| #ifndef _I386_PGTABLE_H |
| #define _I386_PGTABLE_H |
| |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. On |
| * the i386, we use that, but "fold" the mid level into the top-level page |
| * table, so that we physically have the same two-level page table as the |
| * i386 mmu expects. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the i386 page table tree. |
| */ |
| #ifndef __ASSEMBLY__ |
| #include <asm/processor.h> |
| #include <asm/fixmap.h> |
| #include <linux/threads.h> |
| #include <asm/paravirt.h> |
| |
| #ifndef _I386_BITOPS_H |
| #include <asm/bitops.h> |
| #endif |
| |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| |
| struct mm_struct; |
| struct vm_area_struct; |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| extern unsigned long empty_zero_page[1024]; |
| extern pgd_t swapper_pg_dir[1024]; |
| extern struct kmem_cache *pgd_cache; |
| extern struct kmem_cache *pmd_cache; |
| extern spinlock_t pgd_lock; |
| extern struct page *pgd_list; |
| |
| void pmd_ctor(void *, struct kmem_cache *, unsigned long); |
| void pgd_ctor(void *, struct kmem_cache *, unsigned long); |
| void pgd_dtor(void *, struct kmem_cache *, unsigned long); |
| void pgtable_cache_init(void); |
| void paging_init(void); |
| |
| /* |
| * The Linux x86 paging architecture is 'compile-time dual-mode', it |
| * implements both the traditional 2-level x86 page tables and the |
| * newer 3-level PAE-mode page tables. |
| */ |
| #ifdef CONFIG_X86_PAE |
| # include <asm/pgtable-3level-defs.h> |
| # define PMD_SIZE (1UL << PMD_SHIFT) |
| # define PMD_MASK (~(PMD_SIZE-1)) |
| #else |
| # include <asm/pgtable-2level-defs.h> |
| #endif |
| |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) |
| |
| #define TWOLEVEL_PGDIR_SHIFT 22 |
| #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) |
| #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) |
| |
| /* Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 8MB value just means that there will be a 8MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| */ |
| #define VMALLOC_OFFSET (8*1024*1024) |
| #define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \ |
| 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1)) |
| #ifdef CONFIG_HIGHMEM |
| # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) |
| #else |
| # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) |
| #endif |
| |
| /* |
| * _PAGE_PSE set in the page directory entry just means that |
| * the page directory entry points directly to a 4MB-aligned block of |
| * memory. |
| */ |
| #define _PAGE_BIT_PRESENT 0 |
| #define _PAGE_BIT_RW 1 |
| #define _PAGE_BIT_USER 2 |
| #define _PAGE_BIT_PWT 3 |
| #define _PAGE_BIT_PCD 4 |
| #define _PAGE_BIT_ACCESSED 5 |
| #define _PAGE_BIT_DIRTY 6 |
| #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */ |
| #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ |
| #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ |
| #define _PAGE_BIT_UNUSED2 10 |
| #define _PAGE_BIT_UNUSED3 11 |
| #define _PAGE_BIT_NX 63 |
| |
| #define _PAGE_PRESENT 0x001 |
| #define _PAGE_RW 0x002 |
| #define _PAGE_USER 0x004 |
| #define _PAGE_PWT 0x008 |
| #define _PAGE_PCD 0x010 |
| #define _PAGE_ACCESSED 0x020 |
| #define _PAGE_DIRTY 0x040 |
| #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */ |
| #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */ |
| #define _PAGE_UNUSED1 0x200 /* available for programmer */ |
| #define _PAGE_UNUSED2 0x400 |
| #define _PAGE_UNUSED3 0x800 |
| |
| /* If _PAGE_PRESENT is clear, we use these: */ |
| #define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */ |
| #define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE; |
| pte_present gives true */ |
| #ifdef CONFIG_X86_PAE |
| #define _PAGE_NX (1ULL<<_PAGE_BIT_NX) |
| #else |
| #define _PAGE_NX 0 |
| #endif |
| |
| #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| #define PAGE_NONE \ |
| __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) |
| #define PAGE_SHARED \ |
| __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) |
| |
| #define PAGE_SHARED_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) |
| #define PAGE_COPY_NOEXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) |
| #define PAGE_COPY_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
| #define PAGE_COPY \ |
| PAGE_COPY_NOEXEC |
| #define PAGE_READONLY \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) |
| #define PAGE_READONLY_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
| |
| #define _PAGE_KERNEL \ |
| (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) |
| #define _PAGE_KERNEL_EXEC \ |
| (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) |
| |
| extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC; |
| #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) |
| #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) |
| #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD) |
| #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) |
| #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) |
| |
| #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) |
| #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) |
| #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX) |
| #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) |
