| /* kgdb support for MN10300 |
| * |
| * Copyright (C) 2010 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/ptrace.h> |
| #include <linux/kgdb.h> |
| #include <linux/uaccess.h> |
| #include <unit/leds.h> |
| #include <unit/serial.h> |
| #include <asm/debugger.h> |
| #include <asm/serial-regs.h> |
| #include "internal.h" |
| |
| /* |
| * Software single-stepping breakpoint save (used by __switch_to()) |
| */ |
| static struct thread_info *kgdb_sstep_thread; |
| u8 *kgdb_sstep_bp_addr[2]; |
| u8 kgdb_sstep_bp[2]; |
| |
| /* |
| * Copy kernel exception frame registers to the GDB register file |
| */ |
| void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| unsigned long ssp = (unsigned long) (regs + 1); |
| |
| gdb_regs[GDB_FR_D0] = regs->d0; |
| gdb_regs[GDB_FR_D1] = regs->d1; |
| gdb_regs[GDB_FR_D2] = regs->d2; |
| gdb_regs[GDB_FR_D3] = regs->d3; |
| gdb_regs[GDB_FR_A0] = regs->a0; |
| gdb_regs[GDB_FR_A1] = regs->a1; |
| gdb_regs[GDB_FR_A2] = regs->a2; |
| gdb_regs[GDB_FR_A3] = regs->a3; |
| gdb_regs[GDB_FR_SP] = (regs->epsw & EPSW_nSL) ? regs->sp : ssp; |
| gdb_regs[GDB_FR_PC] = regs->pc; |
| gdb_regs[GDB_FR_MDR] = regs->mdr; |
| gdb_regs[GDB_FR_EPSW] = regs->epsw; |
| gdb_regs[GDB_FR_LIR] = regs->lir; |
| gdb_regs[GDB_FR_LAR] = regs->lar; |
| gdb_regs[GDB_FR_MDRQ] = regs->mdrq; |
| gdb_regs[GDB_FR_E0] = regs->e0; |
| gdb_regs[GDB_FR_E1] = regs->e1; |
| gdb_regs[GDB_FR_E2] = regs->e2; |
| gdb_regs[GDB_FR_E3] = regs->e3; |
| gdb_regs[GDB_FR_E4] = regs->e4; |
| gdb_regs[GDB_FR_E5] = regs->e5; |
| gdb_regs[GDB_FR_E6] = regs->e6; |
| gdb_regs[GDB_FR_E7] = regs->e7; |
| gdb_regs[GDB_FR_SSP] = ssp; |
| gdb_regs[GDB_FR_MSP] = 0; |
| gdb_regs[GDB_FR_USP] = regs->sp; |
| gdb_regs[GDB_FR_MCRH] = regs->mcrh; |
| gdb_regs[GDB_FR_MCRL] = regs->mcrl; |
| gdb_regs[GDB_FR_MCVF] = regs->mcvf; |
| gdb_regs[GDB_FR_DUMMY0] = 0; |
| gdb_regs[GDB_FR_DUMMY1] = 0; |
| gdb_regs[GDB_FR_FS0] = 0; |
| } |
| |
| /* |
| * Extracts kernel SP/PC values understandable by gdb from the values |
| * saved by switch_to(). |
| */ |
| void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) |
| { |
| gdb_regs[GDB_FR_SSP] = p->thread.sp; |
| gdb_regs[GDB_FR_PC] = p->thread.pc; |
| gdb_regs[GDB_FR_A3] = p->thread.a3; |
| gdb_regs[GDB_FR_USP] = p->thread.usp; |
| gdb_regs[GDB_FR_FPCR] = p->thread.fpu_state.fpcr; |
| } |
| |
| /* |
| * Fill kernel exception frame registers from the GDB register file |
| */ |
| void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| regs->d0 = gdb_regs[GDB_FR_D0]; |
| regs->d1 = gdb_regs[GDB_FR_D1]; |
| regs->d2 = gdb_regs[GDB_FR_D2]; |
| regs->d3 = gdb_regs[GDB_FR_D3]; |
| regs->a0 = gdb_regs[GDB_FR_A0]; |
| regs->a1 = gdb_regs[GDB_FR_A1]; |
| regs->a2 = gdb_regs[GDB_FR_A2]; |
| regs->a3 = gdb_regs[GDB_FR_A3]; |
| regs->sp = gdb_regs[GDB_FR_SP]; |
| regs->pc = gdb_regs[GDB_FR_PC]; |
| regs->mdr = gdb_regs[GDB_FR_MDR]; |
| regs->epsw = gdb_regs[GDB_FR_EPSW]; |
| regs->lir = gdb_regs[GDB_FR_LIR]; |
| regs->lar = gdb_regs[GDB_FR_LAR]; |
| regs->mdrq = gdb_regs[GDB_FR_MDRQ]; |
| regs->e0 = gdb_regs[GDB_FR_E0]; |
| regs->e1 = gdb_regs[GDB_FR_E1]; |
| regs->e2 = gdb_regs[GDB_FR_E2]; |
| regs->e3 = gdb_regs[GDB_FR_E3]; |
| regs->e4 = gdb_regs[GDB_FR_E4]; |
