| /* |
| * Adaptec AAC series RAID controller driver |
| * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> |
| * |
| * based on the old aacraid driver that is.. |
| * Adaptec aacraid device driver for Linux. |
| * |
| * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Module Name: |
| * commsup.c |
| * |
| * Abstract: Contain all routines that are required for FSA host/adapter |
| * communication. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/pci.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/completion.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/interrupt.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <asm/semaphore.h> |
| |
| #include "aacraid.h" |
| |
| /** |
| * fib_map_alloc - allocate the fib objects |
| * @dev: Adapter to allocate for |
| * |
| * Allocate and map the shared PCI space for the FIB blocks used to |
| * talk to the Adaptec firmware. |
| */ |
| |
| static int fib_map_alloc(struct aac_dev *dev) |
| { |
| dprintk((KERN_INFO |
| "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", |
| dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, |
| AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); |
| if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size |
| * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), |
| &dev->hw_fib_pa))==NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_map_free - free the fib objects |
| * @dev: Adapter to free |
| * |
| * Free the PCI mappings and the memory allocated for FIB blocks |
| * on this adapter. |
| */ |
| |
| void aac_fib_map_free(struct aac_dev *dev) |
| { |
| pci_free_consistent(dev->pdev, |
| dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), |
| dev->hw_fib_va, dev->hw_fib_pa); |
| dev->hw_fib_va = NULL; |
| dev->hw_fib_pa = 0; |
| } |
| |
| /** |
| * aac_fib_setup - setup the fibs |
| * @dev: Adapter to set up |
| * |
| * Allocate the PCI space for the fibs, map it and then intialise the |
| * fib area, the unmapped fib data and also the free list |
| */ |
| |
| int aac_fib_setup(struct aac_dev * dev) |
| { |
| struct fib *fibptr; |
| struct hw_fib *hw_fib; |
| dma_addr_t hw_fib_pa; |
| int i; |
| |
| while (((i = fib_map_alloc(dev)) == -ENOMEM) |
| && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { |
| dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); |
| dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; |
| } |
| if (i<0) |
| return -ENOMEM; |
| |
| hw_fib = dev->hw_fib_va; |
| hw_fib_pa = dev->hw_fib_pa; |
| memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); |
| /* |
| * Initialise the fibs |
| */ |
| for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) |
| { |
| fibptr->dev = dev; |
| fibptr->hw_fib_va = hw_fib; |
| fibptr->data = (void *) fibptr->hw_fib_va->data; |
| fibptr->next = fibptr+1; /* Forward chain the fibs */ |
| init_MUTEX_LOCKED(&fibptr->event_wait); |
| spin_lock_init(&fibptr->event_lock); |
| hw_fib->header.XferState = cpu_to_le32(0xffffffff); |
| hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); |
| fibptr->hw_fib_pa = hw_fib_pa; |
| hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); |
| hw_fib_pa = hw_fib_pa + dev->max_fib_size; |
| } |
| /* |
| * Add the fib chain to the free list |
| */ |
| dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; |
| /* |
| * Enable this to debug out of queue space |
| */ |
| dev->free_fib = &dev->fibs[0]; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_alloc - allocate a fib |
| * @dev: Adapter to allocate the fib for |
| * |
| * Allocate a fib from the adapter fib pool. If the pool is empty we |
| * return NULL. |
| */ |
| |
| struct fib *aac_fib_alloc(struct aac_dev *dev) |
| { |
| struct fib * fibptr; |
| unsigned long flags; |
| spin_lock_irqsave(&dev->fib_lock, flags); |
| fibptr = dev->free_fib; |
| if(!fibptr){ |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| return fibptr; |
| } |
| dev->free_fib = fibptr->next; |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| /* |
| * Set the proper node type code and node byte size |
| */ |
| fibptr->type = FSAFS_NTC_FIB_CONTEXT; |
| fibptr->size = sizeof(struct fib); |
| /* |
| * Null out fields that depend on being zero at the start of |
| * each I/O |
| */ |
| fibptr->hw_fib_va->header.XferState = 0; |
| fibptr->callback = NULL; |
| fibptr->callback_data = NULL; |
| |
| return fibptr; |
| } |
| |
| /** |
| * aac_fib_free - free a fib |
| * @fibptr: fib to free up |
| * |
| * Frees up a fib and places it on the appropriate queue |
| */ |
| |
| void aac_fib_free(struct fib *fibptr) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fibptr->dev->fib_lock, flags); |
| if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) |
| aac_config.fib_timeouts++; |
| if (fibptr->hw_fib_va->header.XferState != 0) { |
| printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", |
| (void*)fibptr, |
| le32_to_cpu(fibptr->hw_fib_va->header.XferState)); |
| } |
| fibptr->next = fibptr->dev->free_fib; |
| fibptr->dev->free_fib = fibptr; |
| spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); |
| } |
| |
| /** |
| * aac_fib_init - initialise a fib |
| * @fibptr: The fib to initialize |
| * |
| * Set up the generic fib fields ready for use |
| */ |
| |
| void aac_fib_init(struct fib *fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib_va; |
| |
| hw_fib->header.StructType = FIB_MAGIC; |
| hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); |
| hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); |
| hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ |
| hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); |
| hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); |
| } |
| |
| /** |
| * fib_deallocate - deallocate a fib |
| * @fibptr: fib to deallocate |
| * |
| * Will deallocate and return to the free pool the FIB pointed to by the |
| * caller. |
| */ |
| |
| static void fib_dealloc(struct fib * fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib_va; |
| BUG_ON(hw_fib->header.StructType != FIB_MAGIC); |
| hw_fib->header.XferState = 0; |
| } |
| |
| /* |
| * Commuication primitives define and support the queuing method we use to |
| * support host to adapter commuication. All queue accesses happen through |
| * these routines and are the only routines which have a knowledge of the |
| * how these queues are implemented. |
| */ |
| |
| /** |
| * aac_get_entry - get a queue entry |
| * @dev: Adapter |
| * @qid: Queue Number |
| * @entry: Entry return |
| * @index: Index return |
| * @nonotify: notification control |
| * |
| * With a priority the routine returns a queue entry if the queue has free entries. If the queue |
| * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is |
| * returned. |
| */ |
| |
| static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) |
| { |
| struct aac_queue * q; |
| unsigned long idx; |
| |
| /* |
| * All of the queues wrap when they reach the end, so we check |
| * to see if they have reached the end and if they have we just |
| * set the index back to zero. This is a wrap. You could or off |
| * the high bits in all updates but this is a bit faster I think. |
| */ |
| |
| q = &dev->queues->queue[qid]; |
| |
| idx = *index = le32_to_cpu(*(q->headers.producer)); |
| /* Interrupt Moderation, only interrupt for first two entries */ |
| if (idx != le32_to_cpu(*(q->headers.consumer))) { |
| if (--idx == 0) { |
| if (qid == AdapNormCmdQueue) |
| idx = ADAP_NORM_CMD_ENTRIES; |
| else |
| idx = ADAP_NORM_RESP_ENTRIES; |
| } |
| if (idx != le32_to_cpu(*(q->headers.consumer))) |
| *nonotify = 1; |
| } |
| |
| if (qid == AdapNormCmdQueue) { |
| if (*index >= ADAP_NORM_CMD_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } else { |
| if (*index >= ADAP_NORM_RESP_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } |
| |
| if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ |
| printk(KERN_WARNING "Queue %d full, %u outstanding.\n", |
| qid, q->numpending); |
| return 0; |
| } else { |
| *entry = q->base + *index; |
| return 1; |
| } |
| } |
| |
| /** |
| * aac_queue_get - get the next free QE |
| * @dev: Adapter |
| * @index: Returned index |
| * @priority: Priority of fib |
| * @fib: Fib to associate with the queue entry |
| * @wait: Wait if queue full |
| * @fibptr: Driver fib object to go with fib |
| * @nonotify: Don't notify the adapter |
| * |
| * Gets the next free QE off the requested priorty adapter command |
| * queue and associates the Fib with the QE. The QE represented by |
| * index is ready to insert on the queue when this routine returns |
| * success. |
| */ |
| |
| int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) |
| { |
| struct aac_entry * entry = NULL; |
| int map = 0; |
| |
| if (qid == AdapNormCmdQueue) { |
| /* if no entries wait for some if caller wants to */ |
| while (!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| { |
| printk(KERN_ERR "GetEntries failed\n"); |
| } |
| /* |
| * Setup queue entry with a command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| map = 1; |
| } else { |
| while(!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| { |
| /* if no entries wait for some if caller wants to */ |
| } |
| /* |
| * Setup queue entry with command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| entry->addr = hw_fib->header.SenderFibAddress; |
| /* Restore adapters pointer to the FIB */ |
| hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ |
| map = 0; |
| } |
| /* |
| * If MapFib is true than we need to map the Fib and put pointers |
| * in the queue entry. |
| */ |
| if (map) |
| entry->addr = cpu_to_le32(fibptr->hw_fib_pa); |
| return 0; |
| } |
| |
| /* |
| * Define the highest level of host to adapter communication routines. |
| * These routines will support host to adapter FS commuication. These |
| * routines have no knowledge of the commuication method used. This level |
| * sends and receives FIBs. This level has no knowledge of how these FIBs |
| * get passed back and forth. |
| */ |
| |
| /** |
| * aac_fib_send - send a fib to the adapter |
| * @command: Command to send |
| * @fibptr: The fib |
| * @size: Size of fib data area |
| * @priority: Priority of Fib |
| * @wait: Async/sync select |
| * @reply: True if a reply is wanted |
| * @callback: Called with reply |
| * @callback_data: Passed to callback |
| * |
| * Sends the requested FIB to the adapter and optionally will wait for a |
| * response FIB. If the caller does not wish to wait for a response than |
| * an event to wait on must be supplied. This event will be set when a |
| * response FIB is received from the adapter. |
| */ |
| |
| int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, |
| int priority, int wait, int reply, fib_callback callback, |
| void *callback_data) |
| { |
| struct aac_dev * dev = fibptr->dev; |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| unsigned long flags = 0; |
| unsigned long qflags; |
| |
| if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) |
| return -EBUSY; |
| /* |
| * There are 5 cases with the wait and reponse requested flags. |
| * The only invalid cases are if the caller requests to wait and |
