor DMA mode
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
* Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
* with micro-frame bitmap.
*
* Initializes HCDMA register with descriptor list address and CTD value then
* starts the transfer via enabling the channel.
*/
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hc_dma;
u32 hctsiz = 0;
if (chan->do_ping)
hctsiz |= TSIZ_DOPNG;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
/* Non-zero only for high-speed interrupt endpoints */
hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " Start PID: %d\n",
chan->data_pid_start);
dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
}
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
/* Always start from first descriptor */
hc_dma &= ~HCDMA_CTD_MASK;
writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
hc_dma, chan->hc_num);
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK;
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
(hcchar & HCCHAR_MULTICNT_MASK) >>
HCCHAR_MULTICNT_SHIFT);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
}
/**
* dwc2_hc_continue_transfer() - Continues a data transfer that was started by
* a previous call to dwc2_hc_start_transfer()
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The caller must ensure there is sufficient space in the request queue and Tx
* Data FIFO. This function should only be called in Slave mode. In DMA mode,
* the controller acts autonomously to complete transfers programmed to a host
* channel.
*
* For an OUT transfer, a new data packet is loaded into the appropriate FIFO
* if there is any data remaining to be queued. For an IN transfer, another
* data packet is always requested. For the SETUP phase of a control transfer,
* this function does nothing.
*
* Return: 1 if a new request is queued, 0 if no more requests are required
* for this transfer
*/
int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
if (chan->do_split)
/* SPLITs always queue just once per channel */
return 0;
if (chan->data_pid_start == DWC2_HC_PID_SETUP)
/* SETUPs are queued only once since they can't be NAK'd */
return 0;
if (chan->ep_is_in) {
/*
* Always queue another request for other IN transfers. If
* back-to-back INs are issued and NAKs are received for both,
* the driver may still be processing the first NAK when the
* second NAK is received. When the interrupt handler clears
* the NAK interrupt for the first NAK, the second NAK will
* not be seen. So we can't depend on the NAK interrupt
* handler to requeue a NAK'd request. Instead, IN requests
* are issued each time this function is called. When the
* transfer completes, the extra requests for the channel will
* be flushed.
*/
u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
hcchar);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
chan->requests++;
return 1;
}
/* OUT transfers */
if (chan->xfer_count < chan->xfer_len) {
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
u32 hcchar = readl(hsotg->regs +
HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan,
&hcchar);
}
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
chan->requests++;
return 1;
}
return 0;
}
/**
* dwc2_hc_do_ping() - Starts a PING transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. The Do Ping bit is set in
* the HCTSIZ register, then the channel is enabled.
*/
void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hctsiz;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
hctsiz = TSIZ_DOPNG;
hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
}
/**
* dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
* the HFIR register according to PHY type and speed
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: The caller can modify the value of the HFIR register only after the
* Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
* has been set
*/
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
u32 hprt0;
int clock = 60; /* default value */
usbcfg = readl(hsotg->regs + GUSBCFG);
hprt0 = readl(hsotg->regs + HPRT0);
if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
!(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
clock = 48;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 30;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
clock = 48;
if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
/* High speed case */
return 125 * clock;
else
/* FS/LS case */
return 1000 * clock;
}
/**
* dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
* buffer
*
* @core_if: Programming view of DWC_otg controller
* @dest: Destination buffer for the packet
* @bytes: Number of bytes to copy to the destination
*/
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
u32 *data_buf = (u32 *)dest;
int word_count = (bytes + 3) / 4;
int i;
/*
* Todo: Account for the case where dest is not dword aligned. This
* requires reading data from the FIFO into a u32 temp buffer, then
* moving it into the data buffer.
