| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/preempt.h> |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/kprobes.h> |
| #include <linux/elfcore.h> |
| #include <linux/tick.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/compat.h> |
| #include <linux/hardirq.h> |
| #include <linux/syscalls.h> |
| #include <linux/kernel.h> |
| #include <asm/system.h> |
| #include <asm/stack.h> |
| #include <asm/homecache.h> |
| #include <asm/syscalls.h> |
| #ifdef CONFIG_HARDWALL |
| #include <asm/hardwall.h> |
| #endif |
| #include <arch/chip.h> |
| #include <arch/abi.h> |
| |
| |
| /* |
| * Use the (x86) "idle=poll" option to prefer low latency when leaving the |
| * idle loop over low power while in the idle loop, e.g. if we have |
| * one thread per core and we want to get threads out of futex waits fast. |
| */ |
| static int no_idle_nap; |
| static int __init idle_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "poll")) { |
| pr_info("using polling idle threads.\n"); |
| no_idle_nap = 1; |
| } else if (!strcmp(str, "halt")) |
| no_idle_nap = 0; |
| else |
| return -1; |
| |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| |
| current_thread_info()->status |= TS_POLLING; |
| |
| if (no_idle_nap) { |
| while (1) { |
| while (!need_resched()) |
| cpu_relax(); |
| schedule(); |
| } |
| } |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| tick_nohz_stop_sched_tick(1); |
| while (!need_resched()) { |
| if (cpu_is_offline(cpu)) |
| BUG(); /* no HOTPLUG_CPU */ |
| |
| local_irq_disable(); |
| __get_cpu_var(irq_stat).idle_timestamp = jiffies; |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we |
| * test NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| if (!need_resched()) |
| _cpu_idle(); |
| else |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| } |
| tick_nohz_restart_sched_tick(); |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| struct thread_info *alloc_thread_info(struct task_struct *task) |
| { |
| struct page *page; |
| gfp_t flags = GFP_KERNEL; |
| |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| flags |= __GFP_ZERO; |
| #endif |
| |
| page = alloc_pages(flags, THREAD_SIZE_ORDER); |
| if (!page) |
| return NULL; |
| |
| return (struct thread_info *)page_address(page); |
| } |
| |
| /* |
| * Free a thread_info node, and all of its derivative |
| * data structures. |
| */ |
| void free_thread_info(struct thread_info *info) |
| { |
| struct single_step_state *step_state = info->step_state; |
| |
| #ifdef CONFIG_HARDWALL |
| /* |
| * We free a thread_info from the context of the task that has |
| * been scheduled next, so the original task is already dead. |
| * Calling deactivate here just frees up the data structures. |
| * If the task we're freeing held the last reference to a |
| * hardwall fd, it would have been released prior to this point |
| * anyway via exit_files(), and "hardwall" would be NULL by now. |
| */ |
| if (info->task->thread.hardwall) |
| hardwall_deactivate(info->task); |
| #endif |
| |
| if (step_state) { |
| |
| /* |
| * FIXME: we don't munmap step_state->buffer |
| * because the mm_struct for this process (info->task->mm) |
| * has already been zeroed in exit_mm(). Keeping a |
| * reference to it here seems like a bad move, so this |
| * means we can't munmap() the buffer, and therefore if we |
| * ptrace multiple threads in a process, we will slowly |
| * leak user memory. (Note that as soon as the last |
| * thread in a process dies, we will reclaim all user |
| * memory including single-step buffers in the usual way.) |
| * We should either assign a kernel VA to this buffer |
| * somehow, or we should associate the buffer(s) with the |
| * mm itself so we can clean them up that way. |
| */ |
| kfree(step_state); |
| } |
| |
| free_page((unsigned long)info); |
| } |
| |
| static void save_arch_state(struct thread_struct *t); |
| |
| int copy_thread(unsigned long clone_flags, unsigned long sp, |
| unsigned long stack_size, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs; |
| unsigned long ksp; |
| |
| /* |
| * When creating a new kernel thread we pass sp as zero. |
| * Assign it to a reasonable value now that we have the stack. |
| */ |
| if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0)) |
| sp = KSTK_TOP(p); |
| |
| /* |
| * Do not clone step state from the parent; each thread |
| * must make its own lazily. |
| */ |
| task_thread_info(p)->step_state = NULL; |
| |
| /* |
| * Start new thread in ret_from_fork so it schedules properly |
| * and then return from interrupt like the parent. |
| */ |
| p->thread.pc = (unsigned long) ret_from_fork; |
| |
| /* Save user stack top pointer so we can ID the stack vm area later. */ |
| p->thread.usp0 = sp; |
| |
| /* Record the pid of the process that created this one. */ |
| p->thread.creator_pid = current->pid; |
| |
| /* |
| * Copy the registers onto the kernel stack so the |
| * return-from-interrupt code will reload it into registers. |
| */ |
| childregs = task_pt_regs(p); |
| *childregs = *regs; |