| * does not request a response and if the caller does not want a |
| * response and the Fib is not allocated from pool. If a response |
| * is not requesed the Fib will just be deallocaed by the DPC |
| * routine when the response comes back from the adapter. No |
| * further processing will be done besides deleting the Fib. We |
| * will have a debug mode where the adapter can notify the host |
| * it had a problem and the host can log that fact. |
| */ |
| if (wait && !reply) { |
| return -EINVAL; |
| } else if (!wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.AsyncSent); |
| } else if (!wait && !reply) { |
| hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); |
| } else if (wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NormalSent); |
| } |
| /* |
| * Map the fib into 32bits by using the fib number |
| */ |
| |
| hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); |
| hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); |
| /* |
| * Set FIB state to indicate where it came from and if we want a |
| * response from the adapter. Also load the command from the |
| * caller. |
| * |
| * Map the hw fib pointer as a 32bit value |
| */ |
| hw_fib->header.Command = cpu_to_le16(command); |
| hw_fib->header.XferState |= cpu_to_le32(SentFromHost); |
| fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ |
| /* |
| * Set the size of the Fib we want to send to the adapter |
| */ |
| hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); |
| if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { |
| return -EMSGSIZE; |
| } |
| /* |
| * Get a queue entry connect the FIB to it and send an notify |
| * the adapter a command is ready. |
| */ |
| hw_fib->header.XferState |= cpu_to_le32(NormalPriority); |
| |
| /* |
| * Fill in the Callback and CallbackContext if we are not |
| * going to wait. |
| */ |
| if (!wait) { |
| fibptr->callback = callback; |
| fibptr->callback_data = callback_data; |
| } |
| |
| fibptr->done = 0; |
| fibptr->flags = 0; |
| |
| FIB_COUNTER_INCREMENT(aac_config.FibsSent); |
| |
| dprintk((KERN_DEBUG "Fib contents:.\n")); |
| dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); |
| dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); |
| dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); |
| dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); |
| dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); |
| dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); |
| |
| if (!dev->queues) |
| return -EBUSY; |
| |
| if(wait) |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| aac_adapter_deliver(fibptr); |
| |
| /* |
| * If the caller wanted us to wait for response wait now. |
| */ |
| |
| if (wait) { |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| /* Only set for first known interruptable command */ |
| if (wait < 0) { |
| /* |
| * *VERY* Dangerous to time out a command, the |
| * assumption is made that we have no hope of |
| * functioning because an interrupt routing or other |
| * hardware failure has occurred. |
| */ |
| unsigned long count = 36000000L; /* 3 minutes */ |
| while (down_trylock(&fibptr->event_wait)) { |
| int blink; |
| if (--count == 0) { |
| struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; |
| spin_lock_irqsave(q->lock, qflags); |
| q->numpending--; |
| spin_unlock_irqrestore(q->lock, qflags); |
| if (wait == -1) { |
| printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" |
| "Usually a result of a PCI interrupt routing problem;\n" |
| "update mother board BIOS or consider utilizing one of\n" |
| "the SAFE mode kernel options (acpi, apic etc)\n"); |
| } |
| return -ETIMEDOUT; |
| } |
| if ((blink = aac_adapter_check_health(dev)) > 0) { |
| if (wait == -1) { |
| printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" |
| "Usually a result of a serious unrecoverable hardware problem\n", |
| blink); |
| } |
| return -EFAULT; |
| } |
| udelay(5); |
| } |
| } else |
| (void)down_interruptible(&fibptr->event_wait); |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| if (fibptr->done == 0) { |
| fibptr->done = 2; /* Tell interrupt we aborted */ |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| return -EINTR; |
| } |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| BUG_ON(fibptr->done == 0); |
| |
| if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) |
| return -ETIMEDOUT; |
| return 0; |
| } |
| /* |
| * If the user does not want a response than return success otherwise |
| * return pending |
| */ |
| if (reply) |
| return -EINPROGRESS; |
| else |
| return 0; |
| } |
| |
| /** |
| * aac_consumer_get - get the top of the queue |
| * @dev: Adapter |
| * @q: Queue |
| * @entry: Return entry |
| * |
| * Will return a pointer to the entry on the top of the queue requested that |
| * we are a consumer of, and return the address of the queue entry. It does |
| * not change the state of the queue. |
| */ |
| |
| int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) |
| { |
| u32 index; |
| int status; |
| if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { |
| status = 0; |
| } else { |
| /* |
| * The consumer index must be wrapped if we have reached |
| * the end of the queue, else we just use the entry |
| * pointed to by the header index |
| */ |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| index = 0; |
| else |
| index = le32_to_cpu(*q->headers.consumer); |
| *entry = q->base + index; |
| status = 1; |
| } |
| return(status); |
| } |
| |
| /** |
| * aac_consumer_free - free consumer entry |
| * @dev: Adapter |