*/
dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
for (i = 0; i < word_count; i++, data_buf++)
*data_buf = readl(fifo);
}
/**
* dwc2_dump_host_registers() - Prints the host registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
int i;
dev_dbg(hsotg->dev, "Host Global Registers\n");
addr = hsotg->regs + HCFG;
dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HFIR;
dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HFNUM;
dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HPTXSTS;
dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HAINT;
dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HAINTMSK;
dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
if (hsotg->core_params->dma_desc_enable > 0) {
addr = hsotg->regs + HFLBADDR;
dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
}
addr = hsotg->regs + HPRT0;
dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
for (i = 0; i < hsotg->core_params->host_channels; i++) {
dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
addr = hsotg->regs + HCCHAR(i);
dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCSPLT(i);
dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCINT(i);
dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCINTMSK(i);
dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCTSIZ(i);
dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCDMA(i);
dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
if (hsotg->core_params->dma_desc_enable > 0) {
addr = hsotg->regs + HCDMAB(i);
dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
}
}
#endif
}
/**
* dwc2_dump_global_registers() - Prints the core global registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
dev_dbg(hsotg->dev, "Core Global Registers\n");
addr = hsotg->regs + GOTGCTL;
dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GOTGINT;
dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GAHBCFG;
dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GUSBCFG;
dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRSTCTL;
dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GINTSTS;
dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GINTMSK;
dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRXSTSR;
dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRXFSIZ;
dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GNPTXFSIZ;
dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GNPTXSTS;
dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GI2CCTL;
dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GPVNDCTL;
dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GGPIO;
dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GUID;
dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GSNPSID;
dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG1;
dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG2;
dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG3;
dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG4;
dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GLPMCFG;
dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GPWRDN;
dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GDFIFOCFG;
dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HPTXFSIZ;
dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + PCGCTL;
dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
#endif
}
/**
* dwc2_flush_tx_fifo() - Flushes a Tx FIFO
*
* @hsotg: Programming view of DWC_otg controller
* @num: Tx FIFO to flush
*/
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
greset = GRSTCTL_TXFFLSH;
greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
writel(greset, hsotg->regs + GRSTCTL);
do {
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 10000) {
dev_warn(hsotg->dev,
"%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
__func__, greset,
readl(hsotg->regs + GNPTXSTS));
break;
}
udelay(1);
} while (greset & GRSTCTL_TXFFLSH);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
/**
* dwc2_flush_rx_fifo() - Flushes the Rx FIFO
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
greset = GRSTCTL_RXFFLSH;
writel(greset, hsotg->regs + GRSTCTL);
do {
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 10000) {
dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
__func__, greset);
break;
}
udelay(1);
} while (greset & GRSTCTL_RXFFLSH);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
#define DWC2_OUT_OF_BOUNDS(a, b, c) ((a) < (b) || (a) > (c))
/* Parameter access functions */
void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
switch (val) {
case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
valid = 0;
break;
case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
switch (hsotg->hw_params.op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
break;
default:
valid = 0;
break;
}
break;
case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
/* always valid */
break;
default:
valid = 0;
break;
}
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for otg_cap parameter. Check HW configuration.\n",
val);
switch (hsotg->hw_params.op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
break;
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
break;
default:
val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
break;
}
dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
}
hsotg->core_params->otg_cap = val;
}
void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for dma_enable parameter. Check HW configuration.\n",
val);
val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
}
hsotg->core_params->dma_enable = val;
}
void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
!hsotg->hw_params.dma_desc_enable))
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
val);
val = (hsotg->core_params->dma_enable > 0 &&
hsotg->hw_params.dma_desc_enable);
dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
}
hsotg->core_params->dma_desc_enable = val;
}
void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for host_support_fs_low_power\n");
dev_err(hsotg->dev,
"host_support_fs_low_power must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev,
"Setting host_support_fs_low_power to %d\n", val);
}
hsotg->core_params->host_support_fs_ls_low_power = val;
}
void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
val);
val = hsotg->hw_params.enable_dynamic_fifo;
dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
}
hsotg->core_params->enable_dynamic_fifo = val;
}
void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
val);
val = hsotg->hw_params.host_rx_fifo_size;
dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
}
hsotg->core_params->host_rx_fifo_size = val;
