|  | /* | 
|  | * usb-host.c: ETRAX 100LX USB Host Controller Driver (HCD) | 
|  | * | 
|  | * Copyright (c) 2002, 2003 Axis Communications AB. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/version.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/arch/svinto.h> | 
|  |  | 
|  | #include <linux/usb.h> | 
|  | /* Ugly include because we don't live with the other host drivers. */ | 
|  | #include <../drivers/usb/core/hcd.h> | 
|  | #include <../drivers/usb/core/usb.h> | 
|  |  | 
|  | #include "hc_crisv10.h" | 
|  |  | 
|  | #define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR | 
|  | #define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR | 
|  | #define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR | 
|  |  | 
|  | static const char *usb_hcd_version = "$Revision: 1.2 $"; | 
|  |  | 
|  | #undef KERN_DEBUG | 
|  | #define KERN_DEBUG "" | 
|  |  | 
|  |  | 
|  | #undef USB_DEBUG_RH | 
|  | #undef USB_DEBUG_EPID | 
|  | #undef USB_DEBUG_SB | 
|  | #undef USB_DEBUG_DESC | 
|  | #undef USB_DEBUG_URB | 
|  | #undef USB_DEBUG_TRACE | 
|  | #undef USB_DEBUG_BULK | 
|  | #undef USB_DEBUG_CTRL | 
|  | #undef USB_DEBUG_INTR | 
|  | #undef USB_DEBUG_ISOC | 
|  |  | 
|  | #ifdef USB_DEBUG_RH | 
|  | #define dbg_rh(format, arg...) printk(KERN_DEBUG __FILE__ ": (RH) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_rh(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_EPID | 
|  | #define dbg_epid(format, arg...) printk(KERN_DEBUG __FILE__ ": (EPID) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_epid(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_SB | 
|  | #define dbg_sb(format, arg...) printk(KERN_DEBUG __FILE__ ": (SB) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_sb(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_CTRL | 
|  | #define dbg_ctrl(format, arg...) printk(KERN_DEBUG __FILE__ ": (CTRL) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_ctrl(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_BULK | 
|  | #define dbg_bulk(format, arg...) printk(KERN_DEBUG __FILE__ ": (BULK) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_bulk(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_INTR | 
|  | #define dbg_intr(format, arg...) printk(KERN_DEBUG __FILE__ ": (INTR) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_intr(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_ISOC | 
|  | #define dbg_isoc(format, arg...) printk(KERN_DEBUG __FILE__ ": (ISOC) " format "\n" , ## arg) | 
|  | #else | 
|  | #define dbg_isoc(format, arg...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_TRACE | 
|  | #define DBFENTER (printk(": Entering: %s\n", __FUNCTION__)) | 
|  | #define DBFEXIT  (printk(": Exiting:  %s\n", __FUNCTION__)) | 
|  | #else | 
|  | #define DBFENTER do {} while (0) | 
|  | #define DBFEXIT  do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #define usb_pipeslow(pipe)	(((pipe) >> 26) & 1) | 
|  |  | 
|  | /*------------------------------------------------------------------- | 
|  | Virtual Root Hub | 
|  | -------------------------------------------------------------------*/ | 
|  |  | 
|  | static __u8 root_hub_dev_des[] = | 
|  | { | 
|  | 0x12,  /*  __u8  bLength; */ | 
|  | 0x01,  /*  __u8  bDescriptorType; Device */ | 
|  | 0x00,  /*  __le16 bcdUSB; v1.0 */ | 
|  | 0x01, | 
|  | 0x09,  /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
|  | 0x00,  /*  __u8  bDeviceSubClass; */ | 
|  | 0x00,  /*  __u8  bDeviceProtocol; */ | 
|  | 0x08,  /*  __u8  bMaxPacketSize0; 8 Bytes */ | 
|  | 0x00,  /*  __le16 idVendor; */ | 
|  | 0x00, | 
|  | 0x00,  /*  __le16 idProduct; */ | 
|  | 0x00, | 
|  | 0x00,  /*  __le16 bcdDevice; */ | 
|  | 0x00, | 
|  | 0x00,  /*  __u8  iManufacturer; */ | 
|  | 0x02,  /*  __u8  iProduct; */ | 
|  | 0x01,  /*  __u8  iSerialNumber; */ | 
|  | 0x01   /*  __u8  bNumConfigurations; */ | 
|  | }; | 
|  |  | 
|  | /* Configuration descriptor */ | 
|  | static __u8 root_hub_config_des[] = | 
|  | { | 
|  | 0x09,  /*  __u8  bLength; */ | 
|  | 0x02,  /*  __u8  bDescriptorType; Configuration */ | 
|  | 0x19,  /*  __le16 wTotalLength; */ | 
|  | 0x00, | 
|  | 0x01,  /*  __u8  bNumInterfaces; */ | 
|  | 0x01,  /*  __u8  bConfigurationValue; */ | 
|  | 0x00,  /*  __u8  iConfiguration; */ | 
|  | 0x40,  /*  __u8  bmAttributes; Bit 7: Bus-powered */ | 
|  | 0x00,  /*  __u8  MaxPower; */ | 
|  |  | 
|  | /* interface */ | 
|  | 0x09,  /*  __u8  if_bLength; */ | 
|  | 0x04,  /*  __u8  if_bDescriptorType; Interface */ | 
|  | 0x00,  /*  __u8  if_bInterfaceNumber; */ | 
|  | 0x00,  /*  __u8  if_bAlternateSetting; */ | 
|  | 0x01,  /*  __u8  if_bNumEndpoints; */ | 
|  | 0x09,  /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
|  | 0x00,  /*  __u8  if_bInterfaceSubClass; */ | 
|  | 0x00,  /*  __u8  if_bInterfaceProtocol; */ | 
|  | 0x00,  /*  __u8  if_iInterface; */ | 
|  |  | 
|  | /* endpoint */ | 
|  | 0x07,  /*  __u8  ep_bLength; */ | 
|  | 0x05,  /*  __u8  ep_bDescriptorType; Endpoint */ | 
|  | 0x81,  /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
|  | 0x03,  /*  __u8  ep_bmAttributes; Interrupt */ | 
|  | 0x08,  /*  __le16 ep_wMaxPacketSize; 8 Bytes */ | 
|  | 0x00, | 
|  | 0xff   /*  __u8  ep_bInterval; 255 ms */ | 
|  | }; | 
|  |  | 
|  | static __u8 root_hub_hub_des[] = | 
|  | { | 
|  | 0x09,  /*  __u8  bLength; */ | 
|  | 0x29,  /*  __u8  bDescriptorType; Hub-descriptor */ | 
|  | 0x02,  /*  __u8  bNbrPorts; */ | 
|  | 0x00,  /* __u16  wHubCharacteristics; */ | 
|  | 0x00, | 
|  | 0x01,  /*  __u8  bPwrOn2pwrGood; 2ms */ | 
|  | 0x00,  /*  __u8  bHubContrCurrent; 0 mA */ | 
|  | 0x00,  /*  __u8  DeviceRemovable; *** 7 Ports max *** */ | 
|  | 0xff   /*  __u8  PortPwrCtrlMask; *** 7 ports max *** */ | 
|  | }; | 
|  |  | 
|  | static DEFINE_TIMER(bulk_start_timer, NULL, 0, 0); | 
|  | static DEFINE_TIMER(bulk_eot_timer, NULL, 0, 0); | 
|  |  | 
|  | /* We want the start timer to expire before the eot timer, because the former might start | 
|  | traffic, thus making it unnecessary for the latter to time out. */ | 
|  | #define BULK_START_TIMER_INTERVAL (HZ/10) /* 100 ms */ | 
|  | #define BULK_EOT_TIMER_INTERVAL (HZ/10+2) /* 120 ms */ | 
|  |  | 
|  | #define OK(x) len = (x); dbg_rh("OK(%d): line: %d", x, __LINE__); break | 
|  | #define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \ | 
|  | {panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);} | 
|  |  | 
|  | #define SLAB_FLAG     (in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL) | 
|  | #define KMALLOC_FLAG  (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) | 
|  |  | 
|  | /* Most helpful debugging aid */ | 
|  | #define assert(expr) ((void) ((expr) ? 0 : (err("assert failed at line %d",__LINE__)))) | 
|  |  | 
|  | /* Alternative assert define which stops after a failed assert. */ | 
|  | /* | 
|  | #define assert(expr)                                      \ | 
|  | {                                                         \ | 
|  | if (!(expr)) {                                    \ | 
|  | err("assert failed at line %d",__LINE__); \ | 
|  | while (1);                                \ | 
|  | }                                                 \ | 
|  | } | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it dynamically? | 
|  | To adjust it dynamically we would have to get an interrupt when we reach the end | 
|  | of the rx descriptor list, or when we get close to the end, and then allocate more | 
|  | descriptors. */ | 
|  |  | 
|  | #define NBR_OF_RX_DESC     512 | 
|  | #define RX_DESC_BUF_SIZE   1024 | 
|  | #define RX_BUF_SIZE        (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE) | 
|  |  | 
|  | /* The number of epids is, among other things, used for pre-allocating | 
|  | ctrl, bulk and isoc EP descriptors (one for each epid). | 
|  | Assumed to be > 1 when initiating the DMA lists. */ | 
|  | #define NBR_OF_EPIDS       32 | 
|  |  | 
|  | /* Support interrupt traffic intervals up to 128 ms. */ | 
|  | #define MAX_INTR_INTERVAL 128 | 
|  |  | 
|  | /* If periodic traffic (intr or isoc) is to be used, then one entry in the EP table | 
|  | must be "invalid". By this we mean that we shouldn't care about epid attentions | 
|  | for this epid, or at least handle them differently from epid attentions for "valid" | 
|  | epids. This define determines which one to use (don't change it). */ | 
|  | #define INVALID_EPID     31 | 
|  | /* A special epid for the bulk dummys. */ | 
|  | #define DUMMY_EPID       30 | 
|  |  | 
|  | /* This is just a software cache for the valid entries in R_USB_EPT_DATA. */ | 
|  | static __u32 epid_usage_bitmask; | 
|  |  | 
|  | /* A bitfield to keep information on in/out traffic is needed to uniquely identify | 
|  | an endpoint on a device, since the most significant bit which indicates traffic | 
|  | direction is lacking in the ep_id field (ETRAX epids can handle both in and | 
|  | out traffic on endpoints that are otherwise identical). The USB framework, however, | 
|  | relies on them to be handled separately.  For example, bulk IN and OUT urbs cannot | 
|  | be queued in the same list, since they would block each other. */ | 
|  | static __u32 epid_out_traffic; | 
|  |  | 
|  | /* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line. | 
|  | Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be cache aligned. */ | 
|  | static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32))); | 
|  | static volatile USB_IN_Desc_t RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4))); | 
|  |  | 
|  | /* Pointers into RxDescList. */ | 
|  | static volatile USB_IN_Desc_t *myNextRxDesc; | 
|  | static volatile USB_IN_Desc_t *myLastRxDesc; | 
|  | static volatile USB_IN_Desc_t *myPrevRxDesc; | 
|  |  | 
|  | /* EP descriptors must be 32-bit aligned. */ | 
|  | static volatile USB_EP_Desc_t TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | 
|  | static volatile USB_EP_Desc_t TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | 
|  | /* After each enabled bulk EP (IN or OUT) we put two disabled EP descriptors with the eol flag set, | 
|  | causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which | 
|  | gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the | 
|  | EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors | 
|  | in each frame. */ | 
|  | static volatile USB_EP_Desc_t TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4))); | 
|  |  | 
|  | static volatile USB_EP_Desc_t TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); | 
|  | static volatile USB_SB_Desc_t TxIsocSB_zout __attribute__ ((aligned (4))); | 
|  |  | 
|  | static volatile USB_EP_Desc_t TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4))); | 
|  | static volatile USB_SB_Desc_t TxIntrSB_zout __attribute__ ((aligned (4))); | 
|  |  | 
|  | /* A zout transfer makes a memory access at the address of its buf pointer, which means that setting | 
|  | this buf pointer to 0 will cause an access to the flash. In addition to this, setting sw_len to 0 | 
|  | results in a 16/32 bytes (depending on DMA burst size) transfer. Instead, we set it to 1, and point | 
|  | it to this buffer. */ | 
|  | static int zout_buffer[4] __attribute__ ((aligned (4))); | 
|  |  | 
|  | /* Cache for allocating new EP and SB descriptors. */ | 
|  | static kmem_cache_t *usb_desc_cache; | 
|  |  | 
|  | /* Cache for the registers allocated in the top half. */ | 
|  | static kmem_cache_t *top_half_reg_cache; | 
|  |  | 
|  | /* Cache for the data allocated in the isoc descr top half. */ | 
|  | static kmem_cache_t *isoc_compl_cache; | 
|  |  | 
|  | static struct usb_bus *etrax_usb_bus; | 
|  |  | 
|  | /* This is a circular (double-linked) list of the active urbs for each epid. | 
|  | The head is never removed, and new urbs are linked onto the list as | 
|  | urb_entry_t elements. Don't reference urb_list directly; use the wrapper | 
|  | functions instead. Note that working with these lists might require spinlock | 
|  | protection. */ | 
|  | static struct list_head urb_list[NBR_OF_EPIDS]; | 
|  |  | 
|  | /* Read about the need and usage of this lock in submit_ctrl_urb. */ | 
|  | static spinlock_t urb_list_lock; | 
|  |  | 
|  | /* Used when unlinking asynchronously. */ | 
|  | static struct list_head urb_unlink_list; | 
|  |  | 
|  | /* for returning string descriptors in UTF-16LE */ | 
|  | static int ascii2utf (char *ascii, __u8 *utf, int utfmax) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | for (retval = 0; *ascii && utfmax > 1; utfmax -= 2, retval += 2) { | 
|  | *utf++ = *ascii++ & 0x7f; | 
|  | *utf++ = 0; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int usb_root_hub_string (int id, int serial, char *type, __u8 *data, int len) | 
|  | { | 
|  | char buf [30]; | 
|  |  | 
|  | // assert (len > (2 * (sizeof (buf) + 1))); | 
|  | // assert (strlen (type) <= 8); | 
|  |  | 
|  | // language ids | 
|  | if (id == 0) { | 
|  | *data++ = 4; *data++ = 3;	/* 4 bytes data */ | 
|  | *data++ = 0; *data++ = 0;	/* some language id */ | 
|  | return 4; | 
|  |  | 
|  | // serial number | 
|  | } else if (id == 1) { | 
|  | sprintf (buf, "%x", serial); | 
|  |  | 
|  | // product description | 
|  | } else if (id == 2) { | 
|  | sprintf (buf, "USB %s Root Hub", type); | 
|  |  | 
|  | // id 3 == vendor description | 
|  |  | 
|  | // unsupported IDs --> "stall" | 
|  | } else | 
|  | return 0; | 
|  |  | 
|  | data [0] = 2 + ascii2utf (buf, data + 2, len - 2); | 
|  | data [1] = 3; | 
|  | return data [0]; | 
|  | } | 
|  |  | 
|  | /* Wrappers around the list functions (include/linux/list.h). */ | 
|  |  | 
|  | static inline int urb_list_empty(int epid) | 
|  | { | 
|  | return list_empty(&urb_list[epid]); | 
|  | } | 
|  |  | 
|  | /* Returns first urb for this epid, or NULL if list is empty. */ | 
|  | static inline struct urb *urb_list_first(int epid) | 
|  | { | 
|  | struct urb *first_urb = 0; | 
|  |  | 
|  | if (!urb_list_empty(epid)) { | 
|  | /* Get the first urb (i.e. head->next). */ | 
|  | urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list); | 
|  | first_urb = urb_entry->urb; | 
|  | } | 
|  | return first_urb; | 
|  | } | 
|  |  | 
|  | /* Adds an urb_entry last in the list for this epid. */ | 
|  | static inline void urb_list_add(struct urb *urb, int epid) | 
|  | { | 
|  | urb_entry_t *urb_entry = (urb_entry_t *)kmalloc(sizeof(urb_entry_t), KMALLOC_FLAG); | 
|  | assert(urb_entry); | 
|  |  | 
|  | urb_entry->urb = urb; | 
|  | list_add_tail(&urb_entry->list, &urb_list[epid]); | 
|  | } | 
|  |  | 
|  | /* Search through the list for an element that contains this urb. (The list | 
|  | is expected to be short and the one we are about to delete will often be | 
|  | the first in the list.) */ | 
|  | static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) | 
|  | { | 
|  | struct list_head *entry; | 
|  | struct list_head *tmp; | 
|  | urb_entry_t *urb_entry; | 
|  |  | 
|  | list_for_each_safe(entry, tmp, &urb_list[epid]) { | 
|  | urb_entry = list_entry(entry, urb_entry_t, list); | 
|  | assert(urb_entry); | 
|  | assert(urb_entry->urb); | 
|  |  | 
|  | if (urb_entry->urb == urb) { | 
|  | return urb_entry; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Delete an urb from the list. */ | 
|  | static inline void urb_list_del(struct urb *urb, int epid) | 
|  | { | 
|  | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | 
|  | assert(urb_entry); | 
|  |  | 
|  | /* Delete entry and free. */ | 
|  | list_del(&urb_entry->list); | 
|  | kfree(urb_entry); | 
|  | } | 
|  |  | 
|  | /* Move an urb to the end of the list. */ | 
|  | static inline void urb_list_move_last(struct urb *urb, int epid) | 
|  | { | 
|  | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | 
|  | assert(urb_entry); | 
|  |  | 
|  | list_del(&urb_entry->list); | 
|  | list_add_tail(&urb_entry->list, &urb_list[epid]); | 
|  | } | 
|  |  | 
|  | /* Get the next urb in the list. */ | 
|  | static inline struct urb *urb_list_next(struct urb *urb, int epid) | 
|  | { | 
|  | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); | 
|  |  | 
|  | assert(urb_entry); | 
|  |  | 
|  | if (urb_entry->list.next != &urb_list[epid]) { | 
|  | struct list_head *elem = urb_entry->list.next; | 
|  | urb_entry = list_entry(elem, urb_entry_t, list); | 
|  | return urb_entry->urb; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* For debug purposes only. */ | 
|  | static inline void urb_list_dump(int epid) | 
|  | { | 
|  | struct list_head *entry; | 
|  | struct list_head *tmp; | 
|  | urb_entry_t *urb_entry; | 
|  | int i = 0; | 
|  |  | 
|  | info("Dumping urb list for epid %d", epid); | 
|  |  | 
|  | list_for_each_safe(entry, tmp, &urb_list[epid]) { | 
|  | urb_entry = list_entry(entry, urb_entry_t, list); | 
|  | info("   entry %d, urb = 0x%lx", i, (unsigned long)urb_entry->urb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_rx_buffers(void); | 
|  | static int etrax_rh_unlink_urb(struct urb *urb); | 
|  | static void etrax_rh_send_irq(struct urb *urb); | 
|  | static void etrax_rh_init_int_timer(struct urb *urb); | 
|  | static void etrax_rh_int_timer_do(unsigned long ptr); | 
|  |  | 
|  | static int etrax_usb_setup_epid(struct urb *urb); | 
|  | static int etrax_usb_lookup_epid(struct urb *urb); | 
|  | static int etrax_usb_allocate_epid(void); | 
|  | static void etrax_usb_free_epid(int epid); | 
|  |  | 
|  | static int etrax_remove_from_sb_list(struct urb *urb); | 
|  |  | 
|  | static void* etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, | 
|  | unsigned mem_flags, dma_addr_t *dma); | 
|  | static void etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma); | 
|  |  | 
|  | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid); | 
|  | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid); | 
|  | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid); | 
|  | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid); | 
|  |  | 
|  | static int etrax_usb_submit_bulk_urb(struct urb *urb); | 
|  | static int etrax_usb_submit_ctrl_urb(struct urb *urb); | 
|  | static int etrax_usb_submit_intr_urb(struct urb *urb); | 
|  | static int etrax_usb_submit_isoc_urb(struct urb *urb); | 
|  |  | 
|  | static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags); | 
|  | static int etrax_usb_unlink_urb(struct urb *urb, int status); | 
|  | static int etrax_usb_get_frame_number(struct usb_device *usb_dev); | 
|  |  | 
|  | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs); | 
|  | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs); | 
|  | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs); | 
|  | static void etrax_usb_hc_interrupt_bottom_half(void *data); | 
|  |  | 
|  | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data); | 
|  |  | 
|  |  | 
|  | /* The following is a list of interrupt handlers for the host controller interrupts we use. | 
|  | They are called from etrax_usb_hc_interrupt_bottom_half. */ | 
|  | static void etrax_usb_hc_isoc_eof_interrupt(void); | 
|  | static void etrax_usb_hc_bulk_eot_interrupt(int timer_induced); | 
|  | static void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg); | 
|  | static void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg); | 
|  | static void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg); | 
|  |  | 
|  | static int etrax_rh_submit_urb (struct urb *urb); | 
|  |  | 
|  | /* Forward declaration needed because they are used in the rx interrupt routine. */ | 
|  | static void etrax_usb_complete_urb(struct urb *urb, int status); | 
|  | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status); | 
|  | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status); | 
|  | static void etrax_usb_complete_intr_urb(struct urb *urb, int status); | 
|  | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status); | 
|  |  | 
|  | static int etrax_usb_hc_init(void); | 