| regs->e5 = gdb_regs[GDB_FR_E5]; |
| regs->e6 = gdb_regs[GDB_FR_E6]; |
| regs->e7 = gdb_regs[GDB_FR_E7]; |
| regs->sp = gdb_regs[GDB_FR_SSP]; |
| /* gdb_regs[GDB_FR_MSP]; */ |
| // regs->usp = gdb_regs[GDB_FR_USP]; |
| regs->mcrh = gdb_regs[GDB_FR_MCRH]; |
| regs->mcrl = gdb_regs[GDB_FR_MCRL]; |
| regs->mcvf = gdb_regs[GDB_FR_MCVF]; |
| /* gdb_regs[GDB_FR_DUMMY0]; */ |
| /* gdb_regs[GDB_FR_DUMMY1]; */ |
| |
| // regs->fpcr = gdb_regs[GDB_FR_FPCR]; |
| // regs->fs0 = gdb_regs[GDB_FR_FS0]; |
| } |
| |
| struct kgdb_arch arch_kgdb_ops = { |
| .gdb_bpt_instr = { 0xff }, |
| .flags = KGDB_HW_BREAKPOINT, |
| }; |
| |
| static const unsigned char mn10300_kgdb_insn_sizes[256] = |
| { |
| /* 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, /* 0 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */ |
| 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */ |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */ |
| 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */ |
| 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */ |
| 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */ |
| 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */ |
| 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */ |
| 0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1 /* f */ |
| }; |
| |
| /* |
| * Attempt to emulate single stepping by means of breakpoint instructions. |
| * Although there is a single-step trace flag in EPSW, its use is not |
| * sufficiently documented and is only intended for use with the JTAG debugger. |
| */ |
| static int kgdb_arch_do_singlestep(struct pt_regs *regs) |
| { |
| unsigned long arg; |
| unsigned size; |
| u8 *pc = (u8 *)regs->pc, *sp = (u8 *)(regs + 1), cur; |
| u8 *x = NULL, *y = NULL; |
| int ret; |
| |
| ret = probe_kernel_read(&cur, pc, 1); |
| if (ret < 0) |
| return ret; |
| |
| size = mn10300_kgdb_insn_sizes[cur]; |
| if (size > 0) { |
| x = pc + size; |
| goto set_x; |
| } |
| |
| switch (cur) { |
| /* Bxx (d8,PC) */ |
| case 0xc0 ... 0xca: |
| ret = probe_kernel_read(&arg, pc + 1, 1); |
| if (ret < 0) |
| return ret; |
| x = pc + 2; |
| if (arg >= 0 && arg <= 2) |
| goto set_x; |
| y = pc + (s8)arg; |
| goto set_x_and_y; |
| |
| /* LXX (d8,PC) */ |
| case 0xd0 ... 0xda: |
| x = pc + 1; |
| if (regs->pc == regs->lar) |
| goto set_x; |
| y = (u8 *)regs->lar; |
| goto set_x_and_y; |
| |
| /* SETLB - loads the next four bytes into the LIR register |
| * (which mustn't include a breakpoint instruction) */ |
| case 0xdb: |
| x = pc + 5; |
| goto set_x; |
| |
| /* JMP (d16,PC) or CALL (d16,PC) */ |
| case 0xcc: |
| case 0xcd: |
| ret = probe_kernel_read(&arg, pc + 1, 2); |
| if (ret < 0) |
| return ret; |
| x = pc + (s16)arg; |
| goto set_x; |
| |
| /* JMP (d32,PC) or CALL (d32,PC) */ |
| case 0xdc: |
| case 0xdd: |
| ret = probe_kernel_read(&arg, pc + 1, 4); |
| if (ret < 0) |
| return ret; |
| x = pc + (s32)arg; |
| goto set_x; |
| |
| /* RETF */ |
| case 0xde: |
| x = (u8 *)regs->mdr; |
| goto set_x; |
| |
| /* RET */ |
| case 0xdf: |
| ret = probe_kernel_read(&arg, pc + 2, 1); |
| if (ret < 0) |
| return ret; |
| ret = probe_kernel_read(&x, sp + (s8)arg, 4); |
| if (ret < 0) |
| return ret; |
| goto set_x; |
| |