| #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) |
| #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) |
| |
| /* |
| * The i386 can't do page protection for execute, and considers that |
| * the same are read. Also, write permissions imply read permissions. |
| * This is the closest we can get.. |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_READONLY_EXEC |
| #define __P101 PAGE_READONLY_EXEC |
| #define __P110 PAGE_COPY_EXEC |
| #define __P111 PAGE_COPY_EXEC |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_READONLY_EXEC |
| #define __S101 PAGE_READONLY_EXEC |
| #define __S110 PAGE_SHARED_EXEC |
| #define __S111 PAGE_SHARED_EXEC |
| |
| /* |
| * Define this if things work differently on an i386 and an i486: |
| * it will (on an i486) warn about kernel memory accesses that are |
| * done without a 'access_ok(VERIFY_WRITE,..)' |
| */ |
| #undef TEST_ACCESS_OK |
| |
| /* The boot page tables (all created as a single array) */ |
| extern unsigned long pg0[]; |
| |
| #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) |
| |
| /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */ |
| #define pmd_none(x) (!(unsigned long)pmd_val(x)) |
| #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) |
| |
| |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; } |
| static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; } |
| static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; } |
| static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; } |
| static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; } |
| |
| /* |
| * The following only works if pte_present() is not true. |
| */ |
| static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; } |
| static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; } |
| static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; } |
| static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; } |
| static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; } |
| |
| #ifdef CONFIG_X86_PAE |
| # include <asm/pgtable-3level.h> |
| #else |
| # include <asm/pgtable-2level.h> |
| #endif |
| |
| #ifndef CONFIG_PARAVIRT |
| /* |
| * Rules for using pte_update - it must be called after any PTE update which |
| * has not been done using the set_pte / clear_pte interfaces. It is used by |
| * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE |
| * updates should either be sets, clears, or set_pte_atomic for P->P |
| * transitions, which means this hook should only be called for user PTEs. |
| * This hook implies a P->P protection or access change has taken place, which |
| * requires a subsequent TLB flush. The notification can optionally be delayed |
| * until the TLB flush event by using the pte_update_defer form of the |
| * interface, but care must be taken to assure that the flush happens while |
| * still holding the same page table lock so that the shadow and primary pages |
| * do not become out of sync on SMP. |
| */ |
| #define pte_update(mm, addr, ptep) do { } while (0) |
| #define pte_update_defer(mm, addr, ptep) do { } while (0) |
| #endif |
| |
| /* local pte updates need not use xchg for locking */ |
| static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) |
| { |
| pte_t res = *ptep; |
| |
| /* Pure native function needs no input for mm, addr */ |
| native_pte_clear(NULL, 0, ptep); |
| return res; |
| } |
| |
| /* |
| * We only update the dirty/accessed state if we set |
| * the dirty bit by hand in the kernel, since the hardware |
| * will do the accessed bit for us, and we don't want to |
| * race with other CPU's that might be updating the dirty |
| * bit at the same time. |
| */ |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \ |
| do { \ |
| if (dirty) { \ |
| (ptep)->pte_low = (entry).pte_low; \ |
| pte_update_defer((vma)->vm_mm, (address), (ptep)); \ |
| flush_tlb_page(vma, address); \ |
| } \ |
| } while (0) |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define ptep_test_and_clear_dirty(vma, addr, ptep) ({ \ |
| int ret = 0; \ |
| if (pte_dirty(*ptep)) \ |
| ret = test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low); \ |
| if (ret) \ |
| pte_update_defer(vma->vm_mm, addr, ptep); \ |
| ret; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(vma, addr, ptep) ({ \ |
| int ret = 0; \ |
| if (pte_young(*ptep)) \ |
| ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low); \ |
| if (ret) \ |
| pte_update_defer(vma->vm_mm, addr, ptep); \ |
| ret; \ |
| }) |
| |
| /* |
| * Rules for using ptep_establish: the pte MUST be a user pte, and |
| * must be a present->present transition. |
| */ |
| #define __HAVE_ARCH_PTEP_ESTABLISH |
| #define ptep_establish(vma, address, ptep, pteval) \ |
| do { \ |
| set_pte_present((vma)->vm_mm, address, ptep, pteval); \ |
| flush_tlb_page(vma, address); \ |
| } while (0) |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH |
| #define ptep_clear_flush_dirty(vma, address, ptep) \ |
| ({ \ |
| int __dirty; \ |
| __dirty = ptep_test_and_clear_dirty((vma), (address), (ptep)); \ |
| if (__dirty) \ |
| flush_tlb_page(vma, address); \ |
| __dirty; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young(vma, address, ptep) \ |
| ({ \ |
| int __young; \ |
| __young = ptep_test_and_clear_young((vma), (address), (ptep)); \ |
| if (__young) \ |