| * @q: Queue |
| * @qid: Queue ident |
| * |
| * Frees up the current top of the queue we are a consumer of. If the |
| * queue was full notify the producer that the queue is no longer full. |
| */ |
| |
| void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) |
| { |
| int wasfull = 0; |
| u32 notify; |
| |
| if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) |
| wasfull = 1; |
| |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| *q->headers.consumer = cpu_to_le32(1); |
| else |
| *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); |
| |
| if (wasfull) { |
| switch (qid) { |
| |
| case HostNormCmdQueue: |
| notify = HostNormCmdNotFull; |
| break; |
| case HostNormRespQueue: |
| notify = HostNormRespNotFull; |
| break; |
| default: |
| BUG(); |
| return; |
| } |
| aac_adapter_notify(dev, notify); |
| } |
| } |
| |
| /** |
| * aac_fib_adapter_complete - complete adapter issued fib |
| * @fibptr: fib to complete |
| * @size: size of fib |
| * |
| * Will do all necessary work to complete a FIB that was sent from |
| * the adapter. |
| */ |
| |
| int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| struct aac_dev * dev = fibptr->dev; |
| struct aac_queue * q; |
| unsigned long nointr = 0; |
| unsigned long qflags; |
| |
| if (hw_fib->header.XferState == 0) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) |
| kfree (hw_fib); |
| return 0; |
| } |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| if ( hw_fib->header.StructType != FIB_MAGIC ) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) |
| kfree (hw_fib); |
| return -EINVAL; |
| } |
| /* |
| * This block handles the case where the adapter had sent us a |
| * command and we have finished processing the command. We |
| * call completeFib when we are done processing the command |
| * and want to send a response back to the adapter. This will |
| * send the completed cdb to the adapter. |
| */ |
| if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) { |
| kfree (hw_fib); |
| } else { |
| u32 index; |
| hw_fib->header.XferState |= cpu_to_le32(HostProcessed); |
| if (size) { |
| size += sizeof(struct aac_fibhdr); |
| if (size > le16_to_cpu(hw_fib->header.SenderSize)) |
| return -EMSGSIZE; |
| hw_fib->header.Size = cpu_to_le16(size); |
| } |
| q = &dev->queues->queue[AdapNormRespQueue]; |
| spin_lock_irqsave(q->lock, qflags); |
| aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); |
| *(q->headers.producer) = cpu_to_le32(index + 1); |
| spin_unlock_irqrestore(q->lock, qflags); |
| if (!(nointr & (int)aac_config.irq_mod)) |
| aac_adapter_notify(dev, AdapNormRespQueue); |
| } |
| } |
| else |
| { |
| printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_fib_complete - fib completion handler |
| * @fib: FIB to complete |
| * |
| * Will do all necessary work to complete a FIB. |
| */ |
| |
| int aac_fib_complete(struct fib *fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| |
| /* |
| * Check for a fib which has already been completed |
| */ |
| |
| if (hw_fib->header.XferState == 0) |
| return 0; |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| |
| if (hw_fib->header.StructType != FIB_MAGIC) |
| return -EINVAL; |
| /* |
| * This block completes a cdb which orginated on the host and we |
| * just need to deallocate the cdb or reinit it. At this point the |
| * command is complete that we had sent to the adapter and this |
| * cdb could be reused. |
| */ |
| if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && |
| (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) |
| { |
| fib_dealloc(fibptr); |
| } |
| else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) |
| { |
| /* |
| * This handles the case when the host has aborted the I/O |
| * to the adapter because the adapter is not responding |
| */ |
| fib_dealloc(fibptr); |
| } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { |
| fib_dealloc(fibptr); |
| } else { |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_printf - handle printf from firmware |
| * @dev: Adapter |
| * @val: Message info |
| * |
| * Print a message passed to us by the controller firmware on the |
| * Adaptec board |
| */ |
| |
| void aac_printf(struct aac_dev *dev, u32 val) |
| { |
| char *cp = dev->printfbuf; |
| if (dev->printf_enabled) |
| { |
| int length = val & 0xffff; |
| int level = (val >> 16) & 0xffff; |
| |
| /* |
| * The size of the printfbuf is set in port.c |
| * There is no variable or define for it |
| */ |
| if (length > 255) |
| length = 255; |
| if (cp[length] != 0) |
| cp[length] = 0; |
| if (level == LOG_AAC_HIGH_ERROR) |
| printk(KERN_WARNING "%s:%s", dev->name, cp); |
| else |
| printk(KERN_INFO "%s:%s", dev->name, cp); |
| } |
| memset(cp, 0, 256); |
| } |
| |
| |
| /** |
| * aac_handle_aif - Handle a message from the firmware |
| * @dev: Which adapter this fib is from |
| * @fibptr: Pointer to fibptr from adapter |
| * |
| * This routine handles a driver notify fib from the adapter and |
| * dispatches it to the appropriate routine for handling. |
| */ |
| |
| #define AIF_SNIFF_TIMEOUT (30*HZ) |
| static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; |
| u32 container; |
| struct scsi_device *device; |
| enum { |
| NOTHING, |
| DELETE, |
| ADD, |
| CHANGE |
| } device_config_needed; |
| |
| /* Sniff for container changes */ |
| |
| if (!dev || !dev->fsa_dev) |
| return; |
| container = (u32)-1; |
| |
| /* |
| * We have set this up to try and minimize the number of |
| * re-configures that take place. As a result of this when |
| * certain AIF's come in we will set a flag waiting for another |