| case 0xf0: |
| ret = probe_kernel_read(&cur, pc + 1, 1); |
| if (ret < 0) |
| return ret; |
| |
| if (cur >= 0xf0 && cur <= 0xf7) { |
| /* JMP (An) / CALLS (An) */ |
| switch (cur & 3) { |
| case 0: x = (u8 *)regs->a0; break; |
| case 1: x = (u8 *)regs->a1; break; |
| case 2: x = (u8 *)regs->a2; break; |
| case 3: x = (u8 *)regs->a3; break; |
| } |
| goto set_x; |
| } else if (cur == 0xfc) { |
| /* RETS */ |
| ret = probe_kernel_read(&x, sp, 4); |
| if (ret < 0) |
| return ret; |
| goto set_x; |
| } else if (cur == 0xfd) { |
| /* RTI */ |
| ret = probe_kernel_read(&x, sp + 4, 4); |
| if (ret < 0) |
| return ret; |
| goto set_x; |
| } else { |
| x = pc + 2; |
| goto set_x; |
| } |
| break; |
| |
| /* potential 3-byte conditional branches */ |
| case 0xf8: |
| ret = probe_kernel_read(&cur, pc + 1, 1); |
| if (ret < 0) |
| return ret; |
| x = pc + 3; |
| |
| if (cur >= 0xe8 && cur <= 0xeb) { |
| ret = probe_kernel_read(&arg, pc + 2, 1); |
| if (ret < 0) |
| return ret; |
| if (arg >= 0 && arg <= 3) |
| goto set_x; |
| y = pc + (s8)arg; |
| goto set_x_and_y; |
| } |
| goto set_x; |
| |
| case 0xfa: |
| ret = probe_kernel_read(&cur, pc + 1, 1); |
| if (ret < 0) |
| return ret; |
| |
| if (cur == 0xff) { |
| /* CALLS (d16,PC) */ |
| ret = probe_kernel_read(&arg, pc + 2, 2); |
| if (ret < 0) |
| return ret; |
| x = pc + (s16)arg; |
| goto set_x; |
| } |
| |
| x = pc + 4; |
| goto set_x; |
| |
| case 0xfc: |
| ret = probe_kernel_read(&cur, pc + 1, 1); |
| if (ret < 0) |
| return ret; |
| |
| if (cur == 0xff) { |
| /* CALLS (d32,PC) */ |
| ret = probe_kernel_read(&arg, pc + 2, 4); |
| if (ret < 0) |
| return ret; |
| x = pc + (s32)arg; |
| goto set_x; |
| } |
| |
| x = pc + 6; |
| goto set_x; |
| } |
| |
| return 0; |
| |
| set_x: |
| kgdb_sstep_bp_addr[0] = x; |
| kgdb_sstep_bp_addr[1] = NULL; |
| ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1); |
| if (ret < 0) |
| return ret; |
| ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1); |
| if (ret < 0) |
| return ret; |
| kgdb_sstep_thread = current_thread_info(); |
| debugger_local_cache_flushinv_one(x); |
| return ret; |
| |
| set_x_and_y: |
| kgdb_sstep_bp_addr[0] = x; |
| kgdb_sstep_bp_addr[1] = y; |
| ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1); |
| if (ret < 0) |
| return ret; |
| ret = probe_kernel_read(&kgdb_sstep_bp[1], y, 1); |
| if (ret < 0) |
| return ret; |
| ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1); |
| if (ret < 0) |
| return ret; |
| ret = probe_kernel_write(y, &arch_kgdb_ops.gdb_bpt_instr, 1); |
| if (ret < 0) { |
| probe_kernel_write(kgdb_sstep_bp_addr[0], |
| &kgdb_sstep_bp[0], 1); |
| } else { |
| kgdb_sstep_thread = current_thread_info(); |
| } |
| debugger_local_cache_flushinv_one(x); |
| debugger_local_cache_flushinv_one(y); |
| return ret; |
| } |
| |
| /* |
| * Remove emplaced single-step breakpoints, returning true if we hit one of |
| * them. |
| */ |
| static bool kgdb_arch_undo_singlestep(struct pt_regs *regs) |
| { |
| bool hit = false; |
| u8 *x = kgdb_sstep_bp_addr[0], *y = kgdb_sstep_bp_addr[1]; |
| u8 opcode; |
| |
| if (kgdb_sstep_thread == current_thread_info()) { |
| if (x) { |
| if (x == (u8 *)regs->pc) |
| hit = true; |