|  | static void etrax_usb_hc_cleanup(void); | 
|  |  | 
|  | static struct usb_operations etrax_usb_device_operations = | 
|  | { | 
|  | .get_frame_number = etrax_usb_get_frame_number, | 
|  | .submit_urb = etrax_usb_submit_urb, | 
|  | .unlink_urb = etrax_usb_unlink_urb, | 
|  | .buffer_alloc = etrax_usb_buffer_alloc, | 
|  | .buffer_free = etrax_usb_buffer_free | 
|  | }; | 
|  |  | 
|  | /* Note that these functions are always available in their "__" variants, for use in | 
|  | error situations. The "__" missing variants are controlled by the USB_DEBUG_DESC/ | 
|  | USB_DEBUG_URB macros. */ | 
|  | static void __dump_urb(struct urb* purb) | 
|  | { | 
|  | printk("\nurb                  :0x%08lx\n", (unsigned long)purb); | 
|  | printk("dev                   :0x%08lx\n", (unsigned long)purb->dev); | 
|  | printk("pipe                  :0x%08x\n", purb->pipe); | 
|  | printk("status                :%d\n", purb->status); | 
|  | printk("transfer_flags        :0x%08x\n", purb->transfer_flags); | 
|  | printk("transfer_buffer       :0x%08lx\n", (unsigned long)purb->transfer_buffer); | 
|  | printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length); | 
|  | printk("actual_length         :%d\n", purb->actual_length); | 
|  | printk("setup_packet          :0x%08lx\n", (unsigned long)purb->setup_packet); | 
|  | printk("start_frame           :%d\n", purb->start_frame); | 
|  | printk("number_of_packets     :%d\n", purb->number_of_packets); | 
|  | printk("interval              :%d\n", purb->interval); | 
|  | printk("error_count           :%d\n", purb->error_count); | 
|  | printk("context               :0x%08lx\n", (unsigned long)purb->context); | 
|  | printk("complete              :0x%08lx\n\n", (unsigned long)purb->complete); | 
|  | } | 
|  |  | 
|  | static void __dump_in_desc(volatile USB_IN_Desc_t *in) | 
|  | { | 
|  | printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in); | 
|  | printk("  sw_len  : 0x%04x (%d)\n", in->sw_len, in->sw_len); | 
|  | printk("  command : 0x%04x\n", in->command); | 
|  | printk("  next    : 0x%08lx\n", in->next); | 
|  | printk("  buf     : 0x%08lx\n", in->buf); | 
|  | printk("  hw_len  : 0x%04x (%d)\n", in->hw_len, in->hw_len); | 
|  | printk("  status  : 0x%04x\n\n", in->status); | 
|  | } | 
|  |  | 
|  | static void __dump_sb_desc(volatile USB_SB_Desc_t *sb) | 
|  | { | 
|  | char tt = (sb->command & 0x30) >> 4; | 
|  | char *tt_string; | 
|  |  | 
|  | switch (tt) { | 
|  | case 0: | 
|  | tt_string = "zout"; | 
|  | break; | 
|  | case 1: | 
|  | tt_string = "in"; | 
|  | break; | 
|  | case 2: | 
|  | tt_string = "out"; | 
|  | break; | 
|  | case 3: | 
|  | tt_string = "setup"; | 
|  | break; | 
|  | default: | 
|  | tt_string = "unknown (weird)"; | 
|  | } | 
|  |  | 
|  | printk("\n   USB_SB_Desc at 0x%08lx\n", (unsigned long)sb); | 
|  | printk("     command : 0x%04x\n", sb->command); | 
|  | printk("        rem     : %d\n", (sb->command & 0x3f00) >> 8); | 
|  | printk("        full    : %d\n", (sb->command & 0x40) >> 6); | 
|  | printk("        tt      : %d (%s)\n", tt, tt_string); | 
|  | printk("        intr    : %d\n", (sb->command & 0x8) >> 3); | 
|  | printk("        eot     : %d\n", (sb->command & 0x2) >> 1); | 
|  | printk("        eol     : %d\n", sb->command & 0x1); | 
|  | printk("     sw_len  : 0x%04x (%d)\n", sb->sw_len, sb->sw_len); | 
|  | printk("     next    : 0x%08lx\n", sb->next); | 
|  | printk("     buf     : 0x%08lx\n\n", sb->buf); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void __dump_ep_desc(volatile USB_EP_Desc_t *ep) | 
|  | { | 
|  | printk("\nUSB_EP_Desc at 0x%08lx\n", (unsigned long)ep); | 
|  | printk("  command : 0x%04x\n", ep->command); | 
|  | printk("     ep_id   : %d\n", (ep->command & 0x1f00) >> 8); | 
|  | printk("     enable  : %d\n", (ep->command & 0x10) >> 4); | 
|  | printk("     intr    : %d\n", (ep->command & 0x8) >> 3); | 
|  | printk("     eof     : %d\n", (ep->command & 0x2) >> 1); | 
|  | printk("     eol     : %d\n", ep->command & 0x1); | 
|  | printk("  hw_len  : 0x%04x (%d)\n", ep->hw_len, ep->hw_len); | 
|  | printk("  next    : 0x%08lx\n", ep->next); | 
|  | printk("  sub     : 0x%08lx\n\n", ep->sub); | 
|  | } | 
|  |  | 
|  | static inline void __dump_ep_list(int pipe_type) | 
|  | { | 
|  | volatile USB_EP_Desc_t *ep; | 
|  | volatile USB_EP_Desc_t *first_ep; | 
|  | volatile USB_SB_Desc_t *sb; | 
|  |  | 
|  | switch (pipe_type) | 
|  | { | 
|  | case PIPE_BULK: | 
|  | first_ep = &TxBulkEPList[0]; | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | first_ep = &TxCtrlEPList[0]; | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | first_ep = &TxIntrEPList[0]; | 
|  | break; | 
|  | case PIPE_ISOCHRONOUS: | 
|  | first_ep = &TxIsocEPList[0]; | 
|  | break; | 
|  | default: | 
|  | warn("Cannot dump unknown traffic type"); | 
|  | return; | 
|  | } | 
|  | ep = first_ep; | 
|  |  | 
|  | printk("\n\nDumping EP list...\n\n"); | 
|  |  | 
|  | do { | 
|  | __dump_ep_desc(ep); | 
|  | /* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */ | 
|  | sb = ep->sub ? phys_to_virt(ep->sub) : 0; | 
|  | while (sb) { | 
|  | __dump_sb_desc(sb); | 
|  | sb = sb->next ? phys_to_virt(sb->next) : 0; | 
|  | } | 
|  | ep = (volatile USB_EP_Desc_t *)(phys_to_virt(ep->next)); | 
|  |  | 
|  | } while (ep != first_ep); | 
|  | } | 
|  |  | 
|  | static inline void __dump_ept_data(int epid) | 
|  | { | 
|  | unsigned long flags; | 
|  | __u32 r_usb_ept_data; | 
|  |  | 
|  | if (epid < 0 || epid > 31) { | 
|  | printk("Cannot dump ept data for invalid epid %d\n", epid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | r_usb_ept_data = *R_USB_EPT_DATA; | 
|  | restore_flags(flags); | 
|  |  | 
|  | printk("\nR_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid); | 
|  | if (r_usb_ept_data == 0) { | 
|  | /* No need for more detailed printing. */ | 
|  | return; | 
|  | } | 
|  | printk("  valid           : %d\n", (r_usb_ept_data & 0x80000000) >> 31); | 
|  | printk("  hold            : %d\n", (r_usb_ept_data & 0x40000000) >> 30); | 
|  | printk("  error_count_in  : %d\n", (r_usb_ept_data & 0x30000000) >> 28); | 
|  | printk("  t_in            : %d\n", (r_usb_ept_data & 0x08000000) >> 27); | 
|  | printk("  low_speed       : %d\n", (r_usb_ept_data & 0x04000000) >> 26); | 
|  | printk("  port            : %d\n", (r_usb_ept_data & 0x03000000) >> 24); | 
|  | printk("  error_code      : %d\n", (r_usb_ept_data & 0x00c00000) >> 22); | 
|  | printk("  t_out           : %d\n", (r_usb_ept_data & 0x00200000) >> 21); | 
|  | printk("  error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19); | 
|  | printk("  max_len         : %d\n", (r_usb_ept_data & 0x0003f800) >> 11); | 
|  | printk("  ep              : %d\n", (r_usb_ept_data & 0x00000780) >> 7); | 
|  | printk("  dev             : %d\n", (r_usb_ept_data & 0x0000003f)); | 
|  | } | 
|  |  | 
|  | static inline void __dump_ept_data_list(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk("Dumping the whole R_USB_EPT_DATA list\n"); | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | __dump_ept_data(i); | 
|  | } | 
|  | } | 
|  | #ifdef USB_DEBUG_DESC | 
|  | #define dump_in_desc(...) __dump_in_desc(...) | 
|  | #define dump_sb_desc(...) __dump_sb_desc(...) | 
|  | #define dump_ep_desc(...) __dump_ep_desc(...) | 
|  | #else | 
|  | #define dump_in_desc(...) do {} while (0) | 
|  | #define dump_sb_desc(...) do {} while (0) | 
|  | #define dump_ep_desc(...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USB_DEBUG_URB | 
|  | #define dump_urb(x)     __dump_urb(x) | 
|  | #else | 
|  | #define dump_urb(x)     do {} while (0) | 
|  | #endif | 
|  |  | 
|  | static void init_rx_buffers(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { | 
|  | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; | 
|  | RxDescList[i].command = 0; | 
|  | RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); | 
|  | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); | 
|  | RxDescList[i].hw_len = 0; | 
|  | RxDescList[i].status = 0; | 
|  |  | 
|  | /* DMA IN cache bug. (struct etrax_dma_descr has the same layout as USB_IN_Desc | 
|  | for the relevant fields.) */ | 
|  | prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]); | 
|  |  | 
|  | } | 
|  |  | 
|  | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; | 
|  | RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes); | 
|  | RxDescList[i].next = virt_to_phys(&RxDescList[0]); | 
|  | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); | 
|  | RxDescList[i].hw_len = 0; | 
|  | RxDescList[i].status = 0; | 
|  |  | 
|  | myNextRxDesc = &RxDescList[0]; | 
|  | myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; | 
|  | myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; | 
|  |  | 
|  | *R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc); | 
|  | *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void init_tx_bulk_ep(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | 
|  | CHECK_ALIGN(&TxBulkEPList[i]); | 
|  | TxBulkEPList[i].hw_len = 0; | 
|  | TxBulkEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | 
|  | TxBulkEPList[i].sub = 0; | 
|  | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[i + 1]); | 
|  |  | 
|  | /* Initiate two EPs, disabled and with the eol flag set. No need for any | 
|  | preserved epid. */ | 
|  |  | 
|  | /* The first one has the intr flag set so we get an interrupt when the DMA | 
|  | channel is about to become disabled. */ | 
|  | CHECK_ALIGN(&TxBulkDummyEPList[i][0]); | 
|  | TxBulkDummyEPList[i][0].hw_len = 0; | 
|  | TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | | 
|  | IO_STATE(USB_EP_command, eol, yes) | | 
|  | IO_STATE(USB_EP_command, intr, yes)); | 
|  | TxBulkDummyEPList[i][0].sub = 0; | 
|  | TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]); | 
|  |  | 
|  | /* The second one. */ | 
|  | CHECK_ALIGN(&TxBulkDummyEPList[i][1]); | 
|  | TxBulkDummyEPList[i][1].hw_len = 0; | 
|  | TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | | 
|  | IO_STATE(USB_EP_command, eol, yes)); | 
|  | TxBulkDummyEPList[i][1].sub = 0; | 
|  | /* The last dummy's next pointer is the same as the current EP's next pointer. */ | 
|  | TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]); | 
|  | } | 
|  |  | 
|  | /* Configure the last one. */ | 
|  | CHECK_ALIGN(&TxBulkEPList[i]); | 
|  | TxBulkEPList[i].hw_len = 0; | 
|  | TxBulkEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | | 
|  | IO_FIELD(USB_EP_command, epid, i)); | 
|  | TxBulkEPList[i].sub = 0; | 
|  | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[0]); | 
|  |  | 
|  | /* No need configuring dummy EPs for the last one as it will never be used for | 
|  | bulk traffic (i == INVALD_EPID at this point). */ | 
|  |  | 
|  | /* Set up to start on the last EP so we will enable it when inserting traffic | 
|  | for the first time (imitating the situation where the DMA has stopped | 
|  | because there was no more traffic). */ | 
|  | *R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]); | 
|  | /* No point in starting the bulk channel yet. | 
|  | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void init_tx_ctrl_ep(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | 
|  | CHECK_ALIGN(&TxCtrlEPList[i]); | 
|  | TxCtrlEPList[i].hw_len = 0; | 
|  | TxCtrlEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | 
|  | TxCtrlEPList[i].sub = 0; | 
|  | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[i + 1]); | 
|  | } | 
|  |  | 
|  | CHECK_ALIGN(&TxCtrlEPList[i]); | 
|  | TxCtrlEPList[i].hw_len = 0; | 
|  | TxCtrlEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | | 
|  | IO_FIELD(USB_EP_command, epid, i)); | 
|  |  | 
|  | TxCtrlEPList[i].sub = 0; | 
|  | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[0]); | 
|  |  | 
|  | *R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[0]); | 
|  | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void init_tx_intr_ep(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Read comment at zout_buffer declaration for an explanation to this. */ | 
|  | TxIntrSB_zout.sw_len = 1; | 
|  | TxIntrSB_zout.next = 0; | 
|  | TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]); | 
|  | TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, zout) | | 
|  | IO_STATE(USB_SB_command, full, yes) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) { | 
|  | CHECK_ALIGN(&TxIntrEPList[i]); | 
|  | TxIntrEPList[i].hw_len = 0; | 
|  | TxIntrEPList[i].command = | 
|  | (IO_STATE(USB_EP_command, eof, yes) | | 
|  | IO_STATE(USB_EP_command, enable, yes) | | 
|  | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | 
|  | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); | 
|  | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]); | 
|  | } | 
|  |  | 
|  | CHECK_ALIGN(&TxIntrEPList[i]); | 
|  | TxIntrEPList[i].hw_len = 0; | 
|  | TxIntrEPList[i].command = | 
|  | (IO_STATE(USB_EP_command, eof, yes) | | 
|  | IO_STATE(USB_EP_command, eol, yes) | | 
|  | IO_STATE(USB_EP_command, enable, yes) | | 
|  | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | 
|  | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); | 
|  | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]); | 
|  |  | 
|  | *R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]); | 
|  | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void init_tx_isoc_ep(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Read comment at zout_buffer declaration for an explanation to this. */ | 
|  | TxIsocSB_zout.sw_len = 1; | 
|  | TxIsocSB_zout.next = 0; | 
|  | TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]); | 
|  | TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, zout) | | 
|  | IO_STATE(USB_SB_command, full, yes) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | /* The last isochronous EP descriptor is a dummy. */ | 
|  |  | 
|  | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { | 
|  | CHECK_ALIGN(&TxIsocEPList[i]); | 
|  | TxIsocEPList[i].hw_len = 0; | 
|  | TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i); | 
|  | TxIsocEPList[i].sub = 0; | 
|  | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]); | 
|  | } | 
|  |  | 
|  | CHECK_ALIGN(&TxIsocEPList[i]); | 
|  | TxIsocEPList[i].hw_len = 0; | 
|  |  | 
|  | /* Must enable the last EP descr to get eof interrupt. */ | 
|  | TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) | | 
|  | IO_STATE(USB_EP_command, eof, yes) | | 
|  | IO_STATE(USB_EP_command, eol, yes) | | 
|  | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); | 
|  | TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout); | 
|  | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]); | 
|  |  | 
|  | *R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]); | 
|  | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_unlink_intr_urb(struct urb *urb) | 
|  | { | 
|  | volatile USB_EP_Desc_t *first_ep;  /* First EP in the list. */ | 
|  | volatile USB_EP_Desc_t *curr_ep;   /* Current EP, the iterator. */ | 
|  | volatile USB_EP_Desc_t *next_ep;   /* The EP after current. */ | 
|  | volatile USB_EP_Desc_t *unlink_ep; /* The one we should remove from the list. */ | 
|  |  | 
|  | int epid; | 
|  |  | 
|  | /* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the List". */ | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | epid = ((etrax_urb_priv_t *)urb->hcpriv)->epid; | 
|  |  | 
|  | first_ep = &TxIntrEPList[0]; | 
|  | curr_ep = first_ep; | 
|  |  | 
|  |  | 
|  | /* Note that this loop removes all EP descriptors with this epid. This assumes | 
|  | that all EP descriptors belong to the one and only urb for this epid. */ | 
|  |  | 
|  | do { | 
|  | next_ep = (USB_EP_Desc_t *)phys_to_virt(curr_ep->next); | 
|  |  | 
|  | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { | 
|  |  | 
|  | dbg_intr("Found EP to unlink for epid %d", epid); | 
|  |  | 
|  | /* This is the one we should unlink. */ | 
|  | unlink_ep = next_ep; | 
|  |  | 
|  | /* Actually unlink the EP from the DMA list. */ | 
|  | curr_ep->next = unlink_ep->next; | 
|  |  | 
|  | /* Wait until the DMA is no longer at this descriptor. */ | 
|  | while (*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)); | 
|  |  | 
|  | /* Now we are free to remove it and its SB descriptor. | 
|  | Note that it is assumed here that there is only one sb in the | 
|  | sb list for this ep. */ | 
|  | kmem_cache_free(usb_desc_cache, phys_to_virt(unlink_ep->sub)); | 
|  | kmem_cache_free(usb_desc_cache, (USB_EP_Desc_t *)unlink_ep); | 
|  | } | 
|  |  | 
|  | curr_ep = phys_to_virt(curr_ep->next); | 
|  |  | 
|  | } while (curr_ep != first_ep); | 
|  | urb->hcpriv = NULL; | 
|  | } | 
|  |  | 
|  | void etrax_usb_do_intr_recover(int epid) | 
|  | { | 
|  | USB_EP_Desc_t *first_ep, *tmp_ep; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | first_ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB2_EP); | 
|  | tmp_ep = first_ep; | 
|  |  | 
|  | /* What this does is simply to walk the list of interrupt | 
|  | ep descriptors and enable those that are disabled. */ | 
|  |  | 
|  | do { | 
|  | if (IO_EXTRACT(USB_EP_command, epid, tmp_ep->command) == epid && | 
|  | !(tmp_ep->command & IO_MASK(USB_EP_command, enable))) { | 
|  | tmp_ep->command |= IO_STATE(USB_EP_command, enable, yes); | 
|  | } | 
|  |  | 
|  | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); | 
|  |  | 
|  | } while (tmp_ep != first_ep); | 
|  |  | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static int etrax_rh_unlink_urb (struct urb *urb) | 
|  | { | 
|  | etrax_hc_t *hc; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | hc = urb->dev->bus->hcpriv; | 
|  |  | 
|  | if (hc->rh.urb == urb) { | 
|  | hc->rh.send = 0; | 
|  | del_timer(&hc->rh.rh_int_timer); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void etrax_rh_send_irq(struct urb *urb) | 
|  | { | 
|  | __u16 data = 0; | 
|  | etrax_hc_t *hc = urb->dev->bus->hcpriv; | 
|  | DBFENTER; | 
|  |  | 
|  | /* | 
|  | dbg_rh("R_USB_FM_NUMBER   : 0x%08X", *R_USB_FM_NUMBER); | 
|  | dbg_rh("R_USB_FM_REMAINING: 0x%08X", *R_USB_FM_REMAINING); | 
|  | */ | 
|  |  | 
|  | data |= (hc->rh.wPortChange_1) ? (1 << 1) : 0; | 
|  | data |= (hc->rh.wPortChange_2) ? (1 << 2) : 0; | 
|  |  | 
|  | *((__u16 *)urb->transfer_buffer) = cpu_to_le16(data); | 
|  | /* FIXME: Why is actual_length set to 1 when data is 2 bytes? | 
|  | Since only 1 byte is used, why not declare data as __u8? */ | 
|  | urb->actual_length = 1; | 
|  | urb->status = 0; | 
|  |  | 
|  | if (hc->rh.send && urb->complete) { | 
|  | dbg_rh("wPortChange_1: 0x%04X", hc->rh.wPortChange_1); | 
|  | dbg_rh("wPortChange_2: 0x%04X", hc->rh.wPortChange_2); | 
|  |  | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_rh_init_int_timer(struct urb *urb) | 
|  | { | 
|  | etrax_hc_t *hc; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | hc = urb->dev->bus->hcpriv; | 
|  | hc->rh.interval = urb->interval; | 
|  | init_timer(&hc->rh.rh_int_timer); | 
|  | hc->rh.rh_int_timer.function = etrax_rh_int_timer_do; | 
|  | hc->rh.rh_int_timer.data = (unsigned long)urb; | 
|  | /* FIXME: Is the jiffies resolution enough? All intervals < 10 ms will be mapped | 
|  | to 0, and the rest to the nearest lower 10 ms. */ | 
|  | hc->rh.rh_int_timer.expires = jiffies + ((HZ * hc->rh.interval) / 1000); | 
|  | add_timer(&hc->rh.rh_int_timer); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_rh_int_timer_do(unsigned long ptr) | 
|  | { | 
|  | struct urb *urb; | 
|  | etrax_hc_t *hc; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | urb = (struct urb*)ptr; | 
|  | hc = urb->dev->bus->hcpriv; | 
|  |  | 
|  | if (hc->rh.send) { | 
|  | etrax_rh_send_irq(urb); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_setup_epid(struct urb *urb) | 
|  | { | 
|  | int epid; | 
|  | char devnum, endpoint, out_traffic, slow; | 