| childregs->regs[0] = 0; /* return value is zero */ |
| childregs->sp = sp; /* override with new user stack pointer */ |
| |
| /* |
| * Copy the callee-saved registers from the passed pt_regs struct |
| * into the context-switch callee-saved registers area. |
| * We have to restore the callee-saved registers since we may |
| * be cloning a userspace task with userspace register state, |
| * and we won't be unwinding the same kernel frames to restore them. |
| * Zero out the C ABI save area to mark the top of the stack. |
| */ |
| ksp = (unsigned long) childregs; |
| ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */ |
| ((long *)ksp)[0] = ((long *)ksp)[1] = 0; |
| ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); |
| memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG], |
| CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); |
| ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */ |
| ((long *)ksp)[0] = ((long *)ksp)[1] = 0; |
| p->thread.ksp = ksp; |
| |
| #if CHIP_HAS_TILE_DMA() |
| /* |
| * No DMA in the new thread. We model this on the fact that |
| * fork() clears the pending signals, alarms, and aio for the child. |
| */ |
| memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); |
| memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); |
| #endif |
| |
| #if CHIP_HAS_SN_PROC() |
| /* Likewise, the new thread is not running static processor code. */ |
| p->thread.sn_proc_running = 0; |
| memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); |
| #endif |
| |
| #if CHIP_HAS_PROC_STATUS_SPR() |
| /* New thread has its miscellaneous processor state bits clear. */ |
| p->thread.proc_status = 0; |
| #endif |
| |
| #ifdef CONFIG_HARDWALL |
| /* New thread does not own any networks. */ |
| p->thread.hardwall = NULL; |
| #endif |
| |
| |
| /* |
| * Start the new thread with the current architecture state |
| * (user interrupt masks, etc.). |
| */ |
| save_arch_state(&p->thread); |
| |
| return 0; |
| } |
| |
| /* |
| * Return "current" if it looks plausible, or else a pointer to a dummy. |
| * This can be helpful if we are just trying to emit a clean panic. |
| */ |
| struct task_struct *validate_current(void) |
| { |
| static struct task_struct corrupt = { .comm = "<corrupt>" }; |
| struct task_struct *tsk = current; |
| if (unlikely((unsigned long)tsk < PAGE_OFFSET || |
| (void *)tsk > high_memory || |
| ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { |
| pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); |
| tsk = &corrupt; |
| } |
| return tsk; |
| } |
| |
| /* Take and return the pointer to the previous task, for schedule_tail(). */ |
| struct task_struct *sim_notify_fork(struct task_struct *prev) |
| { |
| struct task_struct *tsk = current; |
| __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | |
| (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); |
| __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | |
| (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); |
| return prev; |
| } |
| |
| int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) |
| { |
| struct pt_regs *ptregs = task_pt_regs(tsk); |
| elf_core_copy_regs(regs, ptregs); |
| return 1; |
| } |
| |
| #if CHIP_HAS_TILE_DMA() |
| |
| /* Allow user processes to access the DMA SPRs */ |
| void grant_dma_mpls(void) |
| { |
| __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); |
| __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); |
| } |
| |
| /* Forbid user processes from accessing the DMA SPRs */ |
| void restrict_dma_mpls(void) |
| { |
| __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); |
| __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); |
| } |
| |
| /* Pause the DMA engine, then save off its state registers. */ |
| static void save_tile_dma_state(struct tile_dma_state *dma) |
| { |
| unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); |
| unsigned long post_suspend_state; |
| |
| /* If we're running, suspend the engine. */ |
| if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) |
| __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); |
| |
| /* |
| * Wait for the engine to idle, then save regs. Note that we |
| * want to record the "running" bit from before suspension, |
| * and the "done" bit from after, so that we can properly |
| * distinguish a case where the user suspended the engine from |
| * the case where the kernel suspended as part of the context |
| * swap. |
| */ |
| do { |
| post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); |
| } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); |
| |
| dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); |
| dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); |
| dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); |
| dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); |
| dma->strides = __insn_mfspr(SPR_DMA_STRIDE); |
| dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); |
| dma->byte = __insn_mfspr(SPR_DMA_BYTE); |
| dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | |
| (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); |
| } |
| |
| /* Restart a DMA that was running before we were context-switched out. */ |
| static void restore_tile_dma_state(struct thread_struct *t) |
| { |
| const struct tile_dma_state *dma = &t->tile_dma_state; |
| |
| /* |
| * The only way to restore the done bit is to run a zero |
| * length transaction. |
| */ |
| if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && |
| !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { |
| __insn_mtspr(SPR_DMA_BYTE, 0); |
| __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); |
| while (__insn_mfspr(SPR_DMA_USER_STATUS) & |
| SPR_DMA_STATUS__BUSY_MASK) |
| ; |
| } |
| |
| __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); |
| __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); |
| __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); |
| __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); |
| __insn_mtspr(SPR_DMA_STRIDE, dma->strides); |
| __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); |
| __insn_mtspr(SPR_DMA_BYTE, dma->byte); |
| |
| /* |
| * Restart the engine if we were running and not done. |
| * Clear a pending async DMA fault that we were waiting on return |
| * to user space to execute, since we expect the DMA engine |
| * to regenerate those faults for us now. Note that we don't |
| * try to clear the TIF_ASYNC_TLB flag, since it's relatively |
| * harmless if set, and it covers both DMA and the SN processor. |
| */ |
| if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { |
| t->dma_async_tlb.fault_num = 0; |
| __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); |
| } |
| } |
| |
| #endif |
| |
| static void save_arch_state(struct thread_struct *t) |
| { |
| #if CHIP_HAS_SPLIT_INTR_MASK() |
| t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | |
| ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); |
| #else |
| t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); |
| #endif |
| t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); |
| t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); |
| t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); |
| t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); |
| t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); |
| t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); |
| t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); |
| #if CHIP_HAS_PROC_STATUS_SPR() |
| t->proc_status = __insn_mfspr(SPR_PROC_STATUS); |
| #endif |
| #if !CHIP_HAS_FIXED_INTVEC_BASE() |
| t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0); |
| #endif |
| #if CHIP_HAS_TILE_RTF_HWM() |
| t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM); |
| #endif |
| #if CHIP_HAS_DSTREAM_PF() |
| t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF); |
| #endif |
| } |
| |
| static void restore_arch_state(const struct thread_struct *t) |
| { |
| #if CHIP_HAS_SPLIT_INTR_MASK() |
| __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); |
| __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); |
| #else |
| __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); |
| #endif |
| __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); |
| __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); |
| __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); |
| __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); |
| __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); |
| __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); |
| __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); |
| #if CHIP_HAS_PROC_STATUS_SPR() |
| __insn_mtspr(SPR_PROC_STATUS, t->proc_status); |
| #endif |
| #if !CHIP_HAS_FIXED_INTVEC_BASE() |
| __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base); |
| #endif |
| #if CHIP_HAS_TILE_RTF_HWM() |
| __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm); |
| #endif |
| #if CHIP_HAS_DSTREAM_PF() |
| __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf); |
| #endif |
| } |
| |
| |
| void _prepare_arch_switch(struct task_struct *next) |
| { |
| #if CHIP_HAS_SN_PROC() |
| int snctl; |
| #endif |
| #if CHIP_HAS_TILE_DMA() |
| struct tile_dma_state *dma = ¤t->thread.tile_dma_state; |
| if (dma->enabled) |
| save_tile_dma_state(dma); |
| #endif |
| #if CHIP_HAS_SN_PROC() |
| /* |
| * Suspend the static network processor if it was running. |
| * We do not suspend the fabric itself, just like we don't |
| * try to suspend the UDN. |
| */ |
| snctl = __insn_mfspr(SPR_SNCTL); |
| current->thread.sn_proc_running = |
| (snctl & SPR_SNCTL__FRZPROC_MASK) == 0; |
| if (current->thread.sn_proc_running) |
| __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); |
| #endif |
| } |
| |
| |
| struct task_struct *__sched _switch_to(struct task_struct *prev, |
| struct task_struct *next) |
| { |
| /* DMA state is already saved; save off other arch state. */ |
| save_arch_state(&prev->thread); |
| |
| #if CHIP_HAS_TILE_DMA() |
| /* |
| * Restore DMA in new task if desired. |