}
void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
val);
val = hsotg->hw_params.host_nperio_tx_fifo_size;
dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
val);
}
hsotg->core_params->host_nperio_tx_fifo_size = val;
}
void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
val);
val = hsotg->hw_params.host_perio_tx_fifo_size;
dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
val);
}
hsotg->core_params->host_perio_tx_fifo_size = val;
}
void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for max_transfer_size. Check HW configuration.\n",
val);
val = hsotg->hw_params.max_transfer_size;
dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
}
hsotg->core_params->max_transfer_size = val;
}
void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 15 || val > hsotg->hw_params.max_packet_count)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for max_packet_count. Check HW configuration.\n",
val);
val = hsotg->hw_params.max_packet_count;
dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
}
hsotg->core_params->max_packet_count = val;
}
void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (val < 1 || val > hsotg->hw_params.host_channels)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_channels. Check HW configuration.\n",
val);
val = hsotg->hw_params.host_channels;
dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
}
hsotg->core_params->host_channels = val;
}
void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
{
int valid = 0;
u32 hs_phy_type, fs_phy_type;
if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
DWC2_PHY_TYPE_PARAM_ULPI)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for phy_type\n");
dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
}
valid = 0;
}
hs_phy_type = hsotg->hw_params.hs_phy_type;
fs_phy_type = hsotg->hw_params.fs_phy_type;
if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
(hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
valid = 1;
else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
(hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
valid = 1;
else if (val == DWC2_PHY_TYPE_PARAM_FS &&
fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
valid = 1;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for phy_type. Check HW configuration.\n",
val);
val = DWC2_PHY_TYPE_PARAM_FS;
if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
val = DWC2_PHY_TYPE_PARAM_UTMI;
else
val = DWC2_PHY_TYPE_PARAM_ULPI;
}
dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
}
hsotg->core_params->phy_type = val;
}
static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
{
return hsotg->core_params->phy_type;
}
void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for speed parameter\n");
dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
}
valid = 0;
}
if (val == DWC2_SPEED_PARAM_HIGH &&
dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for speed parameter. Check HW configuration.\n",
val);
val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
}
hsotg->core_params->speed = val;
}
void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for host_ls_low_power_phy_clk parameter\n");
dev_err(hsotg->dev,
"host_ls_low_power_phy_clk must be 0 or 1\n");
}
valid = 0;
}
if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
val);
val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
val);
}
hsotg->core_params->host_ls_low_power_phy_clk = val;
}
void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
}
hsotg->core_params->phy_ulpi_ddr = val;
}
void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for phy_ulpi_ext_vbus\n");
dev_err(hsotg->dev,
"phy_ulpi_ext_vbus must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
}
hsotg->core_params->phy_ulpi_ext_vbus = val;
}
void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
{
int valid = 0;
switch (hsotg->hw_params.utmi_phy_data_width) {
case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
valid = (val == 8);
break;
case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
valid = (val == 16);
break;
case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
valid = (val == 8 || val == 16);
break;
}
if (!valid) {
if (val >= 0) {
dev_err(hsotg->dev,
"%d invalid for phy_utmi_width. Check HW configuration.\n",
val);
}
val = (hsotg->hw_params.utmi_phy_data_width ==
GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
}
hsotg->core_params->phy_utmi_width = val;
}
void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
}
hsotg->core_params->ulpi_fs_ls = val;
}
void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for ts_dline\n");
dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
}
hsotg->core_params->ts_dline = val;
}
void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
}
valid = 0;
}
if (val == 1 && !(hsotg->hw_params.i2c_enable))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for i2c_enable. Check HW configuration.\n",
val);
val = hsotg->hw_params.i2c_enable;
dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
}
hsotg->core_params->i2c_enable = val;
}
void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for en_multiple_tx_fifo,\n");
dev_err(hsotg->dev,
"en_multiple_tx_fifo must be 0 or 1\n");
}
valid = 0;
}
if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
val);
val = hsotg->hw_params.en_multiple_tx_fifo;
dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
}
hsotg->core_params->en_multiple_tx_fifo = val;
}
void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter reload_ctl\n", val);
dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
}
valid = 0;
}
if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for parameter reload_ctl. Check HW configuration.\n",
val);
val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
}
hsotg->core_params->reload_ctl = val;
}
void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
{
if (val != -1)
hsotg->core_params->ahbcfg = val;
else
hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
GAHBCFG_HBSTLEN_SHIFT;
}
void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter otg_ver\n", val);
dev_err(hsotg->dev,
"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
}
hsotg->core_params->otg_ver = val;
}
static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
{
if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter uframe_sched\n",
val);
dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
}
val = 1;
dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
}
hsotg->core_params->uframe_sched = val;
}
/*
* This function is called during module intialization to pass module parameters
* for the DWC_otg core.