|  | int maxlen; | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | epid = etrax_usb_lookup_epid(urb); | 
|  | if ((epid != -1)){ | 
|  | /* An epid that fits this urb has been found. */ | 
|  | DBFEXIT; | 
|  | return epid; | 
|  | } | 
|  |  | 
|  | /* We must find and initiate a new epid for this urb. */ | 
|  | epid = etrax_usb_allocate_epid(); | 
|  |  | 
|  | if (epid == -1) { | 
|  | /* Failed to allocate a new epid. */ | 
|  | DBFEXIT; | 
|  | return epid; | 
|  | } | 
|  |  | 
|  | /* We now have a new epid to use. Initiate it. */ | 
|  | set_bit(epid, (void *)&epid_usage_bitmask); | 
|  |  | 
|  | devnum = usb_pipedevice(urb->pipe); | 
|  | endpoint = usb_pipeendpoint(urb->pipe); | 
|  | slow = usb_pipeslow(urb->pipe); | 
|  | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | 
|  | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ | 
|  | out_traffic = 1; | 
|  | } else { | 
|  | out_traffic = usb_pipeout(urb->pipe); | 
|  | } | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  |  | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | *R_USB_EPT_DATA_ISO = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) | | 
|  | /* FIXME: Change any to the actual port? */ | 
|  | IO_STATE(R_USB_EPT_DATA_ISO, port, any) | | 
|  | IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) | | 
|  | IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) | | 
|  | IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum); | 
|  | } else { | 
|  | *R_USB_EPT_DATA = IO_STATE(R_USB_EPT_DATA, valid, yes) | | 
|  | IO_FIELD(R_USB_EPT_DATA, low_speed, slow) | | 
|  | /* FIXME: Change any to the actual port? */ | 
|  | IO_STATE(R_USB_EPT_DATA, port, any) | | 
|  | IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) | | 
|  | IO_FIELD(R_USB_EPT_DATA, ep, endpoint) | | 
|  | IO_FIELD(R_USB_EPT_DATA, dev, devnum); | 
|  | } | 
|  |  | 
|  | restore_flags(flags); | 
|  |  | 
|  | if (out_traffic) { | 
|  | set_bit(epid, (void *)&epid_out_traffic); | 
|  | } else { | 
|  | clear_bit(epid, (void *)&epid_out_traffic); | 
|  | } | 
|  |  | 
|  | dbg_epid("Setting up epid %d with devnum %d, endpoint %d and max_len %d (%s)", | 
|  | epid, devnum, endpoint, maxlen, out_traffic ? "OUT" : "IN"); | 
|  |  | 
|  | DBFEXIT; | 
|  | return epid; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_free_epid(int epid) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (!test_bit(epid, (void *)&epid_usage_bitmask)) { | 
|  | warn("Trying to free unused epid %d", epid); | 
|  | DBFEXIT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | while (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)); | 
|  | /* This will, among other things, set the valid field to 0. */ | 
|  | *R_USB_EPT_DATA = 0; | 
|  | restore_flags(flags); | 
|  |  | 
|  | clear_bit(epid, (void *)&epid_usage_bitmask); | 
|  |  | 
|  |  | 
|  | dbg_epid("Freed epid %d", epid); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_lookup_epid(struct urb *urb) | 
|  | { | 
|  | int i; | 
|  | __u32 data; | 
|  | char devnum, endpoint, slow, out_traffic; | 
|  | int maxlen; | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | devnum = usb_pipedevice(urb->pipe); | 
|  | endpoint = usb_pipeendpoint(urb->pipe); | 
|  | slow = usb_pipeslow(urb->pipe); | 
|  | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | 
|  | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ | 
|  | out_traffic = 1; | 
|  | } else { | 
|  | out_traffic = usb_pipeout(urb->pipe); | 
|  | } | 
|  |  | 
|  | /* Step through att epids. */ | 
|  | for (i = 0; i < NBR_OF_EPIDS; i++) { | 
|  | if (test_bit(i, (void *)&epid_usage_bitmask) && | 
|  | test_bit(i, (void *)&epid_out_traffic) == out_traffic) { | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, i); | 
|  | nop(); | 
|  |  | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | data = *R_USB_EPT_DATA_ISO; | 
|  | restore_flags(flags); | 
|  |  | 
|  | if ((IO_MASK(R_USB_EPT_DATA_ISO, valid) & data) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, data) == devnum) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, data) == endpoint) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, data) == maxlen)) { | 
|  | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", | 
|  | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); | 
|  | DBFEXIT; | 
|  | return i; | 
|  | } | 
|  | } else { | 
|  | data = *R_USB_EPT_DATA; | 
|  | restore_flags(flags); | 
|  |  | 
|  | if ((IO_MASK(R_USB_EPT_DATA, valid) & data) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA, dev, data) == devnum) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA, ep, data) == endpoint) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA, low_speed, data) == slow) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA, max_len, data) == maxlen)) { | 
|  | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", | 
|  | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); | 
|  | DBFEXIT; | 
|  | return i; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_allocate_epid(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | for (i = 0; i < NBR_OF_EPIDS; i++) { | 
|  | if (!test_bit(i, (void *)&epid_usage_bitmask)) { | 
|  | dbg_epid("Found free epid %d", i); | 
|  | DBFEXIT; | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | dbg_epid("Found no free epids"); | 
|  | DBFEXIT; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags) | 
|  | { | 
|  | etrax_hc_t *hc; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (!urb->dev || !urb->dev->bus) { | 
|  | return -ENODEV; | 
|  | } | 
|  | if (usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)) <= 0) { | 
|  | info("Submit urb to pipe with maxpacketlen 0, pipe 0x%X\n", urb->pipe); | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | if (urb->timeout) { | 
|  | /* FIXME. */ | 
|  | warn("urb->timeout specified, ignoring."); | 
|  | } | 
|  |  | 
|  | hc = (etrax_hc_t*)urb->dev->bus->hcpriv; | 
|  |  | 
|  | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { | 
|  | /* This request is for the Virtual Root Hub. */ | 
|  | ret = etrax_rh_submit_urb(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { | 
|  |  | 
|  | ret = etrax_usb_submit_bulk_urb(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  |  | 
|  | ret = etrax_usb_submit_ctrl_urb(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | 
|  | int bustime; | 
|  |  | 
|  | if (urb->bandwidth == 0) { | 
|  | bustime = usb_check_bandwidth(urb->dev, urb); | 
|  | if (bustime < 0) { | 
|  | ret = bustime; | 
|  | } else { | 
|  | ret = etrax_usb_submit_intr_urb(urb); | 
|  | if (ret == 0) | 
|  | usb_claim_bandwidth(urb->dev, urb, bustime, 0); | 
|  | } | 
|  | } else { | 
|  | /* Bandwidth already set. */ | 
|  | ret = etrax_usb_submit_intr_urb(urb); | 
|  | } | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | int bustime; | 
|  |  | 
|  | if (urb->bandwidth == 0) { | 
|  | bustime = usb_check_bandwidth(urb->dev, urb); | 
|  | if (bustime < 0) { | 
|  | ret = bustime; | 
|  | } else { | 
|  | ret = etrax_usb_submit_isoc_urb(urb); | 
|  | if (ret == 0) | 
|  | usb_claim_bandwidth(urb->dev, urb, bustime, 0); | 
|  | } | 
|  | } else { | 
|  | /* Bandwidth already set. */ | 
|  | ret = etrax_usb_submit_isoc_urb(urb); | 
|  | } | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | if (ret != 0) | 
|  | printk("Submit URB error %d\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_unlink_urb(struct urb *urb, int status) | 
|  | { | 
|  | etrax_hc_t *hc; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | int epid; | 
|  | unsigned int flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (!urb) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Disable interrupts here since a descriptor interrupt for the isoc epid | 
|  | will modify the sb list.  This could possibly be done more granular, but | 
|  | unlink_urb should not be used frequently anyway. | 
|  | */ | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | if (!urb->dev || !urb->dev->bus) { | 
|  | restore_flags(flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (!urb->hcpriv) { | 
|  | /* This happens if a device driver calls unlink on an urb that | 
|  | was never submitted (lazy driver) or if the urb was completed | 
|  | while unlink was being called. */ | 
|  | restore_flags(flags); | 
|  | return 0; | 
|  | } | 
|  | if (urb->transfer_flags & URB_ASYNC_UNLINK) { | 
|  | /* FIXME. */ | 
|  | /* If URB_ASYNC_UNLINK is set: | 
|  | unlink | 
|  | move to a separate urb list | 
|  | call complete at next sof with ECONNRESET | 
|  |  | 
|  | If not: | 
|  | wait 1 ms | 
|  | unlink | 
|  | call complete with ENOENT | 
|  | */ | 
|  | warn("URB_ASYNC_UNLINK set, ignoring."); | 
|  | } | 
|  |  | 
|  | /* One might think that urb->status = -EINPROGRESS would be a requirement for unlinking, | 
|  | but that doesn't work for interrupt and isochronous traffic since they are completed | 
|  | repeatedly, and urb->status is set then. That may in itself be a bug though. */ | 
|  |  | 
|  | hc = urb->dev->bus->hcpriv; | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | epid = urb_priv->epid; | 
|  |  | 
|  | /* Set the urb status (synchronous unlink). */ | 
|  | urb->status = -ENOENT; | 
|  | urb_priv->urb_state = UNLINK; | 
|  |  | 
|  | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { | 
|  | int ret; | 
|  | ret = etrax_rh_unlink_urb(urb); | 
|  | DBFEXIT; | 
|  | restore_flags(flags); | 
|  | return ret; | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { | 
|  |  | 
|  | dbg_bulk("Unlink of bulk urb (0x%lx)", (unsigned long)urb); | 
|  |  | 
|  | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | 
|  | /* The EP was enabled, disable it and wait. */ | 
|  | TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | 
|  |  | 
|  | /* Ah, the luxury of busy-wait. */ | 
|  | while (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[epid])); | 
|  | } | 
|  | /* Kicking dummy list out of the party. */ | 
|  | TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  |  | 
|  | dbg_ctrl("Unlink of ctrl urb (0x%lx)", (unsigned long)urb); | 
|  |  | 
|  | if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | 
|  | /* The EP was enabled, disable it and wait. */ | 
|  | TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | 
|  |  | 
|  | /* Ah, the luxury of busy-wait. */ | 
|  | while (*R_DMA_CH8_SUB1_EP == virt_to_phys(&TxCtrlEPList[epid])); | 
|  | } | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | 
|  |  | 
|  | dbg_intr("Unlink of intr urb (0x%lx)", (unsigned long)urb); | 
|  |  | 
|  | /* Separate function because it's a tad more complicated. */ | 
|  | etrax_usb_unlink_intr_urb(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  |  | 
|  | dbg_isoc("Unlink of isoc urb (0x%lx)", (unsigned long)urb); | 
|  |  | 
|  | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | 
|  | /* The EP was enabled, disable it and wait. */ | 
|  | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | 
|  |  | 
|  | /* Ah, the luxury of busy-wait. */ | 
|  | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note that we need to remove the urb from the urb list *before* removing its SB | 
|  | descriptors. (This means that the isoc eof handler might get a null urb when we | 
|  | are unlinking the last urb.) */ | 
|  |  | 
|  | if (usb_pipetype(urb->pipe) == PIPE_BULK) { | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  | TxBulkEPList[epid].sub = 0; | 
|  | etrax_remove_from_sb_list(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  | TxCtrlEPList[epid].sub = 0; | 
|  | etrax_remove_from_sb_list(urb); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  | /* Sanity check (should never happen). */ | 
|  | assert(urb_list_empty(epid)); | 
|  |  | 
|  | /* Release allocated bandwidth. */ | 
|  | usb_release_bandwidth(urb->dev, urb, 0); | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  |  | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  |  | 
|  | USB_SB_Desc_t *iter_sb, *prev_sb, *next_sb; | 
|  |  | 
|  | if (__urb_list_entry(urb, epid)) { | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; | 
|  | prev_sb = 0; | 
|  | while (iter_sb && (iter_sb != urb_priv->first_sb)) { | 
|  | prev_sb = iter_sb; | 
|  | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | 
|  | } | 
|  |  | 
|  | if (iter_sb == 0) { | 
|  | /* Unlink of the URB currently being transmitted. */ | 
|  | prev_sb = 0; | 
|  | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; | 
|  | } | 
|  |  | 
|  | while (iter_sb && (iter_sb != urb_priv->last_sb)) { | 
|  | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | 
|  | } | 
|  | if (iter_sb) { | 
|  | next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; | 
|  | } else { | 
|  | /* This should only happen if the DMA has completed | 
|  | processing the SB list for this EP while interrupts | 
|  | are disabled. */ | 
|  | dbg_isoc("Isoc urb not found, already sent?"); | 
|  | next_sb = 0; | 
|  | } | 
|  | if (prev_sb) { | 
|  | prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0; | 
|  | } else { | 
|  | TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0; | 
|  | } | 
|  |  | 
|  | etrax_remove_from_sb_list(urb); | 
|  | if (urb_list_empty(epid)) { | 
|  | TxIsocEPList[epid].sub = 0; | 
|  | dbg_isoc("Last isoc out urb epid %d", epid); | 
|  | } else if (next_sb || prev_sb) { | 
|  | dbg_isoc("Re-enable isoc out epid %d", epid); | 
|  |  | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  | } else { | 
|  | TxIsocEPList[epid].sub = 0; | 
|  | dbg_isoc("URB list non-empty and no SB list, EP disabled"); | 
|  | } | 
|  | } else { | 
|  | dbg_isoc("Urb 0x%p not found, completed already?", urb); | 
|  | } | 
|  | } else { | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  |  | 
|  | /* For in traffic there is only one SB descriptor for each EP even | 
|  | though there may be several urbs (all urbs point at the same SB). */ | 
|  | if (urb_list_empty(epid)) { | 
|  | /* No more urbs, remove the SB. */ | 
|  | TxIsocEPList[epid].sub = 0; | 
|  | etrax_remove_from_sb_list(urb); | 
|  | } else { | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  | } | 
|  | } | 
|  | /* Release allocated bandwidth. */ | 
|  | usb_release_bandwidth(urb->dev, urb, 1); | 
|  | } | 
|  | /* Free the epid if urb list is empty. */ | 
|  | if (urb_list_empty(epid)) { | 
|  | etrax_usb_free_epid(epid); | 
|  | } | 
|  | restore_flags(flags); | 
|  |  | 
|  | /* Must be done before calling completion handler. */ | 
|  | kfree(urb_priv); | 
|  | urb->hcpriv = 0; | 
|  |  | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_get_frame_number(struct usb_device *usb_dev) | 
|  | { | 
|  | DBFENTER; | 
|  | DBFEXIT; | 
|  | return (*R_USB_FM_NUMBER & 0x7ff); | 
|  | } | 
|  |  | 
|  | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs) | 
|  | { | 
|  | DBFENTER; | 
|  |  | 
|  | /* This interrupt handler could be used when unlinking EP descriptors. */ | 
|  |  | 
|  | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) { | 
|  | USB_EP_Desc_t *ep; | 
|  |  | 
|  | //dbg_bulk("dma8_sub0_descr (BULK) intr."); | 
|  |  | 
|  | /* It should be safe clearing the interrupt here, since we don't expect to get a new | 
|  | one until we restart the bulk channel. */ | 
|  | *R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do); | 
|  |  | 
|  | /* Wait while the DMA is running (though we don't expect it to be). */ | 
|  | while (*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)); | 
|  |  | 
|  | /* Advance the DMA to the next EP descriptor. */ | 
|  | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); | 
|  |  | 
|  | //dbg_bulk("descr intr: DMA is at 0x%lx", (unsigned long)ep); | 
|  |  | 
|  | /* ep->next is already a physical address; no need for a virt_to_phys. */ | 
|  | *R_DMA_CH8_SUB0_EP = ep->next; | 
|  |  | 
|  | /* Start the DMA bulk channel again. */ | 
|  | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | 
|  | } | 
|  | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) { | 
|  | struct urb *urb; | 
|  | int epid; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | unsigned long int flags; | 
|  |  | 
|  | dbg_ctrl("dma8_sub1_descr (CTRL) intr."); | 
|  | *R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do); | 
|  |  | 
|  | /* The complete callback gets called so we cli. */ | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | 
|  | if ((TxCtrlEPList[epid].sub == 0) || | 
|  | (epid == DUMMY_EPID) || | 
|  | (epid == INVALID_EPID)) { | 
|  | /* Nothing here to see. */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Get the first urb (if any). */ | 
|  | urb = urb_list_first(epid); | 
|  |  | 
|  | if (urb) { | 
|  |  | 
|  | /* Sanity check. */ | 
|  | assert(usb_pipetype(urb->pipe) == PIPE_CONTROL); | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | if (urb_priv->urb_state == WAITING_FOR_DESCR_INTR) { | 
|  | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | 
|  |  | 
|  | etrax_usb_complete_urb(urb, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | restore_flags(flags); | 
|  | } | 
|  | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) { | 
|  | dbg_intr("dma8_sub2_descr (INTR) intr."); | 
|  | *R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do); | 
|  | } | 
|  | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) { | 
|  | struct urb *urb; | 
|  | int epid; | 
|  | int epid_done; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | USB_SB_Desc_t *sb_desc; | 
|  |  | 
|  | usb_isoc_complete_data_t *comp_data = NULL; | 
|  |  | 
|  | /* One or more isoc out transfers are done. */ | 
|  | dbg_isoc("dma8_sub3_descr (ISOC) intr."); | 
|  |  | 
|  | /* For each isoc out EP search for the first sb_desc with the intr flag | 
|  | set.  This descriptor must be the last packet from an URB.  Then | 
|  | traverse the URB list for the EP until the URB with urb_priv->last_sb | 
|  | matching the intr-marked sb_desc is found.  All URBs before this have | 
|  | been sent. | 
|  | */ | 
|  |  | 
|  | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | 
|  | /* Skip past epids with no SB lists, epids used for in traffic, | 
|  | and special (dummy, invalid) epids. */ | 
|  | if ((TxIsocEPList[epid].sub == 0) || | 
|  | (test_bit(epid, (void *)&epid_out_traffic) == 0) || | 
|  | (epid == DUMMY_EPID) || | 
|  | (epid == INVALID_EPID)) { | 
|  | /* Nothing here to see. */ | 
|  | continue; | 
|  | } | 
|  | sb_desc = phys_to_virt(TxIsocEPList[epid].sub); | 
|  |  | 
|  | /* Find the last descriptor of the currently active URB for this ep. | 
|  | This is the first descriptor in the sub list marked for a descriptor | 
|  | interrupt. */ | 
|  | while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) { | 
|  | sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0; | 
|  | } | 
|  | assert(sb_desc); | 
|  |  | 
|  | dbg_isoc("Check epid %d, sub 0x%p, SB 0x%p", | 
|  | epid, | 
|  | phys_to_virt(TxIsocEPList[epid].sub), | 
|  | sb_desc); | 
|  |  | 
|  | epid_done = 0; | 
|  |  | 
|  | /* Get the first urb (if any). */ | 
|  | urb = urb_list_first(epid); | 
|  | assert(urb); | 
|  |  | 
|  | while (urb && !epid_done) { | 
|  |  | 
|  | /* Sanity check. */ | 
|  | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); | 
|  |  | 
|  | if (!usb_pipeout(urb->pipe)) { | 
|  | /* descr interrupts are generated only for out pipes. */ | 
|  | epid_done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | if (sb_desc != urb_priv->last_sb) { | 
|  |  | 
|  | /* This urb has been sent. */ | 
|  | dbg_isoc("out URB 0x%p sent", urb); | 
|  |  | 
|  | urb_priv->urb_state = TRANSFER_DONE; | 
|  |  | 
|  | } else if ((sb_desc == urb_priv->last_sb) && | 
|  | !(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { | 
|  |  | 
|  | assert((sb_desc->command & IO_MASK(USB_SB_command, eol)) == IO_STATE(USB_SB_command, eol, yes)); | 
|  | assert(sb_desc->next == 0); | 
|  |  | 
