| /* | 
 |  * Procedures for maintaining information about logical memory blocks. | 
 |  * | 
 |  * Peter Bergner, IBM Corp.	June 2001. | 
 |  * Copyright (C) 2001 Peter Bergner. | 
 |  * | 
 |  *      This program is free software; you can redistribute it and/or | 
 |  *      modify it under the terms of the GNU General Public License | 
 |  *      as published by the Free Software Foundation; either version | 
 |  *      2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/memblock.h> | 
 |  | 
 | #define MEMBLOCK_ALLOC_ANYWHERE	0 | 
 |  | 
 | struct memblock memblock; | 
 |  | 
 | static int memblock_debug; | 
 |  | 
 | static int __init early_memblock(char *p) | 
 | { | 
 | 	if (p && strstr(p, "debug")) | 
 | 		memblock_debug = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("memblock", early_memblock); | 
 |  | 
 | static void memblock_dump(struct memblock_region *region, char *name) | 
 | { | 
 | 	unsigned long long base, size; | 
 | 	int i; | 
 |  | 
 | 	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt); | 
 |  | 
 | 	for (i = 0; i < region->cnt; i++) { | 
 | 		base = region->region[i].base; | 
 | 		size = region->region[i].size; | 
 |  | 
 | 		pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", | 
 | 		    name, i, base, base + size - 1, size); | 
 | 	} | 
 | } | 
 |  | 
 | void memblock_dump_all(void) | 
 | { | 
 | 	if (!memblock_debug) | 
 | 		return; | 
 |  | 
 | 	pr_info("MEMBLOCK configuration:\n"); | 
 | 	pr_info(" rmo_size    = 0x%llx\n", (unsigned long long)memblock.rmo_size); | 
 | 	pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size); | 
 |  | 
 | 	memblock_dump(&memblock.memory, "memory"); | 
 | 	memblock_dump(&memblock.reserved, "reserved"); | 
 | } | 
 |  | 
 | static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2, | 
 | 					u64 size2) | 
 | { | 
 | 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | 
 | } | 
 |  | 
 | static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) | 
 | { | 
 | 	if (base2 == base1 + size1) | 
 | 		return 1; | 
 | 	else if (base1 == base2 + size2) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long memblock_regions_adjacent(struct memblock_region *rgn, | 
 | 		unsigned long r1, unsigned long r2) | 
 | { | 
 | 	u64 base1 = rgn->region[r1].base; | 
 | 	u64 size1 = rgn->region[r1].size; | 
 | 	u64 base2 = rgn->region[r2].base; | 
 | 	u64 size2 = rgn->region[r2].size; | 
 |  | 
 | 	return memblock_addrs_adjacent(base1, size1, base2, size2); | 
 | } | 
 |  | 
 | static void memblock_remove_region(struct memblock_region *rgn, unsigned long r) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = r; i < rgn->cnt - 1; i++) { | 
 | 		rgn->region[i].base = rgn->region[i + 1].base; | 
 | 		rgn->region[i].size = rgn->region[i + 1].size; | 
 | 	} | 
 | 	rgn->cnt--; | 
 | } | 
 |  | 
 | /* Assumption: base addr of region 1 < base addr of region 2 */ | 
 | static void memblock_coalesce_regions(struct memblock_region *rgn, | 
 | 		unsigned long r1, unsigned long r2) | 
 | { | 
 | 	rgn->region[r1].size += rgn->region[r2].size; | 
 | 	memblock_remove_region(rgn, r2); | 
 | } | 
 |  | 
 | void __init memblock_init(void) | 
 | { | 
 | 	/* Create a dummy zero size MEMBLOCK which will get coalesced away later. | 
 | 	 * This simplifies the memblock_add() code below... | 
 | 	 */ | 
 | 	memblock.memory.region[0].base = 0; | 
 | 	memblock.memory.region[0].size = 0; | 
 | 	memblock.memory.cnt = 1; | 
 |  | 
 | 	/* Ditto. */ | 
 | 	memblock.reserved.region[0].base = 0; | 
 | 	memblock.reserved.region[0].size = 0; | 
 | 	memblock.reserved.cnt = 1; | 
 | } | 
 |  | 
 | void __init memblock_analyze(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memblock.memory.size = 0; | 
 |  | 
 | 	for (i = 0; i < memblock.memory.cnt; i++) | 
 | 		memblock.memory.size += memblock.memory.region[i].size; | 
 | } | 
 |  | 
 | static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size) | 