| flush_tlb_page(vma, address); \ |
| __young; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t pte = native_ptep_get_and_clear(ptep); |
| pte_update(mm, addr, ptep); |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) |
| { |
| pte_t pte; |
| if (full) { |
| /* |
| * Full address destruction in progress; paravirt does not |
| * care about updates and native needs no locking |
| */ |
| pte = native_local_ptep_get_and_clear(ptep); |
| } else { |
| pte = ptep_get_and_clear(mm, addr, ptep); |
| } |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| clear_bit(_PAGE_BIT_RW, &ptep->pte_low); |
| pte_update(mm, addr, ptep); |
| } |
| |
| /* |
| * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); |
| * |
| * dst - pointer to pgd range anwhere on a pgd page |
| * src - "" |
| * count - the number of pgds to copy. |
| * |
| * dst and src can be on the same page, but the range must not overlap, |
| * and must not cross a page boundary. |
| */ |
| static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) |
| { |
| memcpy(dst, src, count * sizeof(pgd_t)); |
| } |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". On processors which do not support |
| * it, this is a no-op. |
| */ |
| #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \ |
| ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot)) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte.pte_low &= _PAGE_CHG_MASK; |
| pte.pte_low |= pgprot_val(newprot); |
| #ifdef CONFIG_X86_PAE |
| /* |
| * Chop off the NX bit (if present), and add the NX portion of |
| * the newprot (if present): |
| */ |
| pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); |
| pte.pte_high |= (pgprot_val(newprot) >> 32) & \ |
| (__supported_pte_mask >> 32); |
| #endif |
| return pte; |
| } |
| |
| #define pmd_large(pmd) \ |
| ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT)) |
| |
| /* |
| * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] |
| * |
| * this macro returns the index of the entry in the pgd page which would |
| * control the given virtual address |
| */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #define pgd_index_k(addr) pgd_index(addr) |
| |
| /* |
| * pgd_offset() returns a (pgd_t *) |
| * pgd_index() is used get the offset into the pgd page's array of pgd_t's; |
| */ |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) |
| |
| /* |
| * a shortcut which implies the use of the kernel's pgd, instead |
| * of a process's |
| */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* |
| * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] |
| * |
| * this macro returns the index of the entry in the pmd page which would |
| * control the given virtual address |
| */ |
| #define pmd_index(address) \ |
| (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| |
| /* |
| * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
| * |
| * this macro returns the index of the entry in the pte page which would |
| * control the given virtual address |
| */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) |
| |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| |
| /* |
| * Helper function that returns the kernel pagetable entry controlling |
| * the virtual address 'address'. NULL means no pagetable entry present. |
| * NOTE: the return type is pte_t but if the pmd is PSE then we return it |
| * as a pte too. |
| */ |
| extern pte_t *lookup_address(unsigned long address); |
| |
| /* |
| * Make a given kernel text page executable/non-executable. |
| * Returns the previous executability setting of that page (which |
| * is used to restore the previous state). Used by the SMP bootup code. |
| * NOTE: this is an __init function for security reasons. |
| */ |
| #ifdef CONFIG_X86_PAE |
| extern int set_kernel_exec(unsigned long vaddr, int enable); |
| #else |
| static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;} |
| #endif |
| |
| #if defined(CONFIG_HIGHPTE) |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) |
| #define pte_offset_map_nested(dir, address) \ |
| ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) |
| #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) |
| #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) |
| #else |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) |
| #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| #endif |
| |
| /* Clear a kernel PTE and flush it from the TLB */ |
| #define kpte_clear_flush(ptep, vaddr) \ |
| do { \ |
| pte_clear(&init_mm, vaddr, ptep); \ |
| __flush_tlb_one(vaddr); \ |
| } while (0) |
| |
| /* |
| * The i386 doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| #define update_mmu_cache(vma,address,pte) do { } while (0) |
| |
| void native_pagetable_setup_start(pgd_t *base); |
| void native_pagetable_setup_done(pgd_t *base); |
| |
| #ifndef CONFIG_PARAVIRT |
| static inline void paravirt_pagetable_setup_start(pgd_t *base) |
| { |
| native_pagetable_setup_start(base); |
| } |
| |
| static inline void paravirt_pagetable_setup_done(pgd_t *base) |
| { |
| native_pagetable_setup_done(base); |
| } |
| #endif /* !CONFIG_PARAVIRT */ |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #ifdef CONFIG_FLATMEM |
| #define kern_addr_valid(addr) (1) |
| #endif /* CONFIG_FLATMEM */ |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _I386_PGTABLE_H */ |