blob: db93518fac033ff373671549ed7c7da23688ce80 [file] [log] [blame]
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _ASM_TILE_PAGE_H
#define _ASM_TILE_PAGE_H
#include <linux/const.h>
#include <hv/hypervisor.h>
#include <arch/chip.h>
/* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
#define PAGE_SHIFT HV_LOG2_PAGE_SIZE_SMALL
#define HPAGE_SHIFT HV_LOG2_PAGE_SIZE_LARGE
#define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT)
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
/*
* If the Kconfig doesn't specify, set a maximum zone order that
* is enough so that we can create huge pages from small pages given
* the respective sizes of the two page types. See <linux/mmzone.h>.
*/
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
#endif
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/string.h>
struct page;
static inline void clear_page(void *page)
{
memset(page, 0, PAGE_SIZE);
}
static inline void copy_page(void *to, void *from)
{
memcpy(to, from, PAGE_SIZE);
}
static inline void clear_user_page(void *page, unsigned long vaddr,
struct page *pg)
{
clear_page(page);
}
static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
struct page *topage)
{
copy_page(to, from);
}
/*
* Hypervisor page tables are made of the same basic structure.
*/
typedef HV_PTE pte_t;
typedef HV_PTE pgd_t;
typedef HV_PTE pgprot_t;
/*
* User L2 page tables are managed as one L2 page table per page,
* because we use the page allocator for them. This keeps the allocation
* simple and makes it potentially useful to implement HIGHPTE at some point.
* However, it's also inefficient, since L2 page tables are much smaller
* than pages (currently 2KB vs 64KB). So we should revisit this.
*/
typedef struct page *pgtable_t;
/* Must be a macro since it is used to create constants. */
#define __pgprot(val) hv_pte(val)
/* Rarely-used initializers, typically with a "zero" value. */
#define __pte(x) hv_pte(x)
#define __pgd(x) hv_pte(x)
static inline u64 pgprot_val(pgprot_t pgprot)
{
return hv_pte_val(pgprot);
}
static inline u64 pte_val(pte_t pte)
{
return hv_pte_val(pte);
}
static inline u64 pgd_val(pgd_t pgd)
{
return hv_pte_val(pgd);
}
#ifdef __tilegx__
typedef HV_PTE pmd_t;
#define __pmd(x) hv_pte(x)
static inline u64 pmd_val(pmd_t pmd)
{
return hv_pte_val(pmd);
}
#endif
static inline __attribute_const__ int get_order(unsigned long size)
{
return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
}
#endif /* !__ASSEMBLY__ */
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
#define HUGE_MAX_HSTATE 2
#ifdef CONFIG_HUGETLB_PAGE
#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
#endif
/* Each memory controller has PAs distinct in their high bits. */
#define NR_PA_HIGHBIT_SHIFT (CHIP_PA_WIDTH() - CHIP_LOG_NUM_MSHIMS())
#define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
#define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
#define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
#ifdef __tilegx__
/*
* We reserve the lower half of memory for user-space programs, and the
* upper half for system code. We re-map all of physical memory in the
* upper half, which takes a quarter of our VA space. Then we have
* the vmalloc regions. The supervisor code lives at 0xfffffff700000000,
* with the hypervisor above that.
*
* Loadable kernel modules are placed immediately after the static
* supervisor code, with each being allocated a 256MB region of
* address space, so we don't have to worry about the range of "jal"
* and other branch instructions.
*
* For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
* Similarly, for now we don't play any struct page mapping games.
*/
#if CHIP_PA_WIDTH() + 2 > CHIP_VA_WIDTH()
# error Too much PA to map with the VA available!
#endif
#define HALF_VA_SPACE (_AC(1, UL) << (CHIP_VA_WIDTH() - 1))
#define MEM_LOW_END (HALF_VA_SPACE - 1) /* low half */
#define MEM_HIGH_START (-HALF_VA_SPACE) /* high half */
#define PAGE_OFFSET MEM_HIGH_START
#define _VMALLOC_START _AC(0xfffffff500000000, UL) /* 4 GB */
#define HUGE_VMAP_BASE _AC(0xfffffff600000000, UL) /* 4 GB */
#define MEM_SV_START _AC(0xfffffff700000000, UL) /* 256 MB */
#define MEM_SV_INTRPT MEM_SV_START
#define MEM_MODULE_START _AC(0xfffffff710000000, UL) /* 256 MB */
#define MEM_MODULE_END (MEM_MODULE_START + (256*1024*1024))
#define MEM_HV_START _AC(0xfffffff800000000, UL) /* 32 GB */
/* Highest DTLB address we will use */
#define KERNEL_HIGH_VADDR MEM_SV_START
/* Since we don't currently provide any fixmaps, we use an impossible VA. */
#define FIXADDR_TOP MEM_HV_START
#else /* !__tilegx__ */
/*
* A PAGE_OFFSET of 0xC0000000 means that the kernel has
* a virtual address space of one gigabyte, which limits the
* amount of physical memory you can use to about 768MB.
