|  | /* | 
|  | *  linux/mm/swapfile.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/syscalls.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | DEFINE_SPINLOCK(swap_lock); | 
|  | unsigned int nr_swapfiles; | 
|  | long total_swap_pages; | 
|  | static int swap_overflow; | 
|  |  | 
|  | static const char Bad_file[] = "Bad swap file entry "; | 
|  | static const char Unused_file[] = "Unused swap file entry "; | 
|  | static const char Bad_offset[] = "Bad swap offset entry "; | 
|  | static const char Unused_offset[] = "Unused swap offset entry "; | 
|  |  | 
|  | struct swap_list_t swap_list = {-1, -1}; | 
|  |  | 
|  | static struct swap_info_struct swap_info[MAX_SWAPFILES]; | 
|  |  | 
|  | static DEFINE_MUTEX(swapon_mutex); | 
|  |  | 
|  | /* | 
|  | * We need this because the bdev->unplug_fn can sleep and we cannot | 
|  | * hold swap_lock while calling the unplug_fn. And swap_lock | 
|  | * cannot be turned into a mutex. | 
|  | */ | 
|  | static DECLARE_RWSEM(swap_unplug_sem); | 
|  |  | 
|  | void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) | 
|  | { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | down_read(&swap_unplug_sem); | 
|  | entry.val = page_private(page); | 
|  | if (PageSwapCache(page)) { | 
|  | struct block_device *bdev = swap_info[swp_type(entry)].bdev; | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | /* | 
|  | * If the page is removed from swapcache from under us (with a | 
|  | * racy try_to_unuse/swapoff) we need an additional reference | 
|  | * count to avoid reading garbage from page_private(page) above. | 
|  | * If the WARN_ON triggers during a swapoff it maybe the race | 
|  | * condition and it's harmless. However if it triggers without | 
|  | * swapoff it signals a problem. | 
|  | */ | 
|  | WARN_ON(page_count(page) <= 1); | 
|  |  | 
|  | bdi = bdev->bd_inode->i_mapping->backing_dev_info; | 
|  | blk_run_backing_dev(bdi, page); | 
|  | } | 
|  | up_read(&swap_unplug_sem); | 
|  | } | 
|  |  | 
|  | #define SWAPFILE_CLUSTER	256 | 
|  | #define LATENCY_LIMIT		256 | 
|  |  | 
|  | static inline unsigned long scan_swap_map(struct swap_info_struct *si) | 
|  | { | 
|  | unsigned long offset, last_in_cluster; | 
|  | int latency_ration = LATENCY_LIMIT; | 
|  |  | 
|  | /* | 
|  | * We try to cluster swap pages by allocating them sequentially | 
|  | * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
|  | * way, however, we resort to first-free allocation, starting | 
|  | * a new cluster.  This prevents us from scattering swap pages | 
|  | * all over the entire swap partition, so that we reduce | 
|  | * overall disk seek times between swap pages.  -- sct | 
|  | * But we do now try to find an empty cluster.  -Andrea | 
|  | */ | 
|  |  | 
|  | si->flags += SWP_SCANNING; | 
|  | if (unlikely(!si->cluster_nr)) { | 
|  | si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
|  | if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) | 
|  | goto lowest; | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | offset = si->lowest_bit; | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
|  |  | 
|  | /* Locate the first empty (unaligned) cluster */ | 
|  | for (; last_in_cluster <= si->highest_bit; offset++) { | 
|  | if (si->swap_map[offset]) | 
|  | last_in_cluster = offset + SWAPFILE_CLUSTER; | 
|  | else if (offset == last_in_cluster) { | 
|  | spin_lock(&swap_lock); | 
|  | si->cluster_next = offset-SWAPFILE_CLUSTER+1; | 
|  | goto cluster; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | } | 
|  | spin_lock(&swap_lock); | 
|  | goto lowest; | 
|  | } | 
|  |  | 
|  | si->cluster_nr--; | 
|  | cluster: | 
|  | offset = si->cluster_next; | 
|  | if (offset > si->highest_bit) | 
|  | lowest:		offset = si->lowest_bit; | 
|  | checks:	if (!(si->flags & SWP_WRITEOK)) | 
|  | goto no_page; | 
|  | if (!si->highest_bit) | 
|  | goto no_page; | 
|  | if (!si->swap_map[offset]) { | 
|  | if (offset == si->lowest_bit) | 
|  | si->lowest_bit++; | 
|  | if (offset == si->highest_bit) | 
|  | si->highest_bit--; | 
|  | si->inuse_pages++; | 
|  | if (si->inuse_pages == si->pages) { | 
|  | si->lowest_bit = si->max; | 
|  | si->highest_bit = 0; | 
|  | } | 
|  | si->swap_map[offset] = 1; | 
|  | si->cluster_next = offset + 1; | 
|  | si->flags -= SWP_SCANNING; | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | spin_unlock(&swap_lock); | 
|  | while (++offset <= si->highest_bit) { | 
|  | if (!si->swap_map[offset]) { | 