| * type of AIF before setting the re-config flag. |
| */ |
| switch (le32_to_cpu(aifcmd->command)) { |
| case AifCmdDriverNotify: |
| switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { |
| /* |
| * Morph or Expand complete |
| */ |
| case AifDenMorphComplete: |
| case AifDenVolumeExtendComplete: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| |
| /* |
| * Find the scsi_device associated with the SCSI |
| * address. Make sure we have the right array, and if |
| * so set the flag to initiate a new re-config once we |
| * see an AifEnConfigChange AIF come through. |
| */ |
| |
| if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| if (device) { |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| scsi_device_put(device); |
| } |
| } |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdEventNotify: |
| switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { |
| /* |
| * Add an Array. |
| */ |
| case AifEnAddContainer: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = ADD; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| /* |
| * Delete an Array. |
| */ |
| case AifEnDeleteContainer: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = DELETE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| /* |
| * Container change detected. If we currently are not |
| * waiting on something else, setup to wait on a Config Change. |
| */ |
| case AifEnContainerChange: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| if (dev->fsa_dev[container].config_waiting_on && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| break; |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| case AifEnConfigChange: |
| break; |
| |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdJobProgress: |
| /* |
| * These are job progress AIF's. When a Clear is being |
| * done on a container it is initially created then hidden from |
| * the OS. When the clear completes we don't get a config |
| * change so we monitor the job status complete on a clear then |
| * wait for a container change. |
| */ |
| |
| if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) |
| && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) |
| || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = ADD; |
| dev->fsa_dev[container].config_waiting_stamp = |
| jiffies; |
| } |
| } |
| if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) |
| && (((u32 *)aifcmd->data)[6] == 0) |
| && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = DELETE; |
| dev->fsa_dev[container].config_waiting_stamp = |
| jiffies; |
| } |
| } |
| break; |
| } |
| |
| device_config_needed = NOTHING; |
| for (container = 0; container < dev->maximum_num_containers; |
| ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == 0) && |
| (dev->fsa_dev[container].config_needed != NOTHING) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { |
| device_config_needed = |
| dev->fsa_dev[container].config_needed; |
| dev->fsa_dev[container].config_needed = NOTHING; |
| break; |
| } |
| } |
| if (device_config_needed == NOTHING) |
| return; |
| |
| /* |
| * If we decided that a re-configuration needs to be done, |
| * schedule it here on the way out the door, please close the door |
| * behind you. |
| */ |
| |
| /* |
| * Find the scsi_device associated with the SCSI address, |
| * and mark it as changed, invalidating the cache. This deals |
| * with changes to existing device IDs. |
| */ |
| |
| if (!dev || !dev->scsi_host_ptr) |
| return; |
| /* |
| * force reload of disk info via aac_probe_container |
| */ |
| if ((device_config_needed == CHANGE) |
| && (dev->fsa_dev[container].valid == 1)) |
| dev->fsa_dev[container].valid = 2; |
| if ((device_config_needed == CHANGE) || |
| (device_config_needed == ADD)) |
| aac_probe_container(dev, container); |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| if (device) { |
| switch (device_config_needed) { |
| case DELETE: |
| case CHANGE: |
| scsi_rescan_device(&device->sdev_gendev); |
| |
| default: |
| break; |
| } |
| scsi_device_put(device); |
| } |
| if (device_config_needed == ADD) { |
| scsi_add_device(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| } |
| |
| } |
| |
| static int _aac_reset_adapter(struct aac_dev *aac, int forced) |
| { |
| int index, quirks; |
| int retval; |
| struct Scsi_Host *host; |
| struct scsi_device *dev; |
| struct scsi_cmnd *command; |
| struct scsi_cmnd *command_list; |
| int jafo = 0; |
| |
| /* |
| * Assumptions: |
| * - host is locked, unless called by the aacraid thread. |
| * (a matter of convenience, due to legacy issues surrounding |
| * eh_host_adapter_reset). |
| * - in_reset is asserted, so no new i/o is getting to the |
| * card. |
| * - The card is dead, or will be very shortly ;-/ so no new |
| * commands are completing in the interrupt service. |
| */ |
| host = aac->scsi_host_ptr; |
| scsi_block_requests(host); |
| aac_adapter_disable_int(aac); |
| if (aac->thread->pid != current->pid) { |
| spin_unlock_irq(host->host_lock); |
| kthread_stop(aac->thread); |
| jafo = 1; |
| } |
| |
| /* |
| * If a positive health, means in a known DEAD PANIC |
| * state and the adapter could be reset to `try again'. |
| */ |
| retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); |
| |
| if (retval) |
| goto out; |
| |
| /* |
| * Loop through the fibs, close the synchronous FIBS |
| */ |
| for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { |
| struct fib *fib = &aac->fibs[index]; |
| if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && |
| (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { |
| unsigned long flagv; |
| spin_lock_irqsave(&fib->event_lock, flagv); |
| up(&fib->event_wait); |
| spin_unlock_irqrestore(&fib->event_lock, flagv); |
| schedule(); |
| retval = 0; |
| } |
| } |
| /* Give some extra time for ioctls to complete. */ |
| if (retval == 0) |
| ssleep(2); |
| index = aac->cardtype; |
| |
| /* |
| * Re-initialize the adapter, first free resources, then carefully |
| * apply the initialization sequence to come back again. Only risk |
| * is a change in Firmware dropping cache, it is assumed the caller |
| * will ensure that i/o is queisced and the card is flushed in that |
| * case. |
| */ |
| aac_fib_map_free(aac); |
| pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); |
| aac->comm_addr = NULL; |
| aac->comm_phys = 0; |
| kfree(aac->queues); |
| aac->queues = NULL; |
| free_irq(aac->pdev->irq, aac); |
| kfree(aac->fsa_dev); |
| aac->fsa_dev = NULL; |
| if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { |
| if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) || |
| ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK)))) |
| goto out; |
| } else { |
| if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || |
| ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) |
| goto out; |
| } |
| if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) |
| goto out; |
| if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) |
| if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) |
| goto out; |
| if (jafo) { |
| aac->thread = kthread_run(aac_command_thread, aac, aac->name); |
| if (IS_ERR(aac->thread)) { |
| retval = PTR_ERR(aac->thread); |
| goto out; |
| } |
| } |
| (void)aac_get_adapter_info(aac); |
| quirks = aac_get_driver_ident(index)->quirks; |
| if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { |
| host->sg_tablesize = 34; |
| host->max_sectors = (host->sg_tablesize * 8) + 112; |
| } |
| if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { |
| host->sg_tablesize = 17; |
| host->max_sectors = (host->sg_tablesize * 8) + 112; |
| } |
| aac_get_config_status(aac, 1); |
| aac_get_containers(aac); |
| /* |
| * This is where the assumption that the Adapter is quiesced |
| * is important. |
| */ |
| command_list = NULL; |
| __shost_for_each_device(dev, host) { |
| unsigned long flags; |
| spin_lock_irqsave(&dev->list_lock, flags); |
| list_for_each_entry(command, &dev->cmd_list, list) |
| if (command->SCp.phase == AAC_OWNER_FIRMWARE) { |
| command->SCp.buffer = (struct scatterlist *)command_list; |
| command_list = command; |
| } |
| spin_unlock_irqrestore(&dev->list_lock, flags); |
| } |
| while ((command = command_list)) { |
| command_list = (struct scsi_cmnd *)command->SCp.buffer; |
| command->SCp.buffer = NULL; |
| command->result = DID_OK << 16 |
| | COMMAND_COMPLETE << 8 |
| | SAM_STAT_TASK_SET_FULL; |
| command->SCp.phase = AAC_OWNER_ERROR_HANDLER; |
| command->scsi_done(command); |
| } |
| retval = 0; |
| |
| out: |
| aac->in_reset = 0; |
| scsi_unblock_requests(host); |
| if (jafo) { |
| spin_lock_irq(host->host_lock); |
| } |
| return retval; |
| } |
| |
| int aac_reset_adapter(struct aac_dev * aac, int forced) |
| { |
| unsigned long flagv = 0; |
| int retval; |
| struct Scsi_Host * host; |
| |
| if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) |
| return -EBUSY; |
| |
| if (aac->in_reset) { |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| return -EBUSY; |
| } |
| aac->in_reset = 1; |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| |
| /* |
| * Wait for all commands to complete to this specific |
| * target (block maximum 60 seconds). Although not necessary, |
| * it does make us a good storage citizen. |
| */ |
| host = aac->scsi_host_ptr; |
| scsi_block_requests(host); |
| if (forced < 2) for (retval = 60; retval; --retval) { |
| struct scsi_device * dev; |
| struct scsi_cmnd * command; |
| int active = 0; |
| |
| __shost_for_each_device(dev, host) { |
| spin_lock_irqsave(&dev->list_lock, flagv); |
| list_for_each_entry(command, &dev->cmd_list, list) { |
| if (command->SCp.phase == AAC_OWNER_FIRMWARE) { |
| active++; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&dev->list_lock, flagv); |
| if (active) |
| break; |
| |
| } |
| /* |
| * We can exit If all the commands are complete |
| */ |
| if (active == 0) |
| break; |
| ssleep(1); |
| } |
| |
| /* Quiesce build, flush cache, write through mode */ |
| aac_send_shutdown(aac); |
| spin_lock_irqsave(host->host_lock, flagv); |
| retval = _aac_reset_adapter(aac, forced); |
| spin_unlock_irqrestore(host->host_lock, flagv); |
| |
| if (retval == -ENODEV) { |
| /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ |
| struct fib * fibctx = aac_fib_alloc(aac); |
| if (fibctx) { |
| struct aac_pause *cmd; |
| int status; |
| |
| aac_fib_init(fibctx); |
| |
| cmd = (struct aac_pause *) fib_data(fibctx); |
| |
| cmd->command = cpu_to_le32(VM_ContainerConfig); |
| cmd->type = cpu_to_le32(CT_PAUSE_IO); |
| cmd->timeout = cpu_to_le32(1); |
| cmd->min = cpu_to_le32(1); |
| cmd->noRescan = cpu_to_le32(1); |
| cmd->count = cpu_to_le32(0); |
| |
| status = aac_fib_send(ContainerCommand, |
| fibctx, |
| sizeof(struct aac_pause), |
| FsaNormal, |
| -2 /* Timeout silently */, 1, |
| NULL, NULL); |
| |
| if (status >= 0) |
| aac_fib_complete(fibctx); |
| aac_fib_free(fibctx); |
| } |
| } |
| |
| return retval; |
| } |
| |
| int aac_check_health(struct aac_dev * aac) |
| { |
| int BlinkLED; |
| unsigned long time_now, flagv = 0; |
| struct list_head * entry; |
| struct Scsi_Host * host; |
| |