* If you want more physical memory than this then see the CONFIG_HIGHMEM
* option in the kernel configuration.
*
* The top 16MB chunk in the table below is unavailable to Linux. Since
* the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
* (depending on whether the kernel is at PL2 or Pl1), we map all of the
* bottom of RAM at this address with a huge page table entry to minimize
* its ITLB footprint (as well as at PAGE_OFFSET). The last architected
* requirement is that user interrupt vectors live at 0xfc000000, so we
* make that range of memory available to user processes. The remaining
* regions are sized as shown; the first four addresses use the PL 1
* values, and after that, we show "typical" values, since the actual
* addresses depend on kernel #defines.
*
* MEM_HV_INTRPT 0xfe000000
* MEM_SV_INTRPT (kernel code) 0xfd000000
* MEM_USER_INTRPT (user vector) 0xfc000000
* FIX_KMAP_xxx 0xf8000000 (via NR_CPUS * KM_TYPE_NR)
* PKMAP_BASE 0xf7000000 (via LAST_PKMAP)
* HUGE_VMAP 0xf3000000 (via CONFIG_NR_HUGE_VMAPS)
* VMALLOC_START 0xf0000000 (via __VMALLOC_RESERVE)
* mapped LOWMEM 0xc0000000
*/
#define MEM_USER_INTRPT _AC(0xfc000000, UL)
#if CONFIG_KERNEL_PL == 1
#define MEM_SV_INTRPT _AC(0xfd000000, UL)
#define MEM_HV_INTRPT _AC(0xfe000000, UL)
#else
#define MEM_GUEST_INTRPT _AC(0xfd000000, UL)
#define MEM_SV_INTRPT _AC(0xfe000000, UL)
#define MEM_HV_INTRPT _AC(0xff000000, UL)
#endif
#define INTRPT_SIZE 0x4000
/* Tolerate page size larger than the architecture interrupt region size. */
#if PAGE_SIZE > INTRPT_SIZE
#undef INTRPT_SIZE
#define INTRPT_SIZE PAGE_SIZE
#endif
#define KERNEL_HIGH_VADDR MEM_USER_INTRPT
#define FIXADDR_TOP (KERNEL_HIGH_VADDR - PAGE_SIZE)
#define PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL)
/* On 32-bit architectures we mix kernel modules in with other vmaps. */
#define MEM_MODULE_START VMALLOC_START
#define MEM_MODULE_END VMALLOC_END
#endif /* __tilegx__ */
#ifndef __ASSEMBLY__
#ifdef CONFIG_HIGHMEM
/* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
extern unsigned long pbase_map[];
extern void *vbase_map[];
static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
{
unsigned long kaddr = (unsigned long)_kaddr;
return pbase_map[kaddr >> HPAGE_SHIFT] +
((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
}
static inline void *pfn_to_kaddr(unsigned long pfn)
{
return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
}
static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
{
unsigned long pfn = kaddr_to_pfn(kaddr);
return ((phys_addr_t)pfn << PAGE_SHIFT) +
((unsigned long)kaddr & (PAGE_SIZE-1));
}
static inline void *phys_to_virt(phys_addr_t paddr)
{
return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
}
/* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
static inline int virt_addr_valid(const volatile void *kaddr)
{
extern void *high_memory; /* copied from <linux/mm.h> */
return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
}
#else /* !CONFIG_HIGHMEM */
static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
{
return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
}
static inline void *pfn_to_kaddr(unsigned long pfn)
{
return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
}
static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
{
return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
}
static inline void *phys_to_virt(phys_addr_t paddr)
{
return (void *)((unsigned long)paddr + PAGE_OFFSET);
}
/* Check that the given address is within some mapped range of PAs. */
#define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
#endif /* !CONFIG_HIGHMEM */
/* All callers are not consistent in how they call these functions. */
#define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
#define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
extern int devmem_is_allowed(unsigned long pagenr);
#ifdef CONFIG_FLATMEM
static inline int pfn_valid(unsigned long pfn)
{
return pfn < max_mapnr;
}
#endif
/* Provide as macros since these require some other headers included. */
#define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
#define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
#define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
struct mm_struct;
extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
#endif /* !__ASSEMBLY__ */
#define VM_DATA_DEFAULT_FLAGS \
(VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#include <asm-generic/memory_model.h>
#endif /* _ASM_TILE_PAGE_H */