*/
void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
const struct dwc2_core_params *params)
{
dev_dbg(hsotg->dev, "%s()\n", __func__);
dwc2_set_param_otg_cap(hsotg, params->otg_cap);
dwc2_set_param_dma_enable(hsotg, params->dma_enable);
dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
dwc2_set_param_host_support_fs_ls_low_power(hsotg,
params->host_support_fs_ls_low_power);
dwc2_set_param_enable_dynamic_fifo(hsotg,
params->enable_dynamic_fifo);
dwc2_set_param_host_rx_fifo_size(hsotg,
params->host_rx_fifo_size);
dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
params->host_nperio_tx_fifo_size);
dwc2_set_param_host_perio_tx_fifo_size(hsotg,
params->host_perio_tx_fifo_size);
dwc2_set_param_max_transfer_size(hsotg,
params->max_transfer_size);
dwc2_set_param_max_packet_count(hsotg,
params->max_packet_count);
dwc2_set_param_host_channels(hsotg, params->host_channels);
dwc2_set_param_phy_type(hsotg, params->phy_type);
dwc2_set_param_speed(hsotg, params->speed);
dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
params->host_ls_low_power_phy_clk);
dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
params->phy_ulpi_ext_vbus);
dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
dwc2_set_param_ts_dline(hsotg, params->ts_dline);
dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
dwc2_set_param_en_multiple_tx_fifo(hsotg,
params->en_multiple_tx_fifo);
dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
dwc2_set_param_otg_ver(hsotg, params->otg_ver);
dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
}
/**
* During device initialization, read various hardware configuration
* registers and interpret the contents.
*/
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
{
struct dwc2_hw_params *hw = &hsotg->hw_params;
unsigned width;
u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
u32 hptxfsiz, grxfsiz, gnptxfsiz;
u32 gusbcfg;
/*
* Attempt to ensure this device is really a DWC_otg Controller.
* Read and verify the GSNPSID register contents. The value should be
* 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
* as in "OTG version 2.xx" or "OTG version 3.xx".