 | { | 
 | 	unsigned long coalesced = 0; | 
 | 	long adjacent, i; | 
 |  | 
 | 	if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { | 
 | 		rgn->region[0].base = base; | 
 | 		rgn->region[0].size = size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* First try and coalesce this MEMBLOCK with another. */ | 
 | 	for (i = 0; i < rgn->cnt; i++) { | 
 | 		u64 rgnbase = rgn->region[i].base; | 
 | 		u64 rgnsize = rgn->region[i].size; | 
 |  | 
 | 		if ((rgnbase == base) && (rgnsize == size)) | 
 | 			/* Already have this region, so we're done */ | 
 | 			return 0; | 
 |  | 
 | 		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); | 
 | 		if (adjacent > 0) { | 
 | 			rgn->region[i].base -= size; | 
 | 			rgn->region[i].size += size; | 
 | 			coalesced++; | 
 | 			break; | 
 | 		} else if (adjacent < 0) { | 
 | 			rgn->region[i].size += size; | 
 | 			coalesced++; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) { | 
 | 		memblock_coalesce_regions(rgn, i, i+1); | 
 | 		coalesced++; | 
 | 	} | 
 |  | 
 | 	if (coalesced) | 
 | 		return coalesced; | 
 | 	if (rgn->cnt >= MAX_MEMBLOCK_REGIONS) | 
 | 		return -1; | 
 |  | 
 | 	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ | 
 | 	for (i = rgn->cnt - 1; i >= 0; i--) { | 
 | 		if (base < rgn->region[i].base) { | 
 | 			rgn->region[i+1].base = rgn->region[i].base; | 
 | 			rgn->region[i+1].size = rgn->region[i].size; | 
 | 		} else { | 
 | 			rgn->region[i+1].base = base; | 
 | 			rgn->region[i+1].size = size; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (base < rgn->region[0].base) { | 
 | 		rgn->region[0].base = base; | 
 | 		rgn->region[0].size = size; | 
 | 	} | 
 | 	rgn->cnt++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | long memblock_add(u64 base, u64 size) | 
 | { | 
 | 	struct memblock_region *_rgn = &memblock.memory; | 
 |  | 
 | 	/* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */ | 
 | 	if (base == 0) | 
 | 		memblock.rmo_size = size; | 
 |  | 
 | 	return memblock_add_region(_rgn, base, size); | 
 |  | 
 | } | 
 |  | 
 | static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size) | 
 | { | 
 | 	u64 rgnbegin, rgnend; | 
 | 	u64 end = base + size; | 
 | 	int i; | 
 |  | 
 | 	rgnbegin = rgnend = 0; /* supress gcc warnings */ | 
 |  | 
 | 	/* Find the region where (base, size) belongs to */ | 
 | 	for (i=0; i < rgn->cnt; i++) { | 
 | 		rgnbegin = rgn->region[i].base; | 
 | 		rgnend = rgnbegin + rgn->region[i].size; | 
 |  | 
 | 		if ((rgnbegin <= base) && (end <= rgnend)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Didn't find the region */ | 
 | 	if (i == rgn->cnt) | 
 | 		return -1; | 
 |  | 
 | 	/* Check to see if we are removing entire region */ | 
 | 	if ((rgnbegin == base) && (rgnend == end)) { | 
 | 		memblock_remove_region(rgn, i); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check to see if region is matching at the front */ | 
 | 	if (rgnbegin == base) { | 
 | 		rgn->region[i].base = end; | 
 | 		rgn->region[i].size -= size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check to see if the region is matching at the end */ | 
 | 	if (rgnend == end) { | 
 | 		rgn->region[i].size -= size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to split the entry -  adjust the current one to the | 
 | 	 * beginging of the hole and add the region after hole. | 
 | 	 */ | 
 | 	rgn->region[i].size = base - rgn->region[i].base; | 
 | 	return memblock_add_region(rgn, end, rgnend - end); | 
 | } | 
 |  | 
 | long memblock_remove(u64 base, u64 size) | 
 | { | 
 | 	return __memblock_remove(&memblock.memory, base, size); | 
 | } | 
 |  | 
 | long __init memblock_free(u64 base, u64 size) | 
 | { | 
 | 	return __memblock_remove(&memblock.reserved, base, size); | 
 | } | 
 |  | 
 | long __init memblock_reserve(u64 base, u64 size) | 
 | { | 
 | 	struct memblock_region *_rgn = &memblock.reserved; | 