| if (probe_kernel_read(&opcode, x, |
| 1) < 0 || |
| opcode != 0xff) |
| BUG(); |
| probe_kernel_write(x, &kgdb_sstep_bp[0], 1); |
| debugger_local_cache_flushinv_one(x); |
| } |
| if (y) { |
| if (y == (u8 *)regs->pc) |
| hit = true; |
| if (probe_kernel_read(&opcode, y, |
| 1) < 0 || |
| opcode != 0xff) |
| BUG(); |
| probe_kernel_write(y, &kgdb_sstep_bp[1], 1); |
| debugger_local_cache_flushinv_one(y); |
| } |
| } |
| |
| kgdb_sstep_bp_addr[0] = NULL; |
| kgdb_sstep_bp_addr[1] = NULL; |
| kgdb_sstep_thread = NULL; |
| return hit; |
| } |
| |
| /* |
| * Catch a single-step-pending thread being deleted and make sure the global |
| * single-step state is cleared. At this point the breakpoints should have |
| * been removed by __switch_to(). |
| */ |
| void free_thread_info(struct thread_info *ti) |
| { |
| if (kgdb_sstep_thread == ti) { |
| kgdb_sstep_thread = NULL; |
| |
| /* However, we may now be running in degraded mode, with most |
| * of the CPUs disabled until such a time as KGDB is reentered, |
| * so force immediate reentry */ |
| kgdb_breakpoint(); |
| } |
| kfree(ti); |
| } |
| |
| /* |
| * Handle unknown packets and [CcsDk] packets |
| * - at this point breakpoints have been installed |
| */ |
| int kgdb_arch_handle_exception(int vector, int signo, int err_code, |
| char *remcom_in_buffer, char *remcom_out_buffer, |
| struct pt_regs *regs) |
| { |
| long addr; |
| char *ptr; |
| |
| switch (remcom_in_buffer[0]) { |
| case 'c': |
| case 's': |
| /* try to read optional parameter, pc unchanged if no parm */ |
| ptr = &remcom_in_buffer[1]; |
| if (kgdb_hex2long(&ptr, &addr)) |
| regs->pc = addr; |
| case 'D': |
| case 'k': |
| atomic_set(&kgdb_cpu_doing_single_step, -1); |
| |
| if (remcom_in_buffer[0] == 's') { |
| kgdb_arch_do_singlestep(regs); |
| kgdb_single_step = 1; |
| atomic_set(&kgdb_cpu_doing_single_step, |
| raw_smp_processor_id()); |
| } |
| return 0; |
| } |
| return -1; /* this means that we do not want to exit from the handler */ |
| } |
| |
| /* |
| * Handle event interception |
| * - returns 0 if the exception should be skipped, -ERROR otherwise. |
| */ |
| int debugger_intercept(enum exception_code excep, int signo, int si_code, |
| struct pt_regs *regs) |
| { |
| int ret; |
| |
| if (kgdb_arch_undo_singlestep(regs)) { |
| excep = EXCEP_TRAP; |
| signo = SIGTRAP; |
| si_code = TRAP_TRACE; |
| } |
| |
| ret = kgdb_handle_exception(excep, signo, si_code, regs); |
| |
| debugger_local_cache_flushinv(); |
| |
| return ret; |
| } |
| |
| /* |
| * Determine if we've hit a debugger special breakpoint |
| */ |
| int at_debugger_breakpoint(struct pt_regs *regs) |
| { |
| return regs->pc == (unsigned long)&__arch_kgdb_breakpoint; |
| } |
| |
| /* |
| * Initialise kgdb |
| */ |
| int kgdb_arch_init(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * Do something, perhaps, but don't know what. |
| */ |
| void kgdb_arch_exit(void) |
| { |
| } |
| |
| #ifdef CONFIG_SMP |
| void debugger_nmi_interrupt(struct pt_regs *regs, enum exception_code code) |
| { |
| kgdb_nmicallback(arch_smp_processor_id(), regs); |
| debugger_local_cache_flushinv(); |
| } |
| |
| void kgdb_roundup_cpus(unsigned long flags) |
| { |
| smp_jump_to_debugger(); |
| } |
| #endif |