| /* Extending the scope of fib_lock slightly to protect aac->in_reset */ |
| if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) |
| return 0; |
| |
| if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| return 0; /* OK */ |
| } |
| |
| aac->in_reset = 1; |
| |
| /* Fake up an AIF: |
| * aac_aifcmd.command = AifCmdEventNotify = 1 |
| * aac_aifcmd.seqnum = 0xFFFFFFFF |
| * aac_aifcmd.data[0] = AifEnExpEvent = 23 |
| * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 |
| * aac.aifcmd.data[2] = AifHighPriority = 3 |
| * aac.aifcmd.data[3] = BlinkLED |
| */ |
| |
| time_now = jiffies/HZ; |
| entry = aac->fib_list.next; |
| |
| /* |
| * For each Context that is on the |
| * fibctxList, make a copy of the |
| * fib, and then set the event to wake up the |
| * thread that is waiting for it. |
| */ |
| while (entry != &aac->fib_list) { |
| /* |
| * Extract the fibctx |
| */ |
| struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); |
| struct hw_fib * hw_fib; |
| struct fib * fib; |
| /* |
| * Check if the queue is getting |
| * backlogged |
| */ |
| if (fibctx->count > 20) { |
| /* |
| * It's *not* jiffies folks, |
| * but jiffies / HZ, so do not |
| * panic ... |
| */ |
| u32 time_last = fibctx->jiffies; |
| /* |
| * Has it been > 2 minutes |
| * since the last read off |
| * the queue? |
| */ |
| if ((time_now - time_last) > aif_timeout) { |
| entry = entry->next; |
| aac_close_fib_context(aac, fibctx); |
| continue; |
| } |
| } |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock |
| */ |
| hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); |
| fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); |
| if (fib && hw_fib) { |
| struct aac_aifcmd * aif; |
| |
| fib->hw_fib_va = hw_fib; |
| fib->dev = aac; |
| aac_fib_init(fib); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof (struct fib); |
| fib->data = hw_fib->data; |
| aif = (struct aac_aifcmd *)hw_fib->data; |
| aif->command = cpu_to_le32(AifCmdEventNotify); |
| aif->seqnum = cpu_to_le32(0xFFFFFFFF); |
| aif->data[0] = AifEnExpEvent; |
| aif->data[1] = AifExeFirmwarePanic; |
| aif->data[2] = AifHighPriority; |
| aif->data[3] = BlinkLED; |
| |
| /* |
| * Put the FIB onto the |
| * fibctx's fibs |
| */ |
| list_add_tail(&fib->fiblink, &fibctx->fib_list); |
| fibctx->count++; |
| /* |
| * Set the event to wake up the |
| * thread that will waiting. |
| */ |
| up(&fibctx->wait_sem); |
| } else { |
| printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); |
| kfree(fib); |
| kfree(hw_fib); |
| } |
| entry = entry->next; |
| } |
| |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| |
| if (BlinkLED < 0) { |
| printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); |
| goto out; |
| } |
| |
| printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); |
| |
| if (!aac_check_reset || |
| (aac->supplement_adapter_info.SupportedOptions2 & |
| le32_to_cpu(AAC_OPTION_IGNORE_RESET))) |
| goto out; |
| host = aac->scsi_host_ptr; |
| if (aac->thread->pid != current->pid) |
| spin_lock_irqsave(host->host_lock, flagv); |
| BlinkLED = _aac_reset_adapter(aac, 0); |
| if (aac->thread->pid != current->pid) |
| spin_unlock_irqrestore(host->host_lock, flagv); |
| return BlinkLED; |
| |
| out: |
| aac->in_reset = 0; |
| return BlinkLED; |
| } |
| |
| |
| /** |
| * aac_command_thread - command processing thread |
| * @dev: Adapter to monitor |
| * |
| * Waits on the commandready event in it's queue. When the event gets set |
| * it will pull FIBs off it's queue. It will continue to pull FIBs off |
| * until the queue is empty. When the queue is empty it will wait for |
| * more FIBs. |
| */ |
| |
| int aac_command_thread(void *data) |
| { |
| struct aac_dev *dev = data; |
| struct hw_fib *hw_fib, *hw_newfib; |
| struct fib *fib, *newfib; |
| struct aac_fib_context *fibctx; |
| unsigned long flags; |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long next_jiffies = jiffies + HZ; |
| unsigned long next_check_jiffies = next_jiffies; |
| long difference = HZ; |
| |
| /* |
| * We can only have one thread per adapter for AIF's. |
| */ |
| if (dev->aif_thread) |
| return -EINVAL; |
| |
| /* |
| * Let the DPC know it has a place to send the AIF's to. |
| */ |
| dev->aif_thread = 1; |
| add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| dprintk ((KERN_INFO "aac_command_thread start\n")); |
| while(1) |
| { |
| spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { |
| struct list_head *entry; |
| struct aac_aifcmd * aifcmd; |
| |
| set_current_state(TASK_RUNNING); |
| |
| entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; |
| list_del(entry); |
| |
| spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| fib = list_entry(entry, struct fib, fiblink); |
| /* |
| * We will process the FIB here or pass it to a |
| * worker thread that is TBD. We Really can't |
| * do anything at this point since we don't have |
| * anything defined for this thread to do. |
| */ |
| hw_fib = fib->hw_fib_va; |
| memset(fib, 0, sizeof(struct fib)); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof( struct fib ); |
| fib->hw_fib_va = hw_fib; |
| fib->data = hw_fib->data; |
| fib->dev = dev; |
| /* |
| * We only handle AifRequest fibs from the adapter. |
| */ |
| aifcmd = (struct aac_aifcmd *) hw_fib->data; |
| if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { |
| /* Handle Driver Notify Events */ |
| aac_handle_aif(dev, fib); |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, (u16)sizeof(u32)); |
| } else { |
| struct list_head *entry; |
| /* The u32 here is important and intended. We are using |