 |  | 
 | 	BUG_ON(0 == size); | 
 |  | 
 | 	return memblock_add_region(_rgn, base, size); | 
 | } | 
 |  | 
 | long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < rgn->cnt; i++) { | 
 | 		u64 rgnbase = rgn->region[i].base; | 
 | 		u64 rgnsize = rgn->region[i].size; | 
 | 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return (i < rgn->cnt) ? i : -1; | 
 | } | 
 |  | 
 | static u64 memblock_align_down(u64 addr, u64 size) | 
 | { | 
 | 	return addr & ~(size - 1); | 
 | } | 
 |  | 
 | static u64 memblock_align_up(u64 addr, u64 size) | 
 | { | 
 | 	return (addr + (size - 1)) & ~(size - 1); | 
 | } | 
 |  | 
 | static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end, | 
 | 					   u64 size, u64 align) | 
 | { | 
 | 	u64 base, res_base; | 
 | 	long j; | 
 |  | 
 | 	base = memblock_align_down((end - size), align); | 
 | 	while (start <= base) { | 
 | 		j = memblock_overlaps_region(&memblock.reserved, base, size); | 
 | 		if (j < 0) { | 
 | 			/* this area isn't reserved, take it */ | 
 | 			if (memblock_add_region(&memblock.reserved, base, size) < 0) | 
 | 				base = ~(u64)0; | 
 | 			return base; | 
 | 		} | 
 | 		res_base = memblock.reserved.region[j].base; | 
 | 		if (res_base < size) | 
 | 			break; | 
 | 		base = memblock_align_down(res_base - size, align); | 
 | 	} | 
 |  | 
 | 	return ~(u64)0; | 
 | } | 
 |  | 
 | static u64 __init memblock_alloc_nid_region(struct memblock_property *mp, | 
 | 				       u64 (*nid_range)(u64, u64, int *), | 
 | 				       u64 size, u64 align, int nid) | 
 | { | 
 | 	u64 start, end; | 
 |  | 
 | 	start = mp->base; | 
 | 	end = start + mp->size; | 
 |  | 
 | 	start = memblock_align_up(start, align); | 
 | 	while (start < end) { | 
 | 		u64 this_end; | 
 | 		int this_nid; | 
 |  | 
 | 		this_end = nid_range(start, end, &this_nid); | 
 | 		if (this_nid == nid) { | 
 | 			u64 ret = memblock_alloc_nid_unreserved(start, this_end, | 
 | 							   size, align); | 
 | 			if (ret != ~(u64)0) | 
 | 				return ret; | 
 | 		} | 
 | 		start = this_end; | 
 | 	} | 
 |  | 
 | 	return ~(u64)0; | 
 | } | 
 |  | 
 | u64 __init memblock_alloc_nid(u64 size, u64 align, int nid, | 
 | 			 u64 (*nid_range)(u64 start, u64 end, int *nid)) | 
 | { | 
 | 	struct memblock_region *mem = &memblock.memory; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(0 == size); | 
 |  | 
 | 	size = memblock_align_up(size, align); | 
 |  | 
 | 	for (i = 0; i < mem->cnt; i++) { | 
 | 		u64 ret = memblock_alloc_nid_region(&mem->region[i], | 
 | 					       nid_range, | 
 | 					       size, align, nid); | 
 | 		if (ret != ~(u64)0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return memblock_alloc(size, align); | 
 | } | 
 |  | 
 | u64 __init memblock_alloc(u64 size, u64 align) | 
 | { | 
 | 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); | 
 | } | 
 |  | 
 | u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr) | 
 | { | 
 | 	u64 alloc; | 
 |  | 
 | 	alloc = __memblock_alloc_base(size, align, max_addr); | 
 |  | 
 | 	if (alloc == 0) | 
 | 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | 
 | 		      (unsigned long long) size, (unsigned long long) max_addr); | 
 |  | 
 | 	return alloc; | 
 | } | 
 |  | 
 | u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr) | 
 | { | 
 | 	long i, j; | 
 | 	u64 base = 0; | 
 | 	u64 res_base; | 
 |  | 
 | 	BUG_ON(0 == size); | 
 |  | 
 | 	size = memblock_align_up(size, align); | 
 |  | 
 | 	/* On some platforms, make sure we allocate lowmem */ | 
 | 	/* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */ | 
 | 	if (max_addr == MEMBLOCK_ALLOC_ANYWHERE) | 
 | 		max_addr = MEMBLOCK_REAL_LIMIT; | 
 |  | 
 | 	for (i = memblock.memory.cnt - 1; i >= 0; i--) { | 
 | 		u64 memblockbase = memblock.memory.region[i].base; | 
 | 		u64 memblocksize = memblock.memory.region[i].size; | 
 |  | 
 | 		if (memblocksize < size) | 
 | 			continue; | 