|  | dbg_isoc("out URB 0x%p last in list, epid disabled", urb); | 
|  | TxIsocEPList[epid].sub = 0; | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  | urb_priv->urb_state = TRANSFER_DONE; | 
|  |  | 
|  | epid_done = 1; | 
|  |  | 
|  | } else { | 
|  | epid_done = 1; | 
|  | } | 
|  | if (!epid_done) { | 
|  | urb = urb_list_next(urb, epid); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | *R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do); | 
|  |  | 
|  | comp_data = (usb_isoc_complete_data_t*)kmem_cache_alloc(isoc_compl_cache, SLAB_ATOMIC); | 
|  | assert(comp_data != NULL); | 
|  |  | 
|  | INIT_WORK(&comp_data->usb_bh, etrax_usb_isoc_descr_interrupt_bottom_half, comp_data); | 
|  | schedule_work(&comp_data->usb_bh); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data) | 
|  | { | 
|  | usb_isoc_complete_data_t *comp_data = (usb_isoc_complete_data_t*)data; | 
|  |  | 
|  | struct urb *urb; | 
|  | int epid; | 
|  | int epid_done; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | dbg_isoc("dma8_sub3_descr (ISOC) bottom half."); | 
|  |  | 
|  | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | 
|  | unsigned long flags; | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | epid_done = 0; | 
|  |  | 
|  | /* The descriptor interrupt handler has marked all transmitted isoch. out | 
|  | URBs with TRANSFER_DONE.  Now we traverse all epids and for all that | 
|  | have isoch. out traffic traverse its URB list and complete the | 
|  | transmitted URB. | 
|  | */ | 
|  |  | 
|  | while (!epid_done) { | 
|  |  | 
|  | /* Get the first urb (if any). */ | 
|  | urb = urb_list_first(epid); | 
|  | if (urb == 0) { | 
|  | epid_done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { | 
|  | epid_done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!usb_pipeout(urb->pipe)) { | 
|  | /* descr interrupts are generated only for out pipes. */ | 
|  | epid_done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dbg_isoc("Check epid %d, SB 0x%p", epid, (char*)TxIsocEPList[epid].sub); | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | if (urb_priv->urb_state == TRANSFER_DONE) { | 
|  | int i; | 
|  | struct usb_iso_packet_descriptor *packet; | 
|  |  | 
|  | /* This urb has been sent. */ | 
|  | dbg_isoc("Completing isoc out URB 0x%p", urb); | 
|  |  | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | packet = &urb->iso_frame_desc[i]; | 
|  | packet->status = 0; | 
|  | packet->actual_length = packet->length; | 
|  | } | 
|  |  | 
|  | etrax_usb_complete_isoc_urb(urb, 0); | 
|  |  | 
|  | if (urb_list_empty(epid)) { | 
|  | etrax_usb_free_epid(epid); | 
|  | epid_done = 1; | 
|  | } | 
|  | } else { | 
|  | epid_done = 1; | 
|  | } | 
|  | } | 
|  | restore_flags(flags); | 
|  |  | 
|  | } | 
|  | kmem_cache_free(isoc_compl_cache, comp_data); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs) | 
|  | { | 
|  | struct urb *urb; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | int epid = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Isoc diagnostics. */ | 
|  | static int curr_fm = 0; | 
|  | static int prev_fm = 0; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Clear this interrupt. */ | 
|  | *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do); | 
|  |  | 
|  | /* Note that this while loop assumes that all packets span only | 
|  | one rx descriptor. */ | 
|  |  | 
|  | /* The reason we cli here is that we call the driver's callback functions. */ | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | while (myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) { | 
|  |  | 
|  | epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status); | 
|  | urb = urb_list_first(epid); | 
|  |  | 
|  | //printk("eop for epid %d, first urb 0x%lx\n", epid, (unsigned long)urb); | 
|  |  | 
|  | if (!urb) { | 
|  | err("No urb for epid %d in rx interrupt", epid); | 
|  | __dump_ept_data(epid); | 
|  | goto skip_out; | 
|  | } | 
|  |  | 
|  | /* Note that we cannot indescriminately assert(usb_pipein(urb->pipe)) since | 
|  | ctrl pipes are not. */ | 
|  |  | 
|  | if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) { | 
|  | __u32 r_usb_ept_data; | 
|  | int no_error = 0; | 
|  |  | 
|  | assert(test_bit(epid, (void *)&epid_usage_bitmask)); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | r_usb_ept_data = *R_USB_EPT_DATA_ISO; | 
|  |  | 
|  | if ((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) && | 
|  | (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) { | 
|  | /* Not an error, just a failure to receive an expected iso | 
|  | in packet in this frame.  This is not documented | 
|  | in the designers reference. | 
|  | */ | 
|  | no_error++; | 
|  | } else { | 
|  | warn("R_USB_EPT_DATA_ISO for epid %d = 0x%x", epid, r_usb_ept_data); | 
|  | } | 
|  | } else { | 
|  | r_usb_ept_data = *R_USB_EPT_DATA; | 
|  | warn("R_USB_EPT_DATA for epid %d = 0x%x", epid, r_usb_ept_data); | 
|  | } | 
|  |  | 
|  | if (!no_error){ | 
|  | warn("error in rx desc->status, epid %d, first urb = 0x%lx", | 
|  | epid, (unsigned long)urb); | 
|  | __dump_in_desc(myNextRxDesc); | 
|  |  | 
|  | warn("R_USB_STATUS = 0x%x", *R_USB_STATUS); | 
|  |  | 
|  | /* Check that ept was disabled when error occurred. */ | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_BULK: | 
|  | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | assert(!(TxIntrEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | break; | 
|  | case PIPE_ISOCHRONOUS: | 
|  | assert(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | break; | 
|  | default: | 
|  | warn("etrax_usb_rx_interrupt: bad pipetype %d in urb 0x%p", | 
|  | usb_pipetype(urb->pipe), | 
|  | urb); | 
|  | } | 
|  | etrax_usb_complete_urb(urb, -EPROTO); | 
|  | goto skip_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | if ((usb_pipetype(urb->pipe) == PIPE_BULK) || | 
|  | (usb_pipetype(urb->pipe) == PIPE_CONTROL) || | 
|  | (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) { | 
|  |  | 
|  | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { | 
|  | /* We get nodata for empty data transactions, and the rx descriptor's | 
|  | hw_len field is not valid in that case. No data to copy in other | 
|  | words. */ | 
|  | } else { | 
|  | /* Make sure the data fits in the buffer. */ | 
|  | assert(urb_priv->rx_offset + myNextRxDesc->hw_len | 
|  | <= urb->transfer_buffer_length); | 
|  |  | 
|  | memcpy(urb->transfer_buffer + urb_priv->rx_offset, | 
|  | phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len); | 
|  | urb_priv->rx_offset += myNextRxDesc->hw_len; | 
|  | } | 
|  |  | 
|  | if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) { | 
|  | if ((usb_pipetype(urb->pipe) == PIPE_CONTROL) && | 
|  | ((TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)) == | 
|  | IO_STATE(USB_EP_command, enable, yes))) { | 
|  | /* The EP is still enabled, so the OUT packet used to ack | 
|  | the in data is probably not processed yet.  If the EP | 
|  | sub pointer has not moved beyond urb_priv->last_sb mark | 
|  | it for a descriptor interrupt and complete the urb in | 
|  | the descriptor interrupt handler. | 
|  | */ | 
|  | USB_SB_Desc_t *sub = TxCtrlEPList[urb_priv->epid].sub ? phys_to_virt(TxCtrlEPList[urb_priv->epid].sub) : 0; | 
|  |  | 
|  | while ((sub != NULL) && (sub != urb_priv->last_sb)) { | 
|  | sub = sub->next ? phys_to_virt(sub->next) : 0; | 
|  | } | 
|  | if (sub != NULL) { | 
|  | /* The urb has not been fully processed. */ | 
|  | urb_priv->urb_state = WAITING_FOR_DESCR_INTR; | 
|  | } else { | 
|  | warn("(CTRL) epid enabled and urb (0x%p) processed, ep->sub=0x%p", urb, (char*)TxCtrlEPList[urb_priv->epid].sub); | 
|  | etrax_usb_complete_urb(urb, 0); | 
|  | } | 
|  | } else { | 
|  | etrax_usb_complete_urb(urb, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  |  | 
|  | struct usb_iso_packet_descriptor *packet; | 
|  |  | 
|  | if (urb_priv->urb_state == UNLINK) { | 
|  | info("Ignoring rx data for urb being unlinked."); | 
|  | goto skip_out; | 
|  | } else if (urb_priv->urb_state == NOT_STARTED) { | 
|  | info("What? Got rx data for urb that isn't started?"); | 
|  | goto skip_out; | 
|  | } | 
|  |  | 
|  | packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter]; | 
|  | packet->status = 0; | 
|  |  | 
|  | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { | 
|  | /* We get nodata for empty data transactions, and the rx descriptor's | 
|  | hw_len field is not valid in that case. We copy 0 bytes however to | 
|  | stay in synch. */ | 
|  | packet->actual_length = 0; | 
|  | } else { | 
|  | packet->actual_length = myNextRxDesc->hw_len; | 
|  | /* Make sure the data fits in the buffer. */ | 
|  | assert(packet->actual_length <= packet->length); | 
|  | memcpy(urb->transfer_buffer + packet->offset, | 
|  | phys_to_virt(myNextRxDesc->buf), packet->actual_length); | 
|  | } | 
|  |  | 
|  | /* Increment the packet counter. */ | 
|  | urb_priv->isoc_packet_counter++; | 
|  |  | 
|  | /* Note that we don't care about the eot field in the rx descriptor's status. | 
|  | It will always be set for isoc traffic. */ | 
|  | if (urb->number_of_packets == urb_priv->isoc_packet_counter) { | 
|  |  | 
|  | /* Out-of-synch diagnostics. */ | 
|  | curr_fm = (*R_USB_FM_NUMBER & 0x7ff); | 
|  | if (((prev_fm + urb_priv->isoc_packet_counter) % (0x7ff + 1)) != curr_fm) { | 
|  | /* This test is wrong, if there is more than one isoc | 
|  | in endpoint active it will always calculate wrong | 
|  | since prev_fm is shared by all endpoints. | 
|  |  | 
|  | FIXME Make this check per URB using urb->start_frame. | 
|  | */ | 
|  | dbg_isoc("Out of synch? Previous frame = %d, current frame = %d", | 
|  | prev_fm, curr_fm); | 
|  |  | 
|  | } | 
|  | prev_fm = curr_fm; | 
|  |  | 
|  | /* Complete the urb with status OK. */ | 
|  | etrax_usb_complete_isoc_urb(urb, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | skip_out: | 
|  |  | 
|  | /* DMA IN cache bug. Flush the DMA IN buffer from the cache. (struct etrax_dma_descr | 
|  | has the same layout as USB_IN_Desc for the relevant fields.) */ | 
|  | prepare_rx_descriptor((struct etrax_dma_descr*)myNextRxDesc); | 
|  |  | 
|  | myPrevRxDesc = myNextRxDesc; | 
|  | myPrevRxDesc->command |= IO_MASK(USB_IN_command, eol); | 
|  | myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol); | 
|  | myLastRxDesc = myPrevRxDesc; | 
|  |  | 
|  | myNextRxDesc->status = 0; | 
|  | myNextRxDesc = phys_to_virt(myNextRxDesc->next); | 
|  | } | 
|  |  | 
|  | restore_flags(flags); | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This function will unlink the SB descriptors associated with this urb. */ | 
|  | static int etrax_remove_from_sb_list(struct urb *urb) | 
|  | { | 
|  | USB_SB_Desc_t *next_sb, *first_sb, *last_sb; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | int i = 0; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | /* Just a sanity check. Since we don't fiddle with the DMA list the EP descriptor | 
|  | doesn't really need to be disabled, it's just that we expect it to be. */ | 
|  | if (usb_pipetype(urb->pipe) == PIPE_BULK) { | 
|  | assert(!(TxBulkEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { | 
|  | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); | 
|  | } | 
|  |  | 
|  | first_sb = urb_priv->first_sb; | 
|  | last_sb = urb_priv->last_sb; | 
|  |  | 
|  | assert(first_sb); | 
|  | assert(last_sb); | 
|  |  | 
|  | while (first_sb != last_sb) { | 
|  | next_sb = (USB_SB_Desc_t *)phys_to_virt(first_sb->next); | 
|  | kmem_cache_free(usb_desc_cache, first_sb); | 
|  | first_sb = next_sb; | 
|  | i++; | 
|  | } | 
|  | kmem_cache_free(usb_desc_cache, last_sb); | 
|  | i++; | 
|  | dbg_sb("%d SB descriptors freed", i); | 
|  | /* Compare i with urb->number_of_packets for Isoc traffic. | 
|  | Should be same when calling unlink_urb */ | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_submit_bulk_urb(struct urb *urb) | 
|  | { | 
|  | int epid; | 
|  | int empty; | 
|  | unsigned long flags; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Epid allocation, empty check and list add must be protected. | 
|  | Read about this in etrax_usb_submit_ctrl_urb. */ | 
|  |  | 
|  | spin_lock_irqsave(&urb_list_lock, flags); | 
|  | epid = etrax_usb_setup_epid(urb); | 
|  | if (epid == -1) { | 
|  | DBFEXIT; | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | empty = urb_list_empty(epid); | 
|  | urb_list_add(urb, epid); | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  |  | 
|  | dbg_bulk("Adding bulk %s urb 0x%lx to %s list, epid %d", | 
|  | usb_pipein(urb->pipe) ? "IN" : "OUT", (unsigned long)urb, empty ? "empty" : "", epid); | 
|  |  | 
|  | /* Mark the urb as being in progress. */ | 
|  | urb->status = -EINPROGRESS; | 
|  |  | 
|  | /* Setup the hcpriv data. */ | 
|  | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | 
|  | assert(urb_priv != NULL); | 
|  | /* This sets rx_offset to 0. */ | 
|  | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); | 
|  | urb_priv->urb_state = NOT_STARTED; | 
|  | urb->hcpriv = urb_priv; | 
|  |  | 
|  | if (empty) { | 
|  | etrax_usb_add_to_bulk_sb_list(urb, epid); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid) | 
|  | { | 
|  | USB_SB_Desc_t *sb_desc; | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | unsigned long flags; | 
|  | char maxlen; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | dbg_bulk("etrax_usb_add_to_bulk_sb_list, urb 0x%lx", (unsigned long)urb); | 
|  |  | 
|  | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | 
|  |  | 
|  | sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(sb_desc != NULL); | 
|  | memset(sb_desc, 0, sizeof(USB_SB_Desc_t)); | 
|  |  | 
|  |  | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  |  | 
|  | dbg_bulk("Grabbing bulk OUT, urb 0x%lx, epid %d", (unsigned long)urb, epid); | 
|  |  | 
|  | /* This is probably a sanity check of the bulk transaction length | 
|  | not being larger than 64 kB. */ | 
|  | if (urb->transfer_buffer_length > 0xffff) { | 
|  | panic("urb->transfer_buffer_length > 0xffff"); | 
|  | } | 
|  |  | 
|  | sb_desc->sw_len = urb->transfer_buffer_length; | 
|  |  | 
|  | /* The rem field is don't care if it's not a full-length transfer, so setting | 
|  | it shouldn't hurt. Also, rem isn't used for OUT traffic. */ | 
|  | sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, out) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | /* The full field is set to yes, even if we don't actually check that this is | 
|  | a full-length transfer (i.e., that transfer_buffer_length % maxlen = 0). | 
|  | Setting full prevents the USB controller from sending an empty packet in | 
|  | that case.  However, if URB_ZERO_PACKET was set we want that. */ | 
|  | if (!(urb->transfer_flags & URB_ZERO_PACKET)) { | 
|  | sb_desc->command |= IO_STATE(USB_SB_command, full, yes); | 
|  | } | 
|  |  | 
|  | sb_desc->buf = virt_to_phys(urb->transfer_buffer); | 
|  | sb_desc->next = 0; | 
|  |  | 
|  | } else if (usb_pipein(urb->pipe)) { | 
|  |  | 
|  | dbg_bulk("Grabbing bulk IN, urb 0x%lx, epid %d", (unsigned long)urb, epid); | 
|  |  | 
|  | sb_desc->sw_len = urb->transfer_buffer_length ? | 
|  | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | 
|  |  | 
|  | /* The rem field is don't care if it's not a full-length transfer, so setting | 
|  | it shouldn't hurt. */ | 
|  | sb_desc->command = | 
|  | (IO_FIELD(USB_SB_command, rem, | 
|  | urb->transfer_buffer_length % maxlen) | | 
|  | IO_STATE(USB_SB_command, tt, in) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | sb_desc->buf = 0; | 
|  | sb_desc->next = 0; | 
|  | } | 
|  |  | 
|  | urb_priv->first_sb = sb_desc; | 
|  | urb_priv->last_sb = sb_desc; | 
|  | urb_priv->epid = epid; | 
|  |  | 
|  | urb->hcpriv = urb_priv; | 
|  |  | 
|  | /* Reset toggle bits and reset error count. */ | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  |  | 
|  | /* FIXME: Is this a special case since the hold field is checked, | 
|  | or should we check hold in a lot of other cases as well? */ | 
|  | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { | 
|  | panic("Hold was set in %s", __FUNCTION__); | 
|  | } | 
|  |  | 
|  | /* Reset error counters (regardless of which direction this traffic is). */ | 
|  | *R_USB_EPT_DATA &= | 
|  | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | | 
|  | IO_MASK(R_USB_EPT_DATA, error_count_out)); | 
|  |  | 
|  | /* Software must preset the toggle bits. */ | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  | char toggle = | 
|  | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); | 
|  | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out); | 
|  | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle); | 
|  | } else { | 
|  | char toggle = | 
|  | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); | 
|  | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in); | 
|  | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle); | 
|  | } | 
|  |  | 
|  | /* Assert that the EP descriptor is disabled. */ | 
|  | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  |  | 
|  | /* The reason we set the EP's sub pointer directly instead of | 
|  | walking the SB list and linking it last in the list is that we only | 
|  | have one active urb at a time (the rest are queued). */ | 
|  |  | 
|  | /* Note that we cannot have interrupts running when we have set the SB descriptor | 
|  | but the EP is not yet enabled.  If a bulk eot happens for another EP, we will | 
|  | find this EP disabled and with a SB != 0, which will make us think that it's done. */ | 
|  | TxBulkEPList[epid].sub = virt_to_phys(sb_desc); | 
|  | TxBulkEPList[epid].hw_len = 0; | 
|  | /* Note that we don't have to fill in the ep_id field since this | 
|  | was done when we allocated the EP descriptors in init_tx_bulk_ep. */ | 
|  |  | 
|  | /* Check if the dummy list is already with us (if several urbs were queued). */ | 
|  | if (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0])) { | 
|  |  | 
|  | dbg_bulk("Inviting dummy list to the party for urb 0x%lx, epid %d", | 
|  | (unsigned long)urb, epid); | 
|  |  | 
|  | /* The last EP in the dummy list already has its next pointer set to | 
|  | TxBulkEPList[epid].next. */ | 
|  |  | 
|  | /* We don't need to check if the DMA is at this EP or not before changing the | 
|  | next pointer, since we will do it in one 32-bit write (EP descriptors are | 
|  | 32-bit aligned). */ | 
|  | TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]); | 
|  | } | 
|  | /* Enable the EP descr. */ | 
|  | dbg_bulk("Enabling bulk EP for urb 0x%lx, epid %d", (unsigned long)urb, epid); | 
|  | TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  |  | 
|  | /* Everything is set up, safe to enable interrupts again. */ | 
|  | restore_flags(flags); | 
|  |  | 
|  | /* If the DMA bulk channel isn't running, we need to restart it if it | 
|  | has stopped at the last EP descriptor (DMA stopped because there was | 
|  | no more traffic) or if it has stopped at a dummy EP with the intr flag | 
|  | set (DMA stopped because we were too slow in inserting new traffic). */ | 
|  | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { | 
|  |  | 
|  | USB_EP_Desc_t *ep; | 
|  | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); | 
|  | dbg_bulk("DMA channel not running in add"); | 
|  | dbg_bulk("DMA is at 0x%lx", (unsigned long)ep); | 
|  |  | 
|  | if (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[NBR_OF_EPIDS - 1]) || | 
|  | (ep->command & 0x8) >> 3) { | 
|  | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | 
|  | /* Update/restart the bulk start timer since we just started the channel. */ | 
|  | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); | 
|  | /* Update/restart the bulk eot timer since we just inserted traffic. */ | 
|  | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status) | 