|  | spin_lock(&swap_lock); | 
|  | goto checks; | 
|  | } | 
|  | if (unlikely(--latency_ration < 0)) { | 
|  | cond_resched(); | 
|  | latency_ration = LATENCY_LIMIT; | 
|  | } | 
|  | } | 
|  | spin_lock(&swap_lock); | 
|  | goto lowest; | 
|  |  | 
|  | no_page: | 
|  | si->flags -= SWP_SCANNING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | swp_entry_t get_swap_page(void) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | pgoff_t offset; | 
|  | int type, next; | 
|  | int wrapped = 0; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | if (nr_swap_pages <= 0) | 
|  | goto noswap; | 
|  | nr_swap_pages--; | 
|  |  | 
|  | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 
|  | si = swap_info + type; | 
|  | next = si->next; | 
|  | if (next < 0 || | 
|  | (!wrapped && si->prio != swap_info[next].prio)) { | 
|  | next = swap_list.head; | 
|  | wrapped++; | 
|  | } | 
|  |  | 
|  | if (!si->highest_bit) | 
|  | continue; | 
|  | if (!(si->flags & SWP_WRITEOK)) | 
|  | continue; | 
|  |  | 
|  | swap_list.next = next; | 
|  | offset = scan_swap_map(si); | 
|  | if (offset) { | 
|  | spin_unlock(&swap_lock); | 
|  | return swp_entry(type, offset); | 
|  | } | 
|  | next = swap_list.next; | 
|  | } | 
|  |  | 
|  | nr_swap_pages++; | 
|  | noswap: | 
|  | spin_unlock(&swap_lock); | 
|  | return (swp_entry_t) {0}; | 
|  | } | 
|  |  | 
|  | swp_entry_t get_swap_page_of_type(int type) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | pgoff_t offset; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | si = swap_info + type; | 
|  | if (si->flags & SWP_WRITEOK) { | 
|  | nr_swap_pages--; | 
|  | offset = scan_swap_map(si); | 
|  | if (offset) { | 
|  | spin_unlock(&swap_lock); | 
|  | return swp_entry(type, offset); | 
|  | } | 
|  | nr_swap_pages++; | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | return (swp_entry_t) {0}; | 
|  | } | 
|  |  | 
|  | static struct swap_info_struct * swap_info_get(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct * p; | 
|  | unsigned long offset, type; | 
|  |  | 
|  | if (!entry.val) | 
|  | goto out; | 
|  | type = swp_type(entry); | 
|  | if (type >= nr_swapfiles) | 
|  | goto bad_nofile; | 
|  | p = & swap_info[type]; | 
|  | if (!(p->flags & SWP_USED)) | 
|  | goto bad_device; | 
|  | offset = swp_offset(entry); | 
|  | if (offset >= p->max) | 
|  | goto bad_offset; | 
|  | if (!p->swap_map[offset]) | 
|  | goto bad_free; | 
|  | spin_lock(&swap_lock); | 
|  | return p; | 
|  |  | 
|  | bad_free: | 
|  | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); | 
|  | goto out; | 
|  | bad_offset: | 
|  | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); | 
|  | goto out; | 
|  | bad_device: | 
|  | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); | 
|  | goto out; | 
|  | bad_nofile: | 
|  | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) | 
|  | { | 
|  | int count = p->swap_map[offset]; | 
|  |  | 
|  | if (count < SWAP_MAP_MAX) { | 
|  | count--; | 
|  | p->swap_map[offset] = count; | 
|  | if (!count) { | 
|  | if (offset < p->lowest_bit) | 
|  | p->lowest_bit = offset; | 
|  | if (offset > p->highest_bit) | 
|  | p->highest_bit = offset; | 
|  | if (p->prio > swap_info[swap_list.next].prio) | 
|  | swap_list.next = p - swap_info; | 
|  | nr_swap_pages++; | 
|  | p->inuse_pages--; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller has made sure that the swapdevice corresponding to entry | 
|  | * is still around or has not been recycled. | 
|  | */ | 
|  | void swap_free(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct * p; | 
|  |  | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | swap_entry_free(p, swp_offset(entry)); | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many references to page are currently swapped out? | 
|  | */ | 
|  | static inline int page_swapcount(struct page *page) | 
|  | { | 
|  | int count = 0; | 
|  | struct swap_info_struct *p; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | /* Subtract the 1 for the swap cache itself */ | 
|  | count = p->swap_map[swp_offset(entry)] - 1; | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can use this swap cache entry directly | 
|  | * if there are no other references to it. | 
|  | */ | 
|  | int can_share_swap_page(struct page *page) | 
|  | { | 
|  | int count; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | count = page_mapcount(page); | 
|  | if (count <= 1 && PageSwapCache(page)) | 