 | 		if (max_addr == MEMBLOCK_ALLOC_ANYWHERE) | 
 | 			base = memblock_align_down(memblockbase + memblocksize - size, align); | 
 | 		else if (memblockbase < max_addr) { | 
 | 			base = min(memblockbase + memblocksize, max_addr); | 
 | 			base = memblock_align_down(base - size, align); | 
 | 		} else | 
 | 			continue; | 
 |  | 
 | 		while (base && memblockbase <= base) { | 
 | 			j = memblock_overlaps_region(&memblock.reserved, base, size); | 
 | 			if (j < 0) { | 
 | 				/* this area isn't reserved, take it */ | 
 | 				if (memblock_add_region(&memblock.reserved, base, size) < 0) | 
 | 					return 0; | 
 | 				return base; | 
 | 			} | 
 | 			res_base = memblock.reserved.region[j].base; | 
 | 			if (res_base < size) | 
 | 				break; | 
 | 			base = memblock_align_down(res_base - size, align); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* You must call memblock_analyze() before this. */ | 
 | u64 __init memblock_phys_mem_size(void) | 
 | { | 
 | 	return memblock.memory.size; | 
 | } | 
 |  | 
 | u64 memblock_end_of_DRAM(void) | 
 | { | 
 | 	int idx = memblock.memory.cnt - 1; | 
 |  | 
 | 	return (memblock.memory.region[idx].base + memblock.memory.region[idx].size); | 
 | } | 
 |  | 
 | /* You must call memblock_analyze() after this. */ | 
 | void __init memblock_enforce_memory_limit(u64 memory_limit) | 
 | { | 
 | 	unsigned long i; | 
 | 	u64 limit; | 
 | 	struct memblock_property *p; | 
 |  | 
 | 	if (!memory_limit) | 
 | 		return; | 
 |  | 
 | 	/* Truncate the memblock regions to satisfy the memory limit. */ | 
 | 	limit = memory_limit; | 
 | 	for (i = 0; i < memblock.memory.cnt; i++) { | 
 | 		if (limit > memblock.memory.region[i].size) { | 
 | 			limit -= memblock.memory.region[i].size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		memblock.memory.region[i].size = limit; | 
 | 		memblock.memory.cnt = i + 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (memblock.memory.region[0].size < memblock.rmo_size) | 
 | 		memblock.rmo_size = memblock.memory.region[0].size; | 
 |  | 
 | 	memory_limit = memblock_end_of_DRAM(); | 
 |  | 
 | 	/* And truncate any reserves above the limit also. */ | 
 | 	for (i = 0; i < memblock.reserved.cnt; i++) { | 
 | 		p = &memblock.reserved.region[i]; | 
 |  | 
 | 		if (p->base > memory_limit) | 
 | 			p->size = 0; | 
 | 		else if ((p->base + p->size) > memory_limit) | 
 | 			p->size = memory_limit - p->base; | 
 |  | 
 | 		if (p->size == 0) { | 
 | 			memblock_remove_region(&memblock.reserved, i); | 
 | 			i--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int __init memblock_is_reserved(u64 addr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < memblock.reserved.cnt; i++) { | 
 | 		u64 upper = memblock.reserved.region[i].base + | 
 | 			memblock.reserved.region[i].size - 1; | 
 | 		if ((addr >= memblock.reserved.region[i].base) && (addr <= upper)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int memblock_is_region_reserved(u64 base, u64 size) | 
 | { | 
 | 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Given a <base, len>, find which memory regions belong to this range. | 
 |  * Adjust the request and return a contiguous chunk. | 
 |  */ | 
 | int memblock_find(struct memblock_property *res) | 
 | { | 
 | 	int i; | 
 | 	u64 rstart, rend; | 
 |  | 
 | 	rstart = res->base; | 
 | 	rend = rstart + res->size - 1; | 
 |  | 
 | 	for (i = 0; i < memblock.memory.cnt; i++) { | 
 | 		u64 start = memblock.memory.region[i].base; | 
 | 		u64 end = start + memblock.memory.region[i].size - 1; | 
 |  | 
 | 		if (start > rend) | 
 | 			return -1; | 
 |  | 
 | 		if ((end >= rstart) && (start < rend)) { | 
 | 			/* adjust the request */ | 
 | 			if (rstart < start) | 
 | 				rstart = start; | 
 | 			if (rend > end) | 
 | 				rend = end; | 
 | 			res->base = rstart; | 
 | 			res->size = rend - rstart + 1; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return -1; | 
 | } |