|  | { | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | int epid = urb_priv->epid; | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (status) | 
|  | warn("Completing bulk urb with status %d.", status); | 
|  |  | 
|  | dbg_bulk("Completing bulk urb 0x%lx for epid %d", (unsigned long)urb, epid); | 
|  |  | 
|  | /* Update the urb list. */ | 
|  | urb_list_del(urb, epid); | 
|  |  | 
|  | /* For an IN pipe, we always set the actual length, regardless of whether there was | 
|  | an error or not (which means the device driver can use the data if it wants to). */ | 
|  | if (usb_pipein(urb->pipe)) { | 
|  | urb->actual_length = urb_priv->rx_offset; | 
|  | } else { | 
|  | /* Set actual_length for OUT urbs also; the USB mass storage driver seems | 
|  | to want that. We wouldn't know of any partial writes if there was an error. */ | 
|  | if (status == 0) { | 
|  | urb->actual_length = urb->transfer_buffer_length; | 
|  | } else { | 
|  | urb->actual_length = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FIXME: Is there something of the things below we shouldn't do if there was an error? | 
|  | Like, maybe we shouldn't toggle the toggle bits, or maybe we shouldn't insert more traffic. */ | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  |  | 
|  | /* We need to fiddle with the toggle bits because the hardware doesn't do it for us. */ | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  | char toggle = | 
|  | IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA); | 
|  | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
|  | usb_pipeout(urb->pipe), toggle); | 
|  | } else { | 
|  | char toggle = | 
|  | IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA); | 
|  | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
|  | usb_pipeout(urb->pipe), toggle); | 
|  | } | 
|  | restore_flags(flags); | 
|  |  | 
|  | /* Remember to free the SBs. */ | 
|  | etrax_remove_from_sb_list(urb); | 
|  | kfree(urb_priv); | 
|  | urb->hcpriv = 0; | 
|  |  | 
|  | /* If there are any more urb's in the list we'd better start sending */ | 
|  | if (!urb_list_empty(epid)) { | 
|  |  | 
|  | struct urb *new_urb; | 
|  |  | 
|  | /* Get the first urb. */ | 
|  | new_urb = urb_list_first(epid); | 
|  | assert(new_urb); | 
|  |  | 
|  | dbg_bulk("More bulk for epid %d", epid); | 
|  |  | 
|  | etrax_usb_add_to_bulk_sb_list(new_urb, epid); | 
|  | } | 
|  |  | 
|  | urb->status = status; | 
|  |  | 
|  | /* We let any non-zero status from the layer above have precedence. */ | 
|  | if (status == 0) { | 
|  | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | 
|  | is to be treated as an error. */ | 
|  | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | 
|  | if (usb_pipein(urb->pipe) && | 
|  | (urb->actual_length != | 
|  | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { | 
|  | urb->status = -EREMOTEIO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | if (urb_list_empty(epid)) { | 
|  | /* This means that this EP is now free, deconfigure it. */ | 
|  | etrax_usb_free_epid(epid); | 
|  |  | 
|  | /* No more traffic; time to clean up. | 
|  | Must set sub pointer to 0, since we look at the sub pointer when handling | 
|  | the bulk eot interrupt. */ | 
|  |  | 
|  | dbg_bulk("No bulk for epid %d", epid); | 
|  |  | 
|  | TxBulkEPList[epid].sub = 0; | 
|  |  | 
|  | /* Unlink the dummy list. */ | 
|  |  | 
|  | dbg_bulk("Kicking dummy list out of party for urb 0x%lx, epid %d", | 
|  | (unsigned long)urb, epid); | 
|  |  | 
|  | /* No need to wait for the DMA before changing the next pointer. | 
|  | The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use | 
|  | the last one (INVALID_EPID) for actual traffic. */ | 
|  | TxBulkEPList[epid].next = | 
|  | virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_submit_ctrl_urb(struct urb *urb) | 
|  | { | 
|  | int epid; | 
|  | int empty; | 
|  | unsigned long flags; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* FIXME: Return -ENXIO if there is already a queued urb for this endpoint? */ | 
|  |  | 
|  | /* Epid allocation, empty check and list add must be protected. | 
|  |  | 
|  | Epid allocation because if we find an existing epid for this endpoint an urb might be | 
|  | completed (emptying the list) before we add the new urb to the list, causing the epid | 
|  | to be de-allocated. We would then start the transfer with an invalid epid -> epid attn. | 
|  |  | 
|  | Empty check and add because otherwise we might conclude that the list is not empty, | 
|  | after which it becomes empty before we add the new urb to the list, causing us not to | 
|  | insert the new traffic into the SB list. */ | 
|  |  | 
|  | spin_lock_irqsave(&urb_list_lock, flags); | 
|  | epid = etrax_usb_setup_epid(urb); | 
|  | if (epid == -1) { | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  | DBFEXIT; | 
|  | return -ENOMEM; | 
|  | } | 
|  | empty = urb_list_empty(epid); | 
|  | urb_list_add(urb, epid); | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  |  | 
|  | dbg_ctrl("Adding ctrl urb 0x%lx to %s list, epid %d", | 
|  | (unsigned long)urb, empty ? "empty" : "", epid); | 
|  |  | 
|  | /* Mark the urb as being in progress. */ | 
|  | urb->status = -EINPROGRESS; | 
|  |  | 
|  | /* Setup the hcpriv data. */ | 
|  | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | 
|  | assert(urb_priv != NULL); | 
|  | /* This sets rx_offset to 0. */ | 
|  | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); | 
|  | urb_priv->urb_state = NOT_STARTED; | 
|  | urb->hcpriv = urb_priv; | 
|  |  | 
|  | if (empty) { | 
|  | etrax_usb_add_to_ctrl_sb_list(urb, epid); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid) | 
|  | { | 
|  | USB_SB_Desc_t *sb_desc_setup; | 
|  | USB_SB_Desc_t *sb_desc_data; | 
|  | USB_SB_Desc_t *sb_desc_status; | 
|  |  | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  |  | 
|  | unsigned long flags; | 
|  | char maxlen; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | 
|  |  | 
|  | sb_desc_setup = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(sb_desc_setup != NULL); | 
|  | sb_desc_status = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(sb_desc_status != NULL); | 
|  |  | 
|  | /* Initialize the mandatory setup SB descriptor (used only in control transfers) */ | 
|  | sb_desc_setup->sw_len = 8; | 
|  | sb_desc_setup->command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, setup) | | 
|  | IO_STATE(USB_SB_command, full, yes) | | 
|  | IO_STATE(USB_SB_command, eot, yes)); | 
|  |  | 
|  | sb_desc_setup->buf = virt_to_phys(urb->setup_packet); | 
|  |  | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  | dbg_ctrl("Transfer for epid %d is OUT", epid); | 
|  |  | 
|  | /* If this Control OUT transfer has an optional data stage we add an OUT token | 
|  | before the mandatory IN (status) token, hence the reordered SB list */ | 
|  |  | 
|  | sb_desc_setup->next = virt_to_phys(sb_desc_status); | 
|  | if (urb->transfer_buffer) { | 
|  |  | 
|  | dbg_ctrl("This OUT transfer has an extra data stage"); | 
|  |  | 
|  | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(sb_desc_data != NULL); | 
|  |  | 
|  | sb_desc_setup->next = virt_to_phys(sb_desc_data); | 
|  |  | 
|  | sb_desc_data->sw_len = urb->transfer_buffer_length; | 
|  | sb_desc_data->command = (IO_STATE(USB_SB_command, tt, out) | | 
|  | IO_STATE(USB_SB_command, full, yes) | | 
|  | IO_STATE(USB_SB_command, eot, yes)); | 
|  | sb_desc_data->buf = virt_to_phys(urb->transfer_buffer); | 
|  | sb_desc_data->next = virt_to_phys(sb_desc_status); | 
|  | } | 
|  |  | 
|  | sb_desc_status->sw_len = 1; | 
|  | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, in) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, intr, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | sb_desc_status->buf = 0; | 
|  | sb_desc_status->next = 0; | 
|  |  | 
|  | } else if (usb_pipein(urb->pipe)) { | 
|  |  | 
|  | dbg_ctrl("Transfer for epid %d is IN", epid); | 
|  | dbg_ctrl("transfer_buffer_length = %d", urb->transfer_buffer_length); | 
|  | dbg_ctrl("rem is calculated to %d", urb->transfer_buffer_length % maxlen); | 
|  |  | 
|  | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(sb_desc_data != NULL); | 
|  |  | 
|  | sb_desc_setup->next = virt_to_phys(sb_desc_data); | 
|  |  | 
|  | sb_desc_data->sw_len = urb->transfer_buffer_length ? | 
|  | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | 
|  | dbg_ctrl("sw_len got %d", sb_desc_data->sw_len); | 
|  |  | 
|  | sb_desc_data->command = | 
|  | (IO_FIELD(USB_SB_command, rem, | 
|  | urb->transfer_buffer_length % maxlen) | | 
|  | IO_STATE(USB_SB_command, tt, in) | | 
|  | IO_STATE(USB_SB_command, eot, yes)); | 
|  |  | 
|  | sb_desc_data->buf = 0; | 
|  | sb_desc_data->next = virt_to_phys(sb_desc_status); | 
|  |  | 
|  | /* Read comment at zout_buffer declaration for an explanation to this. */ | 
|  | sb_desc_status->sw_len = 1; | 
|  | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, zout) | | 
|  | IO_STATE(USB_SB_command, full, yes) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, intr, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | sb_desc_status->buf = virt_to_phys(&zout_buffer[0]); | 
|  | sb_desc_status->next = 0; | 
|  | } | 
|  |  | 
|  | urb_priv->first_sb = sb_desc_setup; | 
|  | urb_priv->last_sb = sb_desc_status; | 
|  | urb_priv->epid = epid; | 
|  |  | 
|  | urb_priv->urb_state = STARTED; | 
|  |  | 
|  | /* Reset toggle bits and reset error count, remember to di and ei */ | 
|  | /* Warning: it is possible that this locking doesn't work with bottom-halves */ | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { | 
|  | panic("Hold was set in %s", __FUNCTION__); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* FIXME: Compare with etrax_usb_add_to_bulk_sb_list where the toggle bits | 
|  | are set to a specific value. Why the difference? Read "Transfer and Toggle Bits | 
|  | in Designer's Reference, p. 8 - 11. */ | 
|  | *R_USB_EPT_DATA &= | 
|  | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | | 
|  | IO_MASK(R_USB_EPT_DATA, error_count_out) | | 
|  | IO_MASK(R_USB_EPT_DATA, t_in) | | 
|  | IO_MASK(R_USB_EPT_DATA, t_out)); | 
|  |  | 
|  | /* Since we use the rx interrupt to complete ctrl urbs, we can enable interrupts now | 
|  | (i.e. we don't check the sub pointer on an eot interrupt like we do for bulk traffic). */ | 
|  | restore_flags(flags); | 
|  |  | 
|  | /* Assert that the EP descriptor is disabled. */ | 
|  | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); | 
|  |  | 
|  | /* Set up and enable the EP descriptor. */ | 
|  | TxCtrlEPList[epid].sub = virt_to_phys(sb_desc_setup); | 
|  | TxCtrlEPList[epid].hw_len = 0; | 
|  | TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  |  | 
|  | /* We start the DMA sub channel without checking if it's running or not, because: | 
|  | 1) If it's already running, issuing the start command is a nop. | 
|  | 2) We avoid a test-and-set race condition. */ | 
|  | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status) | 
|  | { | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | int epid = urb_priv->epid; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (status) | 
|  | warn("Completing ctrl urb with status %d.", status); | 
|  |  | 
|  | dbg_ctrl("Completing ctrl epid %d, urb 0x%lx", epid, (unsigned long)urb); | 
|  |  | 
|  | /* Remove this urb from the list. */ | 
|  | urb_list_del(urb, epid); | 
|  |  | 
|  | /* For an IN pipe, we always set the actual length, regardless of whether there was | 
|  | an error or not (which means the device driver can use the data if it wants to). */ | 
|  | if (usb_pipein(urb->pipe)) { | 
|  | urb->actual_length = urb_priv->rx_offset; | 
|  | } | 
|  |  | 
|  | /* FIXME: Is there something of the things below we shouldn't do if there was an error? | 
|  | Like, maybe we shouldn't insert more traffic. */ | 
|  |  | 
|  | /* Remember to free the SBs. */ | 
|  | etrax_remove_from_sb_list(urb); | 
|  | kfree(urb_priv); | 
|  | urb->hcpriv = 0; | 
|  |  | 
|  | /* If there are any more urbs in the list we'd better start sending. */ | 
|  | if (!urb_list_empty(epid)) { | 
|  | struct urb *new_urb; | 
|  |  | 
|  | /* Get the first urb. */ | 
|  | new_urb = urb_list_first(epid); | 
|  | assert(new_urb); | 
|  |  | 
|  | dbg_ctrl("More ctrl for epid %d, first urb = 0x%lx", epid, (unsigned long)new_urb); | 
|  |  | 
|  | etrax_usb_add_to_ctrl_sb_list(new_urb, epid); | 
|  | } | 
|  |  | 
|  | urb->status = status; | 
|  |  | 
|  | /* We let any non-zero status from the layer above have precedence. */ | 
|  | if (status == 0) { | 
|  | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | 
|  | is to be treated as an error. */ | 
|  | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | 
|  | if (usb_pipein(urb->pipe) && | 
|  | (urb->actual_length != | 
|  | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { | 
|  | urb->status = -EREMOTEIO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | if (urb_list_empty(epid)) { | 
|  | /* No more traffic. Time to clean up. */ | 
|  | etrax_usb_free_epid(epid); | 
|  | /* Must set sub pointer to 0. */ | 
|  | dbg_ctrl("No ctrl for epid %d", epid); | 
|  | TxCtrlEPList[epid].sub = 0; | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static int etrax_usb_submit_intr_urb(struct urb *urb) | 
|  | { | 
|  |  | 
|  | int epid; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  | /* Unsupported transfer type. | 
|  | We don't support interrupt out traffic. (If we do, we can't support | 
|  | intervals for neither in or out traffic, but are forced to schedule all | 
|  | interrupt traffic in one frame.) */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | epid = etrax_usb_setup_epid(urb); | 
|  | if (epid == -1) { | 
|  | DBFEXIT; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!urb_list_empty(epid)) { | 
|  | /* There is already a queued urb for this endpoint. */ | 
|  | etrax_usb_free_epid(epid); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | urb->status = -EINPROGRESS; | 
|  |  | 
|  | dbg_intr("Add intr urb 0x%lx, to list, epid %d", (unsigned long)urb, epid); | 
|  |  | 
|  | urb_list_add(urb, epid); | 
|  | etrax_usb_add_to_intr_sb_list(urb, epid); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid) | 
|  | { | 
|  |  | 
|  | volatile USB_EP_Desc_t *tmp_ep; | 
|  | volatile USB_EP_Desc_t *first_ep; | 
|  |  | 
|  | char maxlen; | 
|  | int interval; | 
|  | int i; | 
|  |  | 
|  | etrax_urb_priv_t *urb_priv; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); | 
|  | interval = urb->interval; | 
|  |  | 
|  | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); | 
|  | assert(urb_priv != NULL); | 
|  | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); | 
|  | urb->hcpriv = urb_priv; | 
|  |  | 
|  | first_ep = &TxIntrEPList[0]; | 
|  |  | 
|  | /* Round of the interval to 2^n, it is obvious that this code favours | 
|  | smaller numbers, but that is actually a good thing */ | 
|  | /* FIXME: The "rounding error" for larger intervals will be quite | 
|  | large. For in traffic this shouldn't be a problem since it will only | 
|  | mean that we "poll" more often. */ | 
|  | for (i = 0; interval; i++) { | 
|  | interval = interval >> 1; | 
|  | } | 
|  | interval = 1 << (i - 1); | 
|  |  | 
|  | dbg_intr("Interval rounded to %d", interval); | 
|  |  | 
|  | tmp_ep = first_ep; | 
|  | i = 0; | 
|  | do { | 
|  | if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) { | 
|  | if ((i % interval) == 0) { | 
|  | /* Insert the traffic ep after tmp_ep */ | 
|  | USB_EP_Desc_t *ep_desc; | 
|  | USB_SB_Desc_t *sb_desc; | 
|  |  | 
|  | dbg_intr("Inserting EP for epid %d", epid); | 
|  |  | 
|  | ep_desc = (USB_EP_Desc_t *) | 
|  | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | sb_desc = (USB_SB_Desc_t *) | 
|  | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); | 
|  | assert(ep_desc != NULL); | 
|  | CHECK_ALIGN(ep_desc); | 
|  | assert(sb_desc != NULL); | 
|  |  | 
|  | ep_desc->sub = virt_to_phys(sb_desc); | 
|  | ep_desc->hw_len = 0; | 
|  | ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) | | 
|  | IO_STATE(USB_EP_command, enable, yes)); | 
|  |  | 
|  |  | 
|  | /* Round upwards the number of packets of size maxlen | 
|  | that this SB descriptor should receive. */ | 
|  | sb_desc->sw_len = urb->transfer_buffer_length ? | 
|  | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; | 
|  | sb_desc->next = 0; | 
|  | sb_desc->buf = 0; | 
|  | sb_desc->command = | 
|  | (IO_FIELD(USB_SB_command, rem, urb->transfer_buffer_length % maxlen) | | 
|  | IO_STATE(USB_SB_command, tt, in) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | ep_desc->next = tmp_ep->next; | 
|  | tmp_ep->next = virt_to_phys(ep_desc); | 
|  | } | 
|  | i++; | 
|  | } | 
|  | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); | 
|  | } while (tmp_ep != first_ep); | 
|  |  | 
|  |  | 
|  | /* Note that first_sb/last_sb doesn't apply to interrupt traffic. */ | 
|  | urb_priv->epid = epid; | 
|  |  | 
|  | /* We start the DMA sub channel without checking if it's running or not, because: | 
|  | 1) If it's already running, issuing the start command is a nop. | 
|  | 2) We avoid a test-and-set race condition. */ | 
|  | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void etrax_usb_complete_intr_urb(struct urb *urb, int status) | 
|  | { | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | int epid = urb_priv->epid; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | if (status) | 
|  | warn("Completing intr urb with status %d.", status); | 
|  |  | 
|  | dbg_intr("Completing intr epid %d, urb 0x%lx", epid, (unsigned long)urb); | 
|  |  | 
|  | urb->status = status; | 
|  | urb->actual_length = urb_priv->rx_offset; | 
|  |  | 
|  | dbg_intr("interrupt urb->actual_length = %d", urb->actual_length); | 
|  |  | 
|  | /* We let any non-zero status from the layer above have precedence. */ | 
|  | if (status == 0) { | 
|  | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) | 
|  | is to be treated as an error. */ | 
|  | if (urb->transfer_flags & URB_SHORT_NOT_OK) { | 
|  | if (urb->actual_length != | 
|  | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { | 
|  | urb->status = -EREMOTEIO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The driver will resubmit the URB so we need to remove it first */ | 
|  | etrax_usb_unlink_urb(urb, 0); | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int etrax_usb_submit_isoc_urb(struct urb *urb) | 
|  | { | 
|  | int epid; | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | dbg_isoc("Submitting isoc urb = 0x%lx", (unsigned long)urb); | 
|  |  | 
|  | /* Epid allocation, empty check and list add must be protected. | 
|  | Read about this in etrax_usb_submit_ctrl_urb. */ | 
|  |  | 
|  | spin_lock_irqsave(&urb_list_lock, flags); | 
|  | /* Is there an active epid for this urb ? */ | 
|  | epid = etrax_usb_setup_epid(urb); | 
|  | if (epid == -1) { | 
|  | DBFEXIT; | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Ok, now we got valid endpoint, lets insert some traffic */ | 
|  |  | 
|  | urb->status = -EINPROGRESS; | 
|  |  | 
|  | /* Find the last urb in the URB_List and add this urb after that one. | 
|  | Also add the traffic, that is do an etrax_usb_add_to_isoc_sb_list.  This | 
|  | is important to make this in "real time" since isochronous traffic is | 
|  | time sensitive. */ | 
|  |  | 
|  | dbg_isoc("Adding isoc urb to (possibly empty) list"); | 
|  | urb_list_add(urb, epid); | 
|  | etrax_usb_add_to_isoc_sb_list(urb, epid); | 
|  | spin_unlock_irqrestore(&urb_list_lock, flags); | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_check_error_isoc_ep(const int epid) | 
|  | { | 
|  | unsigned long int flags; | 
|  | int error_code; | 
|  | __u32 r_usb_ept_data; | 
|  |  | 