| 32bit wrapping time to fit the adapter field */ |
| |
| u32 time_now, time_last; |
| unsigned long flagv; |
| unsigned num; |
| struct hw_fib ** hw_fib_pool, ** hw_fib_p; |
| struct fib ** fib_pool, ** fib_p; |
| |
| /* Sniff events */ |
| if ((aifcmd->command == |
| cpu_to_le32(AifCmdEventNotify)) || |
| (aifcmd->command == |
| cpu_to_le32(AifCmdJobProgress))) { |
| aac_handle_aif(dev, fib); |
| } |
| |
| time_now = jiffies/HZ; |
| |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock. We take the estimate |
| * and pre-allocate a set of fibs outside the |
| * lock. |
| */ |
| num = le32_to_cpu(dev->init->AdapterFibsSize) |
| / sizeof(struct hw_fib); /* some extra */ |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| while (entry != &dev->fib_list) { |
| entry = entry->next; |
| ++num; |
| } |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| hw_fib_pool = NULL; |
| fib_pool = NULL; |
| if (num |
| && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) |
| && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { |
| --hw_fib_p; |
| break; |
| } |
| if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { |
| kfree(*(--hw_fib_p)); |
| break; |
| } |
| } |
| if ((num = hw_fib_p - hw_fib_pool) == 0) { |
| kfree(fib_pool); |
| fib_pool = NULL; |
| kfree(hw_fib_pool); |
| hw_fib_pool = NULL; |
| } |
| } else { |
| kfree(hw_fib_pool); |
| hw_fib_pool = NULL; |
| } |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| /* |
| * For each Context that is on the |
| * fibctxList, make a copy of the |
| * fib, and then set the event to wake up the |
| * thread that is waiting for it. |
| */ |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (entry != &dev->fib_list) { |
| /* |
| * Extract the fibctx |
| */ |
| fibctx = list_entry(entry, struct aac_fib_context, next); |
| /* |
| * Check if the queue is getting |
| * backlogged |
| */ |
| if (fibctx->count > 20) |
| { |
| /* |
| * It's *not* jiffies folks, |
| * but jiffies / HZ so do not |
| * panic ... |
| */ |
| time_last = fibctx->jiffies; |
| /* |
| * Has it been > 2 minutes |
| * since the last read off |
| * the queue? |
| */ |
| if ((time_now - time_last) > aif_timeout) { |
| entry = entry->next; |
| aac_close_fib_context(dev, fibctx); |
| continue; |
| } |
| } |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock |
| */ |
| if (hw_fib_p < &hw_fib_pool[num]) { |
| hw_newfib = *hw_fib_p; |
| *(hw_fib_p++) = NULL; |
| newfib = *fib_p; |
| *(fib_p++) = NULL; |
| /* |
| * Make the copy of the FIB |
| */ |
| memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); |
| memcpy(newfib, fib, sizeof(struct fib)); |
| newfib->hw_fib_va = hw_newfib; |
| /* |
| * Put the FIB onto the |
| * fibctx's fibs |
| */ |
| list_add_tail(&newfib->fiblink, &fibctx->fib_list); |
| fibctx->count++; |
| /* |
| * Set the event to wake up the |
| * thread that is waiting. |
| */ |
| up(&fibctx->wait_sem); |
| } else { |
| printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); |
| } |
| entry = entry->next; |
| } |
| /* |
| * Set the status of this FIB |
| */ |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, sizeof(u32)); |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| /* Free up the remaining resources */ |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| kfree(*hw_fib_p); |
| kfree(*fib_p); |
| ++fib_p; |
| ++hw_fib_p; |
| } |
| kfree(hw_fib_pool); |
| kfree(fib_pool); |
| } |
| kfree(fib); |
| spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| } |
| /* |
| * There are no more AIF's |
| */ |
| spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| |
| /* |
| * Background activity |
| */ |
| if ((time_before(next_check_jiffies,next_jiffies)) |
| && ((difference = next_check_jiffies - jiffies) <= 0)) { |
| next_check_jiffies = next_jiffies; |
| if (aac_check_health(dev) == 0) { |
| difference = ((long)(unsigned)check_interval) |
| * HZ; |
| next_check_jiffies = jiffies + difference; |
| } else if (!dev->queues) |
| break; |
| } |
| if (!time_before(next_check_jiffies,next_jiffies) |
| && ((difference = next_jiffies - jiffies) <= 0)) { |
| struct timeval now; |
| int ret; |
| |
| /* Don't even try to talk to adapter if its sick */ |
| ret = aac_check_health(dev); |
| if (!ret && !dev->queues) |
| break; |
| next_check_jiffies = jiffies |
| + ((long)(unsigned)check_interval) |
| * HZ; |
| do_gettimeofday(&now); |
| |
| /* Synchronize our watches */ |
| if (((1000000 - (1000000 / HZ)) > now.tv_usec) |
| && (now.tv_usec > (1000000 / HZ))) |
| difference = (((1000000 - now.tv_usec) * HZ) |
| + 500000) / 1000000; |
| else if (ret == 0) { |
| struct fib *fibptr; |
| |
| if ((fibptr = aac_fib_alloc(dev))) { |
| u32 * info; |
| |
| aac_fib_init(fibptr); |
| |
| info = (u32 *) fib_data(fibptr); |
| if (now.tv_usec > 500000) |
| ++now.tv_sec; |
| |
| *info = cpu_to_le32(now.tv_sec); |
| |
| (void)aac_fib_send(SendHostTime, |
| fibptr, |
| sizeof(*info), |
| FsaNormal, |
| 1, 1, |
| NULL, |
| NULL); |
| aac_fib_complete(fibptr); |
| aac_fib_free(fibptr); |
| } |
| difference = (long)(unsigned)update_interval*HZ; |
| } else { |
| /* retry shortly */ |
| difference = 10 * HZ; |
| } |
| next_jiffies = jiffies + difference; |
| if (time_before(next_check_jiffies,next_jiffies)) |
| difference = next_check_jiffies - jiffies; |
| } |
| if (difference <= 0) |
| difference = 1; |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(difference); |
| |
| if (kthread_should_stop()) |
| break; |
| } |
| if (dev->queues) |
| remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| dev->aif_thread = 0; |
| return 0; |
| } |