*/
hw->snpsid = readl(hsotg->regs + GSNPSID);
if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
(hw->snpsid & 0xfffff000) != 0x4f543000) {
dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
hw->snpsid);
return -ENODEV;
}
dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
hwcfg1 = readl(hsotg->regs + GHWCFG1);
hwcfg2 = readl(hsotg->regs + GHWCFG2);
hwcfg3 = readl(hsotg->regs + GHWCFG3);
hwcfg4 = readl(hsotg->regs + GHWCFG4);
gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
grxfsiz = readl(hsotg->regs + GRXFSIZ);
dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
/* Force host mode to get HPTXFSIZ exact power on value */
gusbcfg = readl(hsotg->regs + GUSBCFG);
gusbcfg |= GUSBCFG_FORCEHOSTMODE;
writel(gusbcfg, hsotg->regs + GUSBCFG);
usleep_range(100000, 150000);
hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
gusbcfg = readl(hsotg->regs + GUSBCFG);
gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
writel(gusbcfg, hsotg->regs + GUSBCFG);
usleep_range(100000, 150000);
/* hwcfg2 */
hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
GHWCFG2_OP_MODE_SHIFT;
hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
GHWCFG2_ARCHITECTURE_SHIFT;
hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
GHWCFG2_NUM_HOST_CHAN_SHIFT);
hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
GHWCFG2_HS_PHY_TYPE_SHIFT;
hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
GHWCFG2_FS_PHY_TYPE_SHIFT;
hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
GHWCFG2_NUM_DEV_EP_SHIFT;
hw->nperio_tx_q_depth =
(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
hw->host_perio_tx_q_depth =
(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
hw->dev_token_q_depth =
(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
/* hwcfg3 */
width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
hw->max_transfer_size = (1 << (width + 11)) - 1;
width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
hw->max_packet_count = (1 << (width + 4)) - 1;
hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
GHWCFG3_DFIFO_DEPTH_SHIFT;
/* hwcfg4 */
hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
/* fifo sizes */
hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
GRXFSIZ_DEPTH_SHIFT;
hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
FIFOSIZE_DEPTH_SHIFT;
hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
FIFOSIZE_DEPTH_SHIFT;
dev_dbg(hsotg->dev, "Detected values from hardware:\n");
dev_dbg(hsotg->dev, " op_mode=%d\n",
hw->op_mode);
dev_dbg(hsotg->dev, " arch=%d\n",
hw->arch);
dev_dbg(hsotg->dev, " dma_desc_enable=%d\n",
hw->dma_desc_enable);
dev_dbg(hsotg->dev, " power_optimized=%d\n",
hw->power_optimized);
dev_dbg(hsotg->dev, " i2c_enable=%d\n",
hw->i2c_enable);
dev_dbg(hsotg->dev, " hs_phy_type=%d\n",
hw->hs_phy_type);
dev_dbg(hsotg->dev, " fs_phy_type=%d\n",
hw->fs_phy_type);
dev_dbg(hsotg->dev, " utmi_phy_data_wdith=%d\n",
hw->utmi_phy_data_width);
dev_dbg(hsotg->dev, " num_dev_ep=%d\n",
hw->num_dev_ep);
dev_dbg(hsotg->dev, " num_dev_perio_in_ep=%d\n",
hw->num_dev_perio_in_ep);
dev_dbg(hsotg->dev, " host_channels=%d\n",
hw->host_channels);
dev_dbg(hsotg->dev, " max_transfer_size=%d\n",
hw->max_transfer_size);
dev_dbg(hsotg->dev, " max_packet_count=%d\n",
hw->max_packet_count);
dev_dbg(hsotg->dev, " nperio_tx_q_depth=0x%0x\n",
hw->nperio_tx_q_depth);
dev_dbg(hsotg->dev, " host_perio_tx_q_depth=0x%0x\n",
hw->host_perio_tx_q_depth);
dev_dbg(hsotg->dev, " dev_token_q_depth=0x%0x\n",
hw->dev_token_q_depth);
dev_dbg(hsotg->dev, " enable_dynamic_fifo=%d\n",
hw->enable_dynamic_fifo);
dev_dbg(hsotg->dev, " en_multiple_tx_fifo=%d\n",
hw->en_multiple_tx_fifo);
dev_dbg(hsotg->dev, " total_fifo_size=%d\n",
hw->total_fifo_size);
dev_dbg(hsotg->dev, " host_rx_fifo_size=%d\n",
hw->host_rx_fifo_size);
dev_dbg(hsotg->dev, " host_nperio_tx_fifo_size=%d\n",
hw->host_nperio_tx_fifo_size);
dev_dbg(hsotg->dev, " host_perio_tx_fifo_size=%d\n",
hw->host_perio_tx_fifo_size);
dev_dbg(hsotg->dev, "\n");
return 0;
}
u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
{
return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
}
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
{
if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
return false;
else
return true;
}
/**
* dwc2_enable_global_interrupts() - Enables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
ahbcfg |= GAHBCFG_GLBL_INTR_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
}
/**
* dwc2_disable_global_interrupts() - Disables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
}
MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");