|  | /* We can't read R_USB_EPID_ATTN here since it would clear the iso_eof, | 
|  | bulk_eot and epid_attn interrupts.  So we just check the status of | 
|  | the epid without testing if for it in R_USB_EPID_ATTN. */ | 
|  |  | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO | 
|  | registers, they are located at the same address and are of the same size. | 
|  | In other words, this read should be ok for isoc also. */ | 
|  | r_usb_ept_data = *R_USB_EPT_DATA; | 
|  | restore_flags(flags); | 
|  |  | 
|  | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); | 
|  |  | 
|  | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { | 
|  | warn("Hold was set for epid %d.", epid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, no_error)) { | 
|  |  | 
|  | /* This indicates that the SB list of the ept was completed before | 
|  | new data was appended to it.  This is not an error, but indicates | 
|  | large system or USB load and could possibly cause trouble for | 
|  | very timing sensitive USB device drivers so we log it. | 
|  | */ | 
|  | info("Isoc. epid %d disabled with no error", epid); | 
|  | return; | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, stall)) { | 
|  | /* Not really a protocol error, just says that the endpoint gave | 
|  | a stall response. Note that error_code cannot be stall for isoc. */ | 
|  | panic("Isoc traffic cannot stall"); | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, bus_error)) { | 
|  | /* Two devices responded to a transaction request. Must be resolved | 
|  | by software. FIXME: Reset ports? */ | 
|  | panic("Bus error for epid %d." | 
|  | " Two devices responded to transaction request", | 
|  | epid); | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { | 
|  | /* DMA overrun or underrun. */ | 
|  | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | 
|  |  | 
|  | /* It seems that error_code = buffer_error in | 
|  | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS | 
|  | are the same error. */ | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid) | 
|  | { | 
|  |  | 
|  | int i = 0; | 
|  |  | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | USB_SB_Desc_t *prev_sb_desc,  *next_sb_desc, *temp_sb_desc; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | prev_sb_desc = next_sb_desc = temp_sb_desc = NULL; | 
|  |  | 
|  | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), GFP_ATOMIC); | 
|  | assert(urb_priv != NULL); | 
|  | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); | 
|  |  | 
|  | urb->hcpriv = urb_priv; | 
|  | urb_priv->epid = epid; | 
|  |  | 
|  | if (usb_pipeout(urb->pipe)) { | 
|  |  | 
|  | if (urb->number_of_packets == 0) panic("etrax_usb_add_to_isoc_sb_list 0 packets\n"); | 
|  |  | 
|  | dbg_isoc("Transfer for epid %d is OUT", epid); | 
|  | dbg_isoc("%d packets in URB", urb->number_of_packets); | 
|  |  | 
|  | /* Create one SB descriptor for each packet and link them together. */ | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | if (!urb->iso_frame_desc[i].length) | 
|  | continue; | 
|  |  | 
|  | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC); | 
|  | assert(next_sb_desc != NULL); | 
|  |  | 
|  | if (urb->iso_frame_desc[i].length > 0) { | 
|  |  | 
|  | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, out) | | 
|  | IO_STATE(USB_SB_command, eot, yes)); | 
|  |  | 
|  | next_sb_desc->sw_len = urb->iso_frame_desc[i].length; | 
|  | next_sb_desc->buf = virt_to_phys((char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset); | 
|  |  | 
|  | /* Check if full length transfer. */ | 
|  | if (urb->iso_frame_desc[i].length == | 
|  | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { | 
|  | next_sb_desc->command |= IO_STATE(USB_SB_command, full, yes); | 
|  | } | 
|  | } else { | 
|  | dbg_isoc("zero len packet"); | 
|  | next_sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | | 
|  | IO_STATE(USB_SB_command, tt, zout) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, full, yes)); | 
|  |  | 
|  | next_sb_desc->sw_len = 1; | 
|  | next_sb_desc->buf = virt_to_phys(&zout_buffer[0]); | 
|  | } | 
|  |  | 
|  | /* First SB descriptor that belongs to this urb */ | 
|  | if (i == 0) | 
|  | urb_priv->first_sb = next_sb_desc; | 
|  | else | 
|  | prev_sb_desc->next = virt_to_phys(next_sb_desc); | 
|  |  | 
|  | prev_sb_desc = next_sb_desc; | 
|  | } | 
|  |  | 
|  | next_sb_desc->command |= (IO_STATE(USB_SB_command, intr, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  | next_sb_desc->next = 0; | 
|  | urb_priv->last_sb = next_sb_desc; | 
|  |  | 
|  | } else if (usb_pipein(urb->pipe)) { | 
|  |  | 
|  | dbg_isoc("Transfer for epid %d is IN", epid); | 
|  | dbg_isoc("transfer_buffer_length = %d", urb->transfer_buffer_length); | 
|  | dbg_isoc("rem is calculated to %d", urb->iso_frame_desc[urb->number_of_packets - 1].length); | 
|  |  | 
|  | /* Note that in descriptors for periodic traffic are not consumed. This means that | 
|  | the USB controller never propagates in the SB list. In other words, if there already | 
|  | is an SB descriptor in the list for this EP we don't have to do anything. */ | 
|  | if (TxIsocEPList[epid].sub == 0) { | 
|  | dbg_isoc("Isoc traffic not already running, allocating SB"); | 
|  |  | 
|  | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC); | 
|  | assert(next_sb_desc != NULL); | 
|  |  | 
|  | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, in) | | 
|  | IO_STATE(USB_SB_command, eot, yes) | | 
|  | IO_STATE(USB_SB_command, eol, yes)); | 
|  |  | 
|  | next_sb_desc->next = 0; | 
|  | next_sb_desc->sw_len = 1; /* Actual number of packets is not relevant | 
|  | for periodic in traffic as long as it is more | 
|  | than zero.  Set to 1 always. */ | 
|  | next_sb_desc->buf = 0; | 
|  |  | 
|  | /* The rem field is don't care for isoc traffic, so we don't set it. */ | 
|  |  | 
|  | /* Only one SB descriptor that belongs to this urb. */ | 
|  | urb_priv->first_sb = next_sb_desc; | 
|  | urb_priv->last_sb = next_sb_desc; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | dbg_isoc("Isoc traffic already running, just setting first/last_sb"); | 
|  |  | 
|  | /* Each EP for isoc in will have only one SB descriptor, setup when submitting the | 
|  | already active urb. Note that even though we may have several first_sb/last_sb | 
|  | pointing at the same SB descriptor, they are freed only once (when the list has | 
|  | become empty). */ | 
|  | urb_priv->first_sb = phys_to_virt(TxIsocEPList[epid].sub); | 
|  | urb_priv->last_sb = phys_to_virt(TxIsocEPList[epid].sub); | 
|  | return; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Find the spot to insert this urb and add it. */ | 
|  | if (TxIsocEPList[epid].sub == 0) { | 
|  | /* First SB descriptor inserted in this list (in or out). */ | 
|  | dbg_isoc("Inserting SB desc first in list"); | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); | 
|  |  | 
|  | } else { | 
|  | /* Isochronous traffic is already running, insert new traffic last (only out). */ | 
|  | dbg_isoc("Inserting SB desc last in list"); | 
|  | temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub); | 
|  | while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) != | 
|  | IO_STATE(USB_SB_command, eol, yes)) { | 
|  | assert(temp_sb_desc->next); | 
|  | temp_sb_desc = phys_to_virt(temp_sb_desc->next); | 
|  | } | 
|  | dbg_isoc("Appending list on desc 0x%p", temp_sb_desc); | 
|  |  | 
|  | /* Next pointer must be set before eol is removed. */ | 
|  | temp_sb_desc->next = virt_to_phys(urb_priv->first_sb); | 
|  | /* Clear the previous end of list flag since there is a new in the | 
|  | added SB descriptor list. */ | 
|  | temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol); | 
|  |  | 
|  | if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { | 
|  | /* 8.8.5 in Designer's Reference says we should check for and correct | 
|  | any errors in the EP here.  That should not be necessary if epid_attn | 
|  | is handled correctly, so we assume all is ok. */ | 
|  | dbg_isoc("EP disabled"); | 
|  | etrax_usb_check_error_isoc_ep(epid); | 
|  |  | 
|  | /* The SB list was exhausted. */ | 
|  | if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) { | 
|  | /* The new sublist did not get processed before the EP was | 
|  | disabled.  Setup the EP again. */ | 
|  | dbg_isoc("Set EP sub to new list"); | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (urb->transfer_flags & URB_ISO_ASAP) { | 
|  | /* The isoc transfer should be started as soon as possible. The start_frame | 
|  | field is a return value if URB_ISO_ASAP was set. Comparing R_USB_FM_NUMBER | 
|  | with a USB Chief trace shows that the first isoc IN token is sent 2 frames | 
|  | later. I'm not sure how this affects usage of the start_frame field by the | 
|  | device driver, or how it affects things when USB_ISO_ASAP is not set, so | 
|  | therefore there's no compensation for the 2 frame "lag" here. */ | 
|  | urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); | 
|  | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  | urb_priv->urb_state = STARTED; | 
|  | dbg_isoc("URB_ISO_ASAP set, urb->start_frame set to %d", urb->start_frame); | 
|  | } else { | 
|  | /* Not started yet. */ | 
|  | urb_priv->urb_state = NOT_STARTED; | 
|  | dbg_isoc("urb_priv->urb_state set to NOT_STARTED"); | 
|  | } | 
|  |  | 
|  | /* We start the DMA sub channel without checking if it's running or not, because: | 
|  | 1) If it's already running, issuing the start command is a nop. | 
|  | 2) We avoid a test-and-set race condition. */ | 
|  | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status) | 
|  | { | 
|  | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | int epid = urb_priv->epid; | 
|  | int auto_resubmit = 0; | 
|  |  | 
|  | DBFENTER; | 
|  | dbg_isoc("complete urb 0x%p, status %d", urb, status); | 
|  |  | 
|  | if (status) | 
|  | warn("Completing isoc urb with status %d.", status); | 
|  |  | 
|  | if (usb_pipein(urb->pipe)) { | 
|  | int i; | 
|  |  | 
|  | /* Make that all isoc packets have status and length set before | 
|  | completing the urb. */ | 
|  | for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++) { | 
|  | urb->iso_frame_desc[i].actual_length = 0; | 
|  | urb->iso_frame_desc[i].status = -EPROTO; | 
|  | } | 
|  |  | 
|  | urb_list_del(urb, epid); | 
|  |  | 
|  | if (!list_empty(&urb_list[epid])) { | 
|  | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; | 
|  | } else { | 
|  | unsigned long int flags; | 
|  | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | 
|  | /* The EP was enabled, disable it and wait. */ | 
|  | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); | 
|  |  | 
|  | /* Ah, the luxury of busy-wait. */ | 
|  | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); | 
|  | } | 
|  |  | 
|  | etrax_remove_from_sb_list(urb); | 
|  | TxIsocEPList[epid].sub = 0; | 
|  | TxIsocEPList[epid].hw_len = 0; | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | etrax_usb_free_epid(epid); | 
|  | restore_flags(flags); | 
|  | } | 
|  |  | 
|  | urb->hcpriv = 0; | 
|  | kfree(urb_priv); | 
|  |  | 
|  | /* Release allocated bandwidth. */ | 
|  | usb_release_bandwidth(urb->dev, urb, 0); | 
|  | } else if (usb_pipeout(urb->pipe)) { | 
|  | int freed_descr; | 
|  |  | 
|  | dbg_isoc("Isoc out urb complete 0x%p", urb); | 
|  |  | 
|  | /* Update the urb list. */ | 
|  | urb_list_del(urb, epid); | 
|  |  | 
|  | freed_descr = etrax_remove_from_sb_list(urb); | 
|  | dbg_isoc("freed %d descriptors of %d packets", freed_descr, urb->number_of_packets); | 
|  | assert(freed_descr == urb->number_of_packets); | 
|  | urb->hcpriv = 0; | 
|  | kfree(urb_priv); | 
|  |  | 
|  | /* Release allocated bandwidth. */ | 
|  | usb_release_bandwidth(urb->dev, urb, 0); | 
|  | } | 
|  |  | 
|  | urb->status = status; | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  |  | 
|  | if (auto_resubmit) { | 
|  | /* Check that urb was not unlinked by the complete callback. */ | 
|  | if (__urb_list_entry(urb, epid)) { | 
|  | /* Move this one down the list. */ | 
|  | urb_list_move_last(urb, epid); | 
|  |  | 
|  | /* Mark the now first urb as started (may already be). */ | 
|  | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; | 
|  |  | 
|  | /* Must set this to 0 since this urb is still active after | 
|  | completion. */ | 
|  | urb_priv->isoc_packet_counter = 0; | 
|  | } else { | 
|  | warn("(ISOC) automatic resubmit urb 0x%p removed by complete.", urb); | 
|  | } | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_complete_urb(struct urb *urb, int status) | 
|  | { | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_BULK: | 
|  | etrax_usb_complete_bulk_urb(urb, status); | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | etrax_usb_complete_ctrl_urb(urb, status); | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | etrax_usb_complete_intr_urb(urb, status); | 
|  | break; | 
|  | case PIPE_ISOCHRONOUS: | 
|  | etrax_usb_complete_isoc_urb(urb, status); | 
|  | break; | 
|  | default: | 
|  | err("Unknown pipetype"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs) | 
|  | { | 
|  | usb_interrupt_registers_t *reg; | 
|  | unsigned long flags; | 
|  | __u32 irq_mask; | 
|  | __u8 status; | 
|  | __u32 epid_attn; | 
|  | __u16 port_status_1; | 
|  | __u16 port_status_2; | 
|  | __u32 fm_number; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Read critical registers into local variables, do kmalloc afterwards. */ | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | irq_mask = *R_USB_IRQ_MASK_READ; | 
|  | /* Reading R_USB_STATUS clears the ctl_status interrupt. Note that R_USB_STATUS | 
|  | must be read before R_USB_EPID_ATTN since reading the latter clears the | 
|  | ourun and perror fields of R_USB_STATUS. */ | 
|  | status = *R_USB_STATUS; | 
|  |  | 
|  | /* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn interrupts. */ | 
|  | epid_attn = *R_USB_EPID_ATTN; | 
|  |  | 
|  | /* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the | 
|  | port_status interrupt. */ | 
|  | port_status_1 = *R_USB_RH_PORT_STATUS_1; | 
|  | port_status_2 = *R_USB_RH_PORT_STATUS_2; | 
|  |  | 
|  | /* Reading R_USB_FM_NUMBER clears the sof interrupt. */ | 
|  | /* Note: the lower 11 bits contain the actual frame number, sent with each sof. */ | 
|  | fm_number = *R_USB_FM_NUMBER; | 
|  |  | 
|  | restore_flags(flags); | 
|  |  | 
|  | reg = (usb_interrupt_registers_t *)kmem_cache_alloc(top_half_reg_cache, SLAB_ATOMIC); | 
|  |  | 
|  | assert(reg != NULL); | 
|  |  | 
|  | reg->hc = (etrax_hc_t *)vhc; | 
|  |  | 
|  | /* Now put register values into kmalloc'd area. */ | 
|  | reg->r_usb_irq_mask_read = irq_mask; | 
|  | reg->r_usb_status = status; | 
|  | reg->r_usb_epid_attn = epid_attn; | 
|  | reg->r_usb_rh_port_status_1 = port_status_1; | 
|  | reg->r_usb_rh_port_status_2 = port_status_2; | 
|  | reg->r_usb_fm_number = fm_number; | 
|  |  | 
|  | INIT_WORK(®->usb_bh, etrax_usb_hc_interrupt_bottom_half, reg); | 
|  | schedule_work(®->usb_bh); | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_hc_interrupt_bottom_half(void *data) | 
|  | { | 
|  | usb_interrupt_registers_t *reg = (usb_interrupt_registers_t *)data; | 
|  | __u32 irq_mask = reg->r_usb_irq_mask_read; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Interrupts are handled in order of priority. */ | 
|  | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) { | 
|  | etrax_usb_hc_epid_attn_interrupt(reg); | 
|  | } | 
|  | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) { | 
|  | etrax_usb_hc_port_status_interrupt(reg); | 
|  | } | 
|  | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) { | 
|  | etrax_usb_hc_ctl_status_interrupt(reg); | 
|  | } | 
|  | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) { | 
|  | etrax_usb_hc_isoc_eof_interrupt(); | 
|  | } | 
|  | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) { | 
|  | /* Update/restart the bulk start timer since obviously the channel is running. */ | 
|  | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); | 
|  | /* Update/restart the bulk eot timer since we just received an bulk eot interrupt. */ | 
|  | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | 
|  |  | 
|  | etrax_usb_hc_bulk_eot_interrupt(0); | 
|  | } | 
|  |  | 
|  | kmem_cache_free(top_half_reg_cache, reg); | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  |  | 
|  | void etrax_usb_hc_isoc_eof_interrupt(void) | 
|  | { | 
|  | struct urb *urb; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | int epid; | 
|  | unsigned long flags; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* Do not check the invalid epid (it has a valid sub pointer). */ | 
|  | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { | 
|  |  | 
|  | /* Do not check the invalid epid (it has a valid sub pointer). */ | 
|  | if ((epid == DUMMY_EPID) || (epid == INVALID_EPID)) | 
|  | continue; | 
|  |  | 
|  | /* Disable interrupts to block the isoc out descriptor interrupt handler | 
|  | from being called while the isoc EPID list is being checked. | 
|  | */ | 
|  | save_flags(flags); | 
|  | cli(); | 
|  |  | 
|  | if (TxIsocEPList[epid].sub == 0) { | 
|  | /* Nothing here to see. */ | 
|  | restore_flags(flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Get the first urb (if any). */ | 
|  | urb = urb_list_first(epid); | 
|  | if (urb == 0) { | 
|  | warn("Ignoring NULL urb"); | 
|  | restore_flags(flags); | 
|  | continue; | 
|  | } | 
|  | if (usb_pipein(urb->pipe)) { | 
|  |  | 
|  | /* Sanity check. */ | 
|  | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); | 
|  |  | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | if (urb_priv->urb_state == NOT_STARTED) { | 
|  |  | 
|  | /* If ASAP is not set and urb->start_frame is the current frame, | 
|  | start the transfer. */ | 
|  | if (!(urb->transfer_flags & URB_ISO_ASAP) && | 
|  | (urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) { | 
|  |  | 
|  | dbg_isoc("Enabling isoc IN EP descr for epid %d", epid); | 
|  | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); | 
|  |  | 
|  | /* This urb is now active. */ | 
|  | urb_priv->urb_state = STARTED; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | restore_flags(flags); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | } | 
|  |  | 
|  | void etrax_usb_hc_bulk_eot_interrupt(int timer_induced) | 
|  | { | 
|  | int epid; | 
|  |  | 
|  | /* The technique is to run one urb at a time, wait for the eot interrupt at which | 
|  | point the EP descriptor has been disabled. */ | 
|  |  | 
|  | DBFENTER; | 
|  | dbg_bulk("bulk eot%s", timer_induced ? ", called by timer" : ""); | 
|  |  | 
|  | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | 
|  |  | 
|  | if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) && | 
|  | (TxBulkEPList[epid].sub != 0)) { | 
|  |  | 
|  | struct urb *urb; | 
|  | etrax_urb_priv_t *urb_priv; | 
|  | unsigned long flags; | 
|  | __u32 r_usb_ept_data; | 
|  |  | 
|  | /* Found a disabled EP descriptor which has a non-null sub pointer. | 
|  | Verify that this ctrl EP descriptor got disabled no errors. | 
|  | FIXME: Necessary to check error_code? */ | 
|  | dbg_bulk("for epid %d?", epid); | 
|  |  | 
|  | /* Get the first urb. */ | 
|  | urb = urb_list_first(epid); | 
|  |  | 
|  | /* FIXME: Could this happen for valid reasons? Why did it disappear? Because of | 
|  | wrong unlinking? */ | 
|  | if (!urb) { | 
|  | warn("NULL urb for epid %d", epid); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(urb); | 
|  | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; | 
|  | assert(urb_priv); | 
|  |  | 
|  | /* Sanity checks. */ | 
|  | assert(usb_pipetype(urb->pipe) == PIPE_BULK); | 
|  | if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) { | 
|  | err("bulk endpoint got disabled before reaching last sb"); | 
|  | } | 