| * Note that it is only safe to restart here since interrupts |
| * are disabled, so we can't take any DMATLB miss or access |
| * interrupts before we have finished switching stacks. |
| */ |
| if (next->thread.tile_dma_state.enabled) { |
| restore_tile_dma_state(&next->thread); |
| grant_dma_mpls(); |
| } else { |
| restrict_dma_mpls(); |
| } |
| #endif |
| |
| /* Restore other arch state. */ |
| restore_arch_state(&next->thread); |
| |
| #if CHIP_HAS_SN_PROC() |
| /* |
| * Restart static network processor in the new process |
| * if it was running before. |
| */ |
| if (next->thread.sn_proc_running) { |
| int snctl = __insn_mfspr(SPR_SNCTL); |
| __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); |
| } |
| #endif |
| |
| #ifdef CONFIG_HARDWALL |
| /* Enable or disable access to the network registers appropriately. */ |
| if (prev->thread.hardwall != NULL) { |
| if (next->thread.hardwall == NULL) |
| restrict_network_mpls(); |
| } else if (next->thread.hardwall != NULL) { |
| grant_network_mpls(); |
| } |
| #endif |
| |
| /* |
| * Switch kernel SP, PC, and callee-saved registers. |
| * In the context of the new task, return the old task pointer |
| * (i.e. the task that actually called __switch_to). |
| * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp. |
| */ |
| return __switch_to(prev, next, next_current_ksp0(next)); |
| } |
| |
| long _sys_fork(struct pt_regs *regs) |
| { |
| return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
| } |
| |
| long _sys_clone(unsigned long clone_flags, unsigned long newsp, |
| void __user *parent_tidptr, void __user *child_tidptr, |
| struct pt_regs *regs) |
| { |
| if (!newsp) |
| newsp = regs->sp; |
| return do_fork(clone_flags, newsp, regs, 0, |
| parent_tidptr, child_tidptr); |
| } |
| |
| long _sys_vfork(struct pt_regs *regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, |
| regs, 0, NULL, NULL); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| long _sys_execve(const char __user *path, |
| const char __user *const __user *argv, |
| const char __user *const __user *envp, struct pt_regs *regs) |
| { |
| long error; |
| char *filename; |
| |
| filename = getname(path); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, argv, envp, regs); |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| long _compat_sys_execve(const char __user *path, |
| const compat_uptr_t __user *argv, |
| const compat_uptr_t __user *envp, struct pt_regs *regs) |
| { |
| long error; |
| char *filename; |
| |
| filename = getname(path); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = compat_do_execve(filename, argv, envp, regs); |
| putname(filename); |
| out: |
| return error; |
| } |
| #endif |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| struct KBacktraceIterator kbt; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| for (KBacktraceIterator_init(&kbt, p, NULL); |
| !KBacktraceIterator_end(&kbt); |
| KBacktraceIterator_next(&kbt)) { |
| if (!in_sched_functions(kbt.it.pc)) |
| return kbt.it.pc; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We pass in lr as zero (cleared in kernel_thread) and the caller |
| * part of the backtrace ABI on the stack also zeroed (in copy_thread) |
| * so that backtraces will stop with this function. |
| * Note that we don't use r0, since copy_thread() clears it. |
| */ |
| static void start_kernel_thread(int dummy, int (*fn)(int), int arg) |
| { |
| do_exit(fn(arg)); |
| } |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */ |
| regs.pc = (long) start_kernel_thread; |
| regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */ |
| regs.regs[1] = (long) fn; /* function pointer */ |
| regs.regs[2] = (long) arg; /* parameter register */ |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, |
| 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* Flush thread state. */ |
| void flush_thread(void) |
| { |
| /* Nothing */ |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| /* Nothing */ |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| struct task_struct *tsk = validate_current(); |
| int i; |
| |
| pr_err("\n"); |
| pr_err(" Pid: %d, comm: %20s, CPU: %d\n", |
| tsk->pid, tsk->comm, smp_processor_id()); |
| #ifdef __tilegx__ |
| for (i = 0; i < 51; i += 3) |
| pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", |
| i, regs->regs[i], i+1, regs->regs[i+1], |
| i+2, regs->regs[i+2]); |
| pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n", |
| regs->regs[51], regs->regs[52], regs->tp); |
| pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); |
| #else |
| for (i = 0; i < 52; i += 4) |
| pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT |
| " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", |
| i, regs->regs[i], i+1, regs->regs[i+1], |
| i+2, regs->regs[i+2], i+3, regs->regs[i+3]); |
| pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", |
| regs->regs[52], regs->tp, regs->sp, regs->lr); |
| #endif |
| pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n", |
| regs->pc, regs->ex1, regs->faultnum); |
| |
| dump_stack_regs(regs); |
| } |