|  | count += page_swapcount(page); | 
|  | return count == 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work out if there are any other processes sharing this | 
|  | * swap cache page. Free it if you can. Return success. | 
|  | */ | 
|  | int remove_exclusive_swap_page(struct page *page) | 
|  | { | 
|  | int retval; | 
|  | struct swap_info_struct * p; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | BUG_ON(PagePrivate(page)); | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | if (!PageSwapCache(page)) | 
|  | return 0; | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  | if (page_count(page) != 2) /* 2: us + cache */ | 
|  | return 0; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | p = swap_info_get(entry); | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | /* Is the only swap cache user the cache itself? */ | 
|  | retval = 0; | 
|  | if (p->swap_map[swp_offset(entry)] == 1) { | 
|  | /* Recheck the page count with the swapcache lock held.. */ | 
|  | write_lock_irq(&swapper_space.tree_lock); | 
|  | if ((page_count(page) == 2) && !PageWriteback(page)) { | 
|  | __delete_from_swap_cache(page); | 
|  | SetPageDirty(page); | 
|  | retval = 1; | 
|  | } | 
|  | write_unlock_irq(&swapper_space.tree_lock); | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | if (retval) { | 
|  | swap_free(entry); | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the swap entry like above, but also try to | 
|  | * free the page cache entry if it is the last user. | 
|  | */ | 
|  | void free_swap_and_cache(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct * p; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (is_migration_entry(entry)) | 
|  | return; | 
|  |  | 
|  | p = swap_info_get(entry); | 
|  | if (p) { | 
|  | if (swap_entry_free(p, swp_offset(entry)) == 1) { | 
|  | page = find_get_page(&swapper_space, entry.val); | 
|  | if (page && unlikely(TestSetPageLocked(page))) { | 
|  | page_cache_release(page); | 
|  | page = NULL; | 
|  | } | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  | if (page) { | 
|  | int one_user; | 
|  |  | 
|  | BUG_ON(PagePrivate(page)); | 
|  | one_user = (page_count(page) == 2); | 
|  | /* Only cache user (+us), or swap space full? Free it! */ | 
|  | /* Also recheck PageSwapCache after page is locked (above) */ | 
|  | if (PageSwapCache(page) && !PageWriteback(page) && | 
|  | (one_user || vm_swap_full())) { | 
|  | delete_from_swap_cache(page); | 
|  | SetPageDirty(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SOFTWARE_SUSPEND | 
|  | /* | 
|  | * Find the swap type that corresponds to given device (if any) | 
|  | * | 
|  | * This is needed for software suspend and is done in such a way that inode | 
|  | * aliasing is allowed. | 
|  | */ | 
|  | int swap_type_of(dev_t device) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | for (i = 0; i < nr_swapfiles; i++) { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (!(swap_info[i].flags & SWP_WRITEOK)) | 
|  | continue; | 
|  |  | 
|  | if (!device) { | 
|  | spin_unlock(&swap_lock); | 
|  | return i; | 
|  | } | 
|  | inode = swap_info[i].swap_file->f_dentry->d_inode; | 
|  | if (S_ISBLK(inode->i_mode) && | 
|  | device == MKDEV(imajor(inode), iminor(inode))) { | 
|  | spin_unlock(&swap_lock); | 
|  | return i; | 
|  | } | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return either the total number of swap pages of given type, or the number | 
|  | * of free pages of that type (depending on @free) | 
|  | * | 
|  | * This is needed for software suspend | 
|  | */ | 
|  | unsigned int count_swap_pages(int type, int free) | 
|  | { | 
|  | unsigned int n = 0; | 
|  |  | 
|  | if (type < nr_swapfiles) { | 
|  | spin_lock(&swap_lock); | 
|  | if (swap_info[type].flags & SWP_WRITEOK) { | 
|  | n = swap_info[type].pages; | 
|  | if (free) | 
|  | n -= swap_info[type].inuse_pages; | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  | return n; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * No need to decide whether this PTE shares the swap entry with others, | 
|  | * just let do_wp_page work it out if a write is requested later - to | 
|  | * force COW, vm_page_prot omits write permission from any private vma. | 
|  | */ | 
|  | static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, | 
|  | unsigned long addr, swp_entry_t entry, struct page *page) | 
|  | { | 
|  | inc_mm_counter(vma->vm_mm, anon_rss); | 