|  |  | 
|  | /* For bulk IN traffic, there seems to be a race condition between | 
|  | between the bulk eot and eop interrupts, or rather an uncertainty regarding | 
|  | the order in which they happen. Normally we expect the eop interrupt from | 
|  | DMA channel 9 to happen before the eot interrupt. | 
|  |  | 
|  | Therefore, we complete the bulk IN urb in the rx interrupt handler instead. */ | 
|  |  | 
|  | if (usb_pipein(urb->pipe)) { | 
|  | dbg_bulk("in urb, continuing"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | r_usb_ept_data = *R_USB_EPT_DATA; | 
|  | restore_flags(flags); | 
|  |  | 
|  | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data) == | 
|  | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { | 
|  | /* This means that the endpoint has no error, is disabled | 
|  | and had inserted traffic, i.e. transfer successfully completed. */ | 
|  | etrax_usb_complete_bulk_urb(urb, 0); | 
|  | } else { | 
|  | /* Shouldn't happen. We expect errors to be caught by epid attention. */ | 
|  | err("Found disabled bulk EP desc, error_code != no_error"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Normally, we should find (at least) one disabled EP descriptor with a valid sub pointer. | 
|  | However, because of the uncertainty in the deliverance of the eop/eot interrupts, we may | 
|  | not.  Also, we might find two disabled EPs when handling an eot interrupt, and then find | 
|  | none the next time. */ | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | } | 
|  |  | 
|  | void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg) | 
|  | { | 
|  | /* This function handles the epid attention interrupt.  There are a variety of reasons | 
|  | for this interrupt to happen (Designer's Reference, p. 8 - 22 for the details): | 
|  |  | 
|  | invalid ep_id  - Invalid epid in an EP (EP disabled). | 
|  | stall	  - Not strictly an error condition (EP disabled). | 
|  | 3rd error      - Three successive transaction errors  (EP disabled). | 
|  | buffer ourun   - Buffer overrun or underrun (EP disabled). | 
|  | past eof1      - Intr or isoc transaction proceeds past EOF1. | 
|  | near eof       - Intr or isoc transaction would not fit inside the frame. | 
|  | zout transfer  - If zout transfer for a bulk endpoint (EP disabled). | 
|  | setup transfer - If setup transfer for a non-ctrl endpoint (EP disabled). */ | 
|  |  | 
|  | int epid; | 
|  |  | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | assert(reg != NULL); | 
|  |  | 
|  | /* Note that we loop through all epids. We still want to catch errors for | 
|  | the invalid one, even though we might handle them differently. */ | 
|  | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | 
|  |  | 
|  | if (test_bit(epid, (void *)®->r_usb_epid_attn)) { | 
|  |  | 
|  | struct urb *urb; | 
|  | __u32 r_usb_ept_data; | 
|  | unsigned long flags; | 
|  | int error_code; | 
|  |  | 
|  | save_flags(flags); | 
|  | cli(); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); | 
|  | nop(); | 
|  | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO | 
|  | registers, they are located at the same address and are of the same size. | 
|  | In other words, this read should be ok for isoc also. */ | 
|  | r_usb_ept_data = *R_USB_EPT_DATA; | 
|  | restore_flags(flags); | 
|  |  | 
|  | /* First some sanity checks. */ | 
|  | if (epid == INVALID_EPID) { | 
|  | /* FIXME: What if it became disabled? Could seriously hurt interrupt | 
|  | traffic. (Use do_intr_recover.) */ | 
|  | warn("Got epid_attn for INVALID_EPID (%d).", epid); | 
|  | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); | 
|  | err("R_USB_STATUS = 0x%x", reg->r_usb_status); | 
|  | continue; | 
|  | } else 	if (epid == DUMMY_EPID) { | 
|  | /* We definitely don't care about these ones. Besides, they are | 
|  | always disabled, so any possible disabling caused by the | 
|  | epid attention interrupt is irrelevant. */ | 
|  | warn("Got epid_attn for DUMMY_EPID (%d).", epid); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Get the first urb in the urb list for this epid. We blatantly assume | 
|  | that only the first urb could have caused the epid attention. | 
|  | (For bulk and ctrl, only one urb is active at any one time. For intr | 
|  | and isoc we remove them once they are completed.) */ | 
|  | urb = urb_list_first(epid); | 
|  |  | 
|  | if (urb == NULL) { | 
|  | err("Got epid_attn for epid %i with no urb.", epid); | 
|  | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); | 
|  | err("R_USB_STATUS = 0x%x", reg->r_usb_status); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_BULK: | 
|  | warn("Got epid attn for bulk endpoint, epid %d", epid); | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | warn("Got epid attn for control endpoint, epid %d", epid); | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | warn("Got epid attn for interrupt endpoint, epid %d", epid); | 
|  | break; | 
|  | case PIPE_ISOCHRONOUS: | 
|  | warn("Got epid attn for isochronous endpoint, epid %d", epid); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { | 
|  | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { | 
|  | warn("Hold was set for epid %d.", epid); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Even though error_code occupies bits 22 - 23 in both R_USB_EPT_DATA and | 
|  | R_USB_EPT_DATA_ISOC, we separate them here so we don't forget in other places. */ | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); | 
|  | } else { | 
|  | error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data); | 
|  | } | 
|  |  | 
|  | /* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */ | 
|  | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { | 
|  |  | 
|  | /* Isoc traffic doesn't have error_count_in/error_count_out. */ | 
|  | if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) && | 
|  | (IO_EXTRACT(R_USB_EPT_DATA, error_count_in, r_usb_ept_data) == 3 || | 
|  | IO_EXTRACT(R_USB_EPT_DATA, error_count_out, r_usb_ept_data) == 3)) { | 
|  | /* 3rd error. */ | 
|  | warn("3rd error for epid %i", epid); | 
|  | etrax_usb_complete_urb(urb, -EPROTO); | 
|  |  | 
|  | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { | 
|  |  | 
|  | warn("Perror for epid %d", epid); | 
|  |  | 
|  | if (!(r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, valid))) { | 
|  | /* invalid ep_id */ | 
|  | panic("Perror because of invalid epid." | 
|  | " Deconfigured too early?"); | 
|  | } else { | 
|  | /* past eof1, near eof, zout transfer, setup transfer */ | 
|  |  | 
|  | /* Dump the urb and the relevant EP descriptor list. */ | 
|  |  | 
|  | __dump_urb(urb); | 
|  | __dump_ept_data(epid); | 
|  | __dump_ep_list(usb_pipetype(urb->pipe)); | 
|  |  | 
|  | panic("Something wrong with DMA descriptor contents." | 
|  | " Too much traffic inserted?"); | 
|  | } | 
|  | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { | 
|  | /* buffer ourun */ | 
|  | panic("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | 
|  | } | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, stall)) { | 
|  | /* Not really a protocol error, just says that the endpoint gave | 
|  | a stall response. Note that error_code cannot be stall for isoc. */ | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | panic("Isoc traffic cannot stall"); | 
|  | } | 
|  |  | 
|  | warn("Stall for epid %d", epid); | 
|  | etrax_usb_complete_urb(urb, -EPIPE); | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, bus_error)) { | 
|  | /* Two devices responded to a transaction request. Must be resolved | 
|  | by software. FIXME: Reset ports? */ | 
|  | panic("Bus error for epid %d." | 
|  | " Two devices responded to transaction request", | 
|  | epid); | 
|  |  | 
|  | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { | 
|  | /* DMA overrun or underrun. */ | 
|  | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); | 
|  |  | 
|  | /* It seems that error_code = buffer_error in | 
|  | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS | 
|  | are the same error. */ | 
|  | etrax_usb_complete_urb(urb, -EPROTO); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | } | 
|  |  | 
|  | void etrax_usb_bulk_start_timer_func(unsigned long dummy) | 
|  | { | 
|  |  | 
|  | /* We might enable an EP descriptor behind the current DMA position when it's about | 
|  | to decide that there are no more bulk traffic and it should stop the bulk channel. | 
|  | Therefore we periodically check if the bulk channel is stopped and there is an | 
|  | enabled bulk EP descriptor, in which case we start the bulk channel. */ | 
|  | dbg_bulk("bulk_start_timer timed out."); | 
|  |  | 
|  | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { | 
|  | int epid; | 
|  |  | 
|  | dbg_bulk("Bulk DMA channel not running."); | 
|  |  | 
|  | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { | 
|  | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { | 
|  | dbg_bulk("Found enabled EP for epid %d, starting bulk channel.\n", | 
|  | epid); | 
|  | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); | 
|  |  | 
|  | /* Restart the bulk eot timer since we just started the bulk channel. */ | 
|  | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); | 
|  |  | 
|  | /* No need to search any further. */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | dbg_bulk("Bulk DMA channel running."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg) | 
|  | { | 
|  | etrax_hc_t *hc = reg->hc; | 
|  | __u16 r_usb_rh_port_status_1 = reg->r_usb_rh_port_status_1; | 
|  | __u16 r_usb_rh_port_status_2 = reg->r_usb_rh_port_status_2; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* The Etrax RH does not include a wPortChange register, so this has to be handled in software | 
|  | (by saving the old port status value for comparison when the port status interrupt happens). | 
|  | See section 11.16.2.6.2 in the USB 1.1 spec for details. */ | 
|  |  | 
|  | dbg_rh("hc->rh.prev_wPortStatus_1 = 0x%x", hc->rh.prev_wPortStatus_1); | 
|  | dbg_rh("hc->rh.prev_wPortStatus_2 = 0x%x", hc->rh.prev_wPortStatus_2); | 
|  | dbg_rh("r_usb_rh_port_status_1 = 0x%x", r_usb_rh_port_status_1); | 
|  | dbg_rh("r_usb_rh_port_status_2 = 0x%x", r_usb_rh_port_status_2); | 
|  |  | 
|  | /* C_PORT_CONNECTION is set on any transition. */ | 
|  | hc->rh.wPortChange_1 |= | 
|  | ((r_usb_rh_port_status_1 & (1 << RH_PORT_CONNECTION)) != | 
|  | (hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_CONNECTION))) ? | 
|  | (1 << RH_PORT_CONNECTION) : 0; | 
|  |  | 
|  | hc->rh.wPortChange_2 |= | 
|  | ((r_usb_rh_port_status_2 & (1 << RH_PORT_CONNECTION)) != | 
|  | (hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_CONNECTION))) ? | 
|  | (1 << RH_PORT_CONNECTION) : 0; | 
|  |  | 
|  | /* C_PORT_ENABLE is _only_ set on a one to zero transition, i.e. when | 
|  | the port is disabled, not when it's enabled. */ | 
|  | hc->rh.wPortChange_1 |= | 
|  | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_ENABLE)) | 
|  | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_ENABLE))) ? | 
|  | (1 << RH_PORT_ENABLE) : 0; | 
|  |  | 
|  | hc->rh.wPortChange_2 |= | 
|  | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_ENABLE)) | 
|  | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_ENABLE))) ? | 
|  | (1 << RH_PORT_ENABLE) : 0; | 
|  |  | 
|  | /* C_PORT_SUSPEND is set to one when the device has transitioned out | 
|  | of the suspended state, i.e. when suspend goes from one to zero. */ | 
|  | hc->rh.wPortChange_1 |= | 
|  | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_SUSPEND)) | 
|  | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_SUSPEND))) ? | 
|  | (1 << RH_PORT_SUSPEND) : 0; | 
|  |  | 
|  | hc->rh.wPortChange_2 |= | 
|  | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_SUSPEND)) | 
|  | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_SUSPEND))) ? | 
|  | (1 << RH_PORT_SUSPEND) : 0; | 
|  |  | 
|  |  | 
|  | /* C_PORT_RESET is set when reset processing on this port is complete. */ | 
|  | hc->rh.wPortChange_1 |= | 
|  | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_RESET)) | 
|  | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_RESET))) ? | 
|  | (1 << RH_PORT_RESET) : 0; | 
|  |  | 
|  | hc->rh.wPortChange_2 |= | 
|  | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_RESET)) | 
|  | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_RESET))) ? | 
|  | (1 << RH_PORT_RESET) : 0; | 
|  |  | 
|  | /* Save the new values for next port status change. */ | 
|  | hc->rh.prev_wPortStatus_1 = r_usb_rh_port_status_1; | 
|  | hc->rh.prev_wPortStatus_2 = r_usb_rh_port_status_2; | 
|  |  | 
|  | dbg_rh("hc->rh.wPortChange_1 set to 0x%x", hc->rh.wPortChange_1); | 
|  | dbg_rh("hc->rh.wPortChange_2 set to 0x%x", hc->rh.wPortChange_2); | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | } | 
|  |  | 
|  | void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg) | 
|  | { | 
|  | DBFENTER; | 
|  |  | 
|  | /* FIXME: What should we do if we get ourun or perror? Dump the EP and SB | 
|  | list for the corresponding epid? */ | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { | 
|  | panic("USB controller got ourun."); | 
|  | } | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { | 
|  |  | 
|  | /* Before, etrax_usb_do_intr_recover was called on this epid if it was | 
|  | an interrupt pipe. I don't see how re-enabling all EP descriptors | 
|  | will help if there was a programming error. */ | 
|  | panic("USB controller got perror."); | 
|  | } | 
|  |  | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) { | 
|  | /* We should never operate in device mode. */ | 
|  | panic("USB controller in device mode."); | 
|  | } | 
|  |  | 
|  | /* These if-statements could probably be nested. */ | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, host_mode)) { | 
|  | info("USB controller in host mode."); | 
|  | } | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, started)) { | 
|  | info("USB controller started."); | 
|  | } | 
|  | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, running)) { | 
|  | info("USB controller running."); | 
|  | } | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static int etrax_rh_submit_urb(struct urb *urb) | 
|  | { | 
|  | struct usb_device *usb_dev = urb->dev; | 
|  | etrax_hc_t *hc = usb_dev->bus->hcpriv; | 
|  | unsigned int pipe = urb->pipe; | 
|  | struct usb_ctrlrequest *cmd = (struct usb_ctrlrequest *) urb->setup_packet; | 
|  | void *data = urb->transfer_buffer; | 
|  | int leni = urb->transfer_buffer_length; | 
|  | int len = 0; | 
|  | int stat = 0; | 
|  |  | 
|  | __u16 bmRType_bReq; | 
|  | __u16 wValue; | 
|  | __u16 wIndex; | 
|  | __u16 wLength; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | /* FIXME: What is this interrupt urb that is sent to the root hub? */ | 
|  | if (usb_pipetype (pipe) == PIPE_INTERRUPT) { | 
|  | dbg_rh("Root-Hub submit IRQ: every %d ms", urb->interval); | 
|  | hc->rh.urb = urb; | 
|  | hc->rh.send = 1; | 
|  | /* FIXME: We could probably remove this line since it's done | 
|  | in etrax_rh_init_int_timer. (Don't remove it from | 
|  | etrax_rh_init_int_timer though.) */ | 
|  | hc->rh.interval = urb->interval; | 
|  | etrax_rh_init_int_timer(urb); | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bmRType_bReq = cmd->bRequestType | (cmd->bRequest << 8); | 
|  | wValue = le16_to_cpu(cmd->wValue); | 
|  | wIndex = le16_to_cpu(cmd->wIndex); | 
|  | wLength = le16_to_cpu(cmd->wLength); | 
|  |  | 
|  | dbg_rh("bmRType_bReq : 0x%04x (%d)", bmRType_bReq, bmRType_bReq); | 
|  | dbg_rh("wValue       : 0x%04x (%d)", wValue, wValue); | 
|  | dbg_rh("wIndex       : 0x%04x (%d)", wIndex, wIndex); | 
|  | dbg_rh("wLength      : 0x%04x (%d)", wLength, wLength); | 
|  |  | 
|  | switch (bmRType_bReq) { | 
|  |  | 
|  | /* Request Destination: | 
|  | without flags: Device, | 
|  | RH_INTERFACE: interface, | 
|  | RH_ENDPOINT: endpoint, | 
|  | RH_CLASS means HUB here, | 
|  | RH_OTHER | RH_CLASS  almost ever means HUB_PORT here | 
|  | */ | 
|  |  | 
|  | case RH_GET_STATUS: | 
|  | *(__u16 *) data = cpu_to_le16 (1); | 
|  | OK (2); | 
|  |  | 
|  | case RH_GET_STATUS | RH_INTERFACE: | 
|  | *(__u16 *) data = cpu_to_le16 (0); | 
|  | OK (2); | 
|  |  | 
|  | case RH_GET_STATUS | RH_ENDPOINT: | 
|  | *(__u16 *) data = cpu_to_le16 (0); | 
|  | OK (2); | 
|  |  | 
|  | case RH_GET_STATUS | RH_CLASS: | 
|  | *(__u32 *) data = cpu_to_le32 (0); | 
|  | OK (4);		/* hub power ** */ | 
|  |  | 
|  | case RH_GET_STATUS | RH_OTHER | RH_CLASS: | 
|  | if (wIndex == 1) { | 
|  | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_1); | 
|  | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_1); | 
|  | } else if (wIndex == 2) { | 
|  | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_2); | 
|  | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_2); | 
|  | } else { | 
|  | dbg_rh("RH_GET_STATUS whith invalid wIndex!"); | 
|  | OK(0); | 
|  | } | 
|  |  | 
|  | OK(4); | 
|  |  | 
|  | case RH_CLEAR_FEATURE | RH_ENDPOINT: | 
|  | switch (wValue) { | 
|  | case (RH_ENDPOINT_STALL): | 
|  | OK (0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RH_CLEAR_FEATURE | RH_CLASS: | 
|  | switch (wValue) { | 
|  | case (RH_C_HUB_OVER_CURRENT): | 
|  | OK (0);	/* hub power over current ** */ | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS: | 
|  | switch (wValue) { | 
|  | case (RH_PORT_ENABLE): | 
|  | if (wIndex == 1) { | 
|  |  | 
|  | dbg_rh("trying to do disable port 1"); | 
|  |  | 
|  | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); | 
|  |  | 
|  | while (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)); | 
|  | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); | 
|  | dbg_rh("Port 1 is disabled"); | 
|  |  | 
|  | } else if (wIndex == 2) { | 
|  |  | 
|  | dbg_rh("trying to do disable port 2"); | 
|  |  | 
|  | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); | 
|  |  | 
|  | while (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)); | 
|  | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); | 
|  | dbg_rh("Port 2 is disabled"); | 
|  |  | 
|  | } else { | 
|  | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_ENABLE " | 
|  | "with invalid wIndex == %d!", wIndex); | 
|  | } | 
|  |  | 
|  | OK (0); | 
|  | case (RH_PORT_SUSPEND): | 
|  | /* Opposite to suspend should be resume, so we'll do a resume. */ | 
|  | /* FIXME: USB 1.1, 11.16.2.2 says: | 
|  | "Clearing the PORT_SUSPEND feature causes a host-initiated resume | 
|  | on the specified port. If the port is not in the Suspended state, | 
|  | the hub should treat this request as a functional no-operation." | 
|  | Shouldn't we check if the port is in a suspended state before | 
|  | resuming? */ | 
|  |  | 
|  | /* Make sure the controller isn't busy. */ | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | if (wIndex == 1) { | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port1) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, resume) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  | } else if (wIndex == 2) { | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port2) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, resume) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  | } else { | 
|  | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_SUSPEND " | 
|  | "with invalid wIndex == %d!", wIndex); | 
|  | } | 
|  |  | 
|  | OK (0); | 
|  | case (RH_PORT_POWER): | 
|  | OK (0);	/* port power ** */ | 
|  | case (RH_C_PORT_CONNECTION): | 
|  | if (wIndex == 1) { | 
|  | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_CONNECTION); | 
|  | } else if (wIndex == 2) { | 
|  | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_CONNECTION); | 
|  | } else { | 
|  | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_CONNECTION " | 
|  | "with invalid wIndex == %d!", wIndex); | 
|  | } | 
|  |  | 
|  | OK (0); | 
|  | case (RH_C_PORT_ENABLE): | 
|  | if (wIndex == 1) { | 
|  | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_ENABLE); | 
|  | } else if (wIndex == 2) { | 
|  | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_ENABLE); | 
|  | } else { | 
|  | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_ENABLE " | 
|  | "with invalid wIndex == %d!", wIndex); | 
|  | } | 
|  | OK (0); | 
|  | case (RH_C_PORT_SUSPEND): | 
|  | /*** WR_RH_PORTSTAT(RH_PS_PSSC); */ | 
|  | OK (0); | 
|  | case (RH_C_PORT_OVER_CURRENT): | 
|  | OK (0);	/* port power over current ** */ | 
|  | case (RH_C_PORT_RESET): | 
|  | if (wIndex == 1) { | 
|  | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_RESET); | 
|  | } else if (wIndex == 2) { | 
|  | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_RESET); | 
|  | } else { | 
|  | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_RESET " | 
|  | "with invalid index == %d!", wIndex); | 
|  | } | 
|  |  | 
|  | OK (0); | 
|  |  | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RH_SET_FEATURE | RH_OTHER | RH_CLASS: | 
|  | switch (wValue) { | 
|  | case (RH_PORT_SUSPEND): | 
|  |  | 
|  | /* Make sure the controller isn't busy. */ | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | if (wIndex == 1) { | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port1) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  | } else if (wIndex == 2) { | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port2) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  | } else { | 
|  | dbg_rh("RH_SET_FEATURE->RH_PORT_SUSPEND " | 
|  | "with invalid wIndex == %d!", wIndex); | 
|  | } | 
|  |  | 
|  | OK (0); | 
|  | case (RH_PORT_RESET): | 
|  | if (wIndex == 1) { | 
|  |  | 
|  | port_1_reset: | 
|  | dbg_rh("Doing reset of port 1"); | 
|  |  | 
|  | /* Make sure the controller isn't busy. */ | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port1) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  |  | 
|  | /* We must wait at least 10 ms for the device to recover. | 
|  | 15 ms should be enough. */ | 
|  | udelay(15000); | 
|  |  | 
|  | /* Wait for reset bit to go low (should be done by now). */ | 
|  | while (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)); | 
|  |  | 
|  | /* If the port status is | 
|  | 1) connected and enabled then there is a device and everything is fine | 
|  | 2) neither connected nor enabled then there is no device, also fine | 
|  | 3) connected and not enabled then we try again | 
|  | (Yes, there are other port status combinations besides these.) */ | 
|  |  | 
|  | if ((hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && | 
|  | (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { | 
|  | dbg_rh("Connected device on port 1, but port not enabled?" | 
|  | " Trying reset again."); | 
|  | goto port_2_reset; | 
|  | } | 
|  |  | 
|  | /* Diagnostic printouts. */ | 
|  | if ((hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, no)) && | 
|  | (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { | 
|  | dbg_rh("No connected device on port 1"); | 
|  | } else if ((hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && | 
|  | (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))) { | 
|  | dbg_rh("Connected device on port 1, port 1 enabled"); | 
|  | } | 
|  |  | 
|  | } else if (wIndex == 2) { | 
|  |  | 
|  | port_2_reset: | 
|  | dbg_rh("Doing reset of port 2"); | 
|  |  | 
|  | /* Make sure the controller isn't busy. */ | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | /* Issue the reset command. */ | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, port2) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); | 
|  |  | 
|  | /* We must wait at least 10 ms for the device to recover. | 
|  | 15 ms should be enough. */ | 
|  | udelay(15000); | 
|  |  | 
|  | /* Wait for reset bit to go low (should be done by now). */ | 
|  | while (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, reset, yes)); | 
|  |  | 
|  | /* If the port status is | 
|  | 1) connected and enabled then there is a device and everything is fine | 
|  | 2) neither connected nor enabled then there is no device, also fine | 
|  | 3) connected and not enabled then we try again | 
|  | (Yes, there are other port status combinations besides these.) */ | 
|  |  | 
|  | if ((hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && | 
|  | (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { | 
|  | dbg_rh("Connected device on port 2, but port not enabled?" | 
|  | " Trying reset again."); | 
|  | goto port_2_reset; | 
|  | } | 
|  |  | 
|  | /* Diagnostic printouts. */ | 
|  | if ((hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, no)) && | 
|  | (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { | 
|  | dbg_rh("No connected device on port 2"); | 
|  | } else if ((hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && | 
|  | (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes))) { | 
|  | dbg_rh("Connected device on port 2, port 2 enabled"); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | dbg_rh("RH_SET_FEATURE->RH_PORT_RESET with invalid wIndex = %d", wIndex); | 
|  | } | 
|  |  | 
|  | /* Make sure the controller isn't busy. */ | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | /* If all enabled ports were disabled the host controller goes down into | 
|  | started mode, so we need to bring it back into the running state. | 
|  | (This is safe even if it's already in the running state.) */ | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, nop) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); | 
|  |  | 
|  | dbg_rh("...Done"); | 
|  | OK(0); | 
|  |  | 
|  | case (RH_PORT_POWER): | 
|  | OK (0);	/* port power ** */ | 
|  | case (RH_PORT_ENABLE): | 
|  | /* There is no port enable command in the host controller, so if the | 
|  | port is already enabled, we do nothing. If not, we reset the port | 
|  | (with an ugly goto). */ | 
|  |  | 
|  | if (wIndex == 1) { | 
|  | if (hc->rh.prev_wPortStatus_1 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no)) { | 
|  | goto port_1_reset; | 
|  | } | 
|  | } else if (wIndex == 2) { | 
|  | if (hc->rh.prev_wPortStatus_2 & | 
|  | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no)) { | 
|  | goto port_2_reset; | 
|  | } | 
|  | } else { | 
|  | dbg_rh("RH_SET_FEATURE->RH_GET_STATUS with invalid wIndex = %d", wIndex); | 
|  | } | 
|  | OK (0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RH_SET_ADDRESS: | 
|  | hc->rh.devnum = wValue; | 
|  | dbg_rh("RH address set to: %d", hc->rh.devnum); | 
|  | OK (0); | 
|  |  | 
|  | case RH_GET_DESCRIPTOR: | 
|  | switch ((wValue & 0xff00) >> 8) { | 
|  | case (0x01):	/* device descriptor */ | 
|  | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_dev_des), wLength)); | 
|  | memcpy (data, root_hub_dev_des, len); | 
|  | OK (len); | 
|  | case (0x02):	/* configuration descriptor */ | 
|  | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_config_des), wLength)); | 
|  | memcpy (data, root_hub_config_des, len); | 
|  | OK (len); | 
|  | case (0x03):	/* string descriptors */ | 
|  | len = usb_root_hub_string (wValue & 0xff, | 
|  | 0xff, "ETRAX 100LX", | 
|  | data, wLength); | 
|  | if (len > 0) { | 
|  | OK(min(leni, len)); | 
|  | } else { | 
|  | stat = -EPIPE; | 
|  | } | 
|  |  | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RH_GET_DESCRIPTOR | RH_CLASS: | 
|  | root_hub_hub_des[2] = hc->rh.numports; | 
|  | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_hub_des), wLength)); | 
|  | memcpy (data, root_hub_hub_des, len); | 
|  | OK (len); | 
|  |  | 
|  | case RH_GET_CONFIGURATION: | 
|  | *(__u8 *) data = 0x01; | 
|  | OK (1); | 
|  |  | 
|  | case RH_SET_CONFIGURATION: | 
|  | OK (0); | 
|  |  | 
|  | default: | 
|  | stat = -EPIPE; | 
|  | } | 
|  |  | 
|  | urb->actual_length = len; | 
|  | urb->status = stat; | 
|  | urb->dev = NULL; | 
|  | if (urb->complete) { | 
|  | urb->complete(urb, NULL); | 
|  | } | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | etrax_usb_bulk_eot_timer_func(unsigned long dummy) | 
|  | { | 
|  | /* Because of a race condition in the top half, we might miss a bulk eot. | 
|  | This timer "simulates" a bulk eot if we don't get one for a while, hopefully | 
|  | correcting the situation. */ | 
|  | dbg_bulk("bulk_eot_timer timed out."); | 
|  | etrax_usb_hc_bulk_eot_interrupt(1); | 
|  | } | 
|  |  | 
|  | static void* | 
|  | etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, | 
|  | unsigned mem_flags, dma_addr_t *dma) | 
|  | { | 
|  | return kmalloc(size, mem_flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma) | 
|  | { | 
|  | kfree(addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct device fake_device; | 
|  |  | 
|  | static int __init etrax_usb_hc_init(void) | 
|  | { | 
|  | static etrax_hc_t *hc; | 
|  | struct usb_bus *bus; | 
|  | struct usb_device *usb_rh; | 
|  | int i; | 
|  |  | 
|  | DBFENTER; | 
|  |  | 
|  | info("ETRAX 100LX USB-HCD %s (c) 2001-2003 Axis Communications AB\n", usb_hcd_version); | 
|  |  | 
|  | hc = kmalloc(sizeof(etrax_hc_t), GFP_KERNEL); | 
|  | assert(hc != NULL); | 
|  |  | 
|  | /* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */ | 
|  | /* Note that we specify sizeof(USB_EP_Desc_t) as the size, but also allocate | 
|  | SB descriptors from this cache. This is ok since sizeof(USB_EP_Desc_t) == | 
|  | sizeof(USB_SB_Desc_t). */ | 
|  |  | 
|  | usb_desc_cache = kmem_cache_create("usb_desc_cache", sizeof(USB_EP_Desc_t), 0, | 
|  | SLAB_HWCACHE_ALIGN, 0, 0); | 
|  | assert(usb_desc_cache != NULL); | 
|  |  | 
|  | top_half_reg_cache = kmem_cache_create("top_half_reg_cache", | 
|  | sizeof(usb_interrupt_registers_t), | 
|  | 0, SLAB_HWCACHE_ALIGN, 0, 0); | 
|  | assert(top_half_reg_cache != NULL); | 
|  |  | 
|  | isoc_compl_cache = kmem_cache_create("isoc_compl_cache", | 
|  | sizeof(usb_isoc_complete_data_t), | 
|  | 0, SLAB_HWCACHE_ALIGN, 0, 0); | 
|  | assert(isoc_compl_cache != NULL); | 
|  |  | 
|  | etrax_usb_bus = bus = usb_alloc_bus(&etrax_usb_device_operations); | 
|  | hc->bus = bus; | 
|  | bus->bus_name="ETRAX 100LX"; | 
|  | bus->hcpriv = hc; | 
|  |  | 
|  | /* Initialize RH to the default address. | 
|  | And make sure that we have no status change indication */ | 
|  | hc->rh.numports = 2;  /* The RH has two ports */ | 
|  | hc->rh.devnum = 1; | 
|  | hc->rh.wPortChange_1 = 0; | 
|  | hc->rh.wPortChange_2 = 0; | 
|  |  | 
|  | /* Also initate the previous values to zero */ | 
|  | hc->rh.prev_wPortStatus_1 = 0; | 
|  | hc->rh.prev_wPortStatus_2 = 0; | 
|  |  | 
|  | /* Initialize the intr-traffic flags */ | 
|  | /* FIXME: This isn't used. (Besides, the error field isn't initialized.) */ | 
|  | hc->intr.sleeping = 0; | 
|  | hc->intr.wq = NULL; | 
|  |  | 
|  | epid_usage_bitmask = 0; | 
|  | epid_out_traffic = 0; | 
|  |  | 
|  | /* Mark the invalid epid as being used. */ | 
|  | set_bit(INVALID_EPID, (void *)&epid_usage_bitmask); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, INVALID_EPID); | 
|  | nop(); | 
|  | /* The valid bit should still be set ('invalid' is in our world; not the hardware's). */ | 
|  | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, yes) | | 
|  | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); | 
|  |  | 
|  | /* Mark the dummy epid as being used. */ | 
|  | set_bit(DUMMY_EPID, (void *)&epid_usage_bitmask); | 
|  | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, DUMMY_EPID); | 
|  | nop(); | 
|  | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, no) | | 
|  | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); | 
|  |  | 
|  | /* Initialize the urb list by initiating a head for each list. */ | 
|  | for (i = 0; i < NBR_OF_EPIDS; i++) { | 
|  | INIT_LIST_HEAD(&urb_list[i]); | 
|  | } | 
|  | spin_lock_init(&urb_list_lock); | 
|  |  | 
|  | INIT_LIST_HEAD(&urb_unlink_list); | 
|  |  | 
|  |  | 
|  | /* Initiate the bulk start timer. */ | 
|  | init_timer(&bulk_start_timer); | 
|  | bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL; | 
|  | bulk_start_timer.function = etrax_usb_bulk_start_timer_func; | 
|  | add_timer(&bulk_start_timer); | 
|  |  | 
|  |  | 
|  | /* Initiate the bulk eot timer. */ | 
|  | init_timer(&bulk_eot_timer); | 
|  | bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL; | 
|  | bulk_eot_timer.function = etrax_usb_bulk_eot_timer_func; | 
|  | add_timer(&bulk_eot_timer); | 
|  |  | 
|  | /* Set up the data structures for USB traffic. Note that this must be done before | 
|  | any interrupt that relies on sane DMA list occurrs. */ | 
|  | init_rx_buffers(); | 
|  | init_tx_bulk_ep(); | 
|  | init_tx_ctrl_ep(); | 
|  | init_tx_intr_ep(); | 
|  | init_tx_isoc_ep(); | 
|  |  | 
|  | device_initialize(&fake_device); | 
|  | kobject_set_name(&fake_device.kobj, "etrax_usb"); | 
|  | kobject_add(&fake_device.kobj); | 
|  | kobject_hotplug(&fake_device.kobj, KOBJ_ADD); | 
|  | hc->bus->controller = &fake_device; | 
|  | usb_register_bus(hc->bus); | 
|  |  | 
|  | *R_IRQ_MASK2_SET = | 
|  | /* Note that these interrupts are not used. */ | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) | | 
|  | /* Sub channel 1 (ctrl) descr. interrupts are used. */ | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) | | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) | | 
|  | /* Sub channel 3 (isoc) descr. interrupts are used. */ | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set); | 
|  |  | 
|  | /* Note that the dma9_descr interrupt is not used. */ | 
|  | *R_IRQ_MASK2_SET = | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) | | 
|  | IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); | 
|  |  | 
|  | /* FIXME: Enable iso_eof only when isoc traffic is running. */ | 
|  | *R_USB_IRQ_MASK_SET = | 
|  | IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | | 
|  | IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) | | 
|  | IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) | | 
|  | IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) | | 
|  | IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); | 
|  |  | 
|  |  | 
|  | if (request_irq(ETRAX_USB_HC_IRQ, etrax_usb_hc_interrupt_top_half, 0, | 
|  | "ETRAX 100LX built-in USB (HC)", hc)) { | 
|  | err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ); | 
|  | etrax_usb_hc_cleanup(); | 
|  | DBFEXIT; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (request_irq(ETRAX_USB_RX_IRQ, etrax_usb_rx_interrupt, 0, | 
|  | "ETRAX 100LX built-in USB (Rx)", hc)) { | 
|  | err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ); | 
|  | etrax_usb_hc_cleanup(); | 
|  | DBFEXIT; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (request_irq(ETRAX_USB_TX_IRQ, etrax_usb_tx_interrupt, 0, | 
|  | "ETRAX 100LX built-in USB (Tx)", hc)) { | 
|  | err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ); | 
|  | etrax_usb_hc_cleanup(); | 
|  | DBFEXIT; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* R_USB_COMMAND: | 
|  | USB commands in host mode. The fields in this register should all be | 
|  | written to in one write. Do not read-modify-write one field at a time. A | 
|  | write to this register will trigger events in the USB controller and an | 
|  | incomplete command may lead to unpredictable results, and in worst case | 
|  | even to a deadlock in the controller. | 
|  | (Note however that the busy field is read-only, so no need to write to it.) */ | 
|  |  | 
|  | /* Check the busy bit before writing to R_USB_COMMAND. */ | 
|  |  | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | /* Reset the USB interface. */ | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, nop) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); | 
|  |  | 
|  | /* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to 0x2A30 (10800), | 
|  | to guarantee that control traffic gets 10% of the bandwidth, and periodic transfer may | 
|  | allocate the rest (90%). This doesn't work though. Read on for a lenghty explanation. | 
|  |  | 
|  | While there is a difference between rev. 2 and rev. 3 of the ETRAX 100LX regarding the NAK | 
|  | behaviour, it doesn't solve this problem. What happens is that a control transfer will not | 
|  | be interrupted in its data stage when PSTART happens (the point at which periodic traffic | 
|  | is started). Thus, if PSTART is set to 10800 and its IN or OUT token is NAKed until just before | 
|  | PSTART happens, it will continue the IN/OUT transfer as long as it's ACKed. After it's done, | 
|  | there may be too little time left for an isochronous transfer, causing an epid attention | 
|  | interrupt due to perror. The work-around for this is to let the control transfers run at the | 
|  | end of the frame instead of at the beginning, and will be interrupted just fine if it doesn't | 
|  | fit into the frame. However, since there will *always* be a control transfer at the beginning | 
|  | of the frame, regardless of what we set PSTART to, that transfer might be a 64-byte transfer | 
|  | which consumes up to 15% of the frame, leaving only 85% for periodic traffic. The solution to | 
|  | this would be to 'dummy allocate' 5% of the frame with the usb_claim_bandwidth function to make | 
|  | sure that the periodic transfers that are inserted will always fit in the frame. | 
|  |  | 
|  | The idea was suggested that a control transfer could be split up into several 8 byte transfers, | 
|  | so that it would be interrupted by PSTART, but since this can't be done for an IN transfer this | 
|  | hasn't been implemented. | 
|  |  | 
|  | The value 11960 is chosen to be just after the SOF token, with a couple of bit times extra | 
|  | for possible bit stuffing. */ | 
|  |  | 
|  | *R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960); | 
|  |  | 
|  | #ifdef CONFIG_ETRAX_USB_HOST_PORT1 | 
|  | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ETRAX_USB_HOST_PORT2 | 
|  | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); | 
|  | #endif | 
|  |  | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | /* Configure the USB interface as a host controller. */ | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, nop) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config); | 
|  |  | 
|  | /* Note: Do not reset any ports here. Await the port status interrupts, to have a controlled | 
|  | sequence of resetting the ports. If we reset both ports now, and there are devices | 
|  | on both ports, we will get a bus error because both devices will answer the set address | 
|  | request. */ | 
|  |  | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | /* Start processing of USB traffic. */ | 
|  | *R_USB_COMMAND = | 
|  | IO_STATE(R_USB_COMMAND, port_sel, nop) | | 
|  | IO_STATE(R_USB_COMMAND, port_cmd, reset) | | 
|  | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); | 
|  |  | 
|  | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); | 
|  |  | 
|  | usb_rh = usb_alloc_dev(NULL, hc->bus, 0); | 
|  | hc->bus->root_hub = usb_rh; | 
|  | usb_rh->state = USB_STATE_ADDRESS; | 
|  | usb_rh->speed = USB_SPEED_FULL; | 
|  | usb_rh->devnum = 1; | 
|  | hc->bus->devnum_next = 2; | 
|  | usb_rh->ep0.desc.wMaxPacketSize = __const_cpu_to_le16(64); | 
|  | usb_get_device_descriptor(usb_rh, USB_DT_DEVICE_SIZE); | 
|  | usb_new_device(usb_rh); | 
|  |  | 
|  | DBFEXIT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void etrax_usb_hc_cleanup(void) | 
|  | { | 
|  | DBFENTER; | 
|  |  | 
|  | free_irq(ETRAX_USB_HC_IRQ, NULL); | 
|  | free_irq(ETRAX_USB_RX_IRQ, NULL); | 
|  | free_irq(ETRAX_USB_TX_IRQ, NULL); | 
|  |  | 
|  | usb_deregister_bus(etrax_usb_bus); | 
|  |  | 
|  | /* FIXME: call kmem_cache_destroy here? */ | 
|  |  | 
|  | DBFEXIT; | 
|  | } | 
|  |  | 
|  | module_init(etrax_usb_hc_init); | 
|  | module_exit(etrax_usb_hc_cleanup); |