|  | get_page(page); | 
|  | set_pte_at(vma->vm_mm, addr, pte, | 
|  | pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
|  | page_add_anon_rmap(page, vma, addr); | 
|  | swap_free(entry); | 
|  | /* | 
|  | * Move the page to the active list so it is not | 
|  | * immediately swapped out again after swapon. | 
|  | */ | 
|  | activate_page(page); | 
|  | } | 
|  |  | 
|  | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pte_t swp_pte = swp_entry_to_pte(entry); | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int found = 0; | 
|  |  | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | do { | 
|  | /* | 
|  | * swapoff spends a _lot_ of time in this loop! | 
|  | * Test inline before going to call unuse_pte. | 
|  | */ | 
|  | if (unlikely(pte_same(*pte, swp_pte))) { | 
|  | unuse_pte(vma, pte++, addr, entry, page); | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | if (unuse_pte_range(vma, pmd, addr, next, entry, page)) | 
|  | return 1; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | if (unuse_pmd_range(vma, pud, addr, next, entry, page)) | 
|  | return 1; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unuse_vma(struct vm_area_struct *vma, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long addr, end, next; | 
|  |  | 
|  | if (page->mapping) { | 
|  | addr = page_address_in_vma(page, vma); | 
|  | if (addr == -EFAULT) | 
|  | return 0; | 
|  | else | 
|  | end = addr + PAGE_SIZE; | 
|  | } else { | 
|  | addr = vma->vm_start; | 
|  | end = vma->vm_end; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | if (unuse_pud_range(vma, pgd, addr, next, entry, page)) | 
|  | return 1; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unuse_mm(struct mm_struct *mm, | 
|  | swp_entry_t entry, struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | /* | 
|  | * Activate page so shrink_cache is unlikely to unmap its | 
|  | * ptes while lock is dropped, so swapoff can make progress. | 
|  | */ | 
|  | activate_page(page); | 
|  | unlock_page(page); | 
|  | down_read(&mm->mmap_sem); | 
|  | lock_page(page); | 
|  | } | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (vma->anon_vma && unuse_vma(vma, entry, page)) | 
|  | break; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | /* | 
|  | * Currently unuse_mm cannot fail, but leave error handling | 
|  | * at call sites for now, since we change it from time to time. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan swap_map from current position to next entry still in use. | 
|  | * Recycle to start on reaching the end, returning 0 when empty. | 
|  | */ | 
|  | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
|  | unsigned int prev) | 
|  | { | 
|  | unsigned int max = si->max; | 
|  | unsigned int i = prev; | 
|  | int count; | 
|  |  | 
|  | /* | 
|  | * No need for swap_lock here: we're just looking | 
|  | * for whether an entry is in use, not modifying it; false | 
|  | * hits are okay, and sys_swapoff() has already prevented new | 
|  | * allocations from this area (while holding swap_lock). | 
|  | */ | 
|  | for (;;) { | 
|  | if (++i >= max) { | 
|  | if (!prev) { | 
|  | i = 0; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * No entries in use at top of swap_map, | 
|  | * loop back to start and recheck there. | 
|  | */ | 
|  | max = prev + 1; | 
|  | prev = 0; | 
|  | i = 1; | 
|  | } | 
|  | count = si->swap_map[i]; | 
|  | if (count && count != SWAP_MAP_BAD) | 
|  | break; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We completely avoid races by reading each swap page in advance, | 
|  | * and then search for the process using it.  All the necessary | 
|  | * page table adjustments can then be made atomically. | 
|  | */ | 
|  | static int try_to_unuse(unsigned int type) | 
|  | { | 
|  | struct swap_info_struct * si = &swap_info[type]; | 
|  | struct mm_struct *start_mm; | 
|  | unsigned short *swap_map; | 
|  | unsigned short swcount; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | unsigned int i = 0; | 
|  | int retval = 0; | 
|  | int reset_overflow = 0; | 
|  | int shmem; | 
|  |  | 
|  | /* | 
|  | * When searching mms for an entry, a good strategy is to | 
|  | * start at the first mm we freed the previous entry from | 
|  | * (though actually we don't notice whether we or coincidence | 
|  | * freed the entry).  Initialize this start_mm with a hold. | 
|  | * | 
|  | * A simpler strategy would be to start at the last mm we | 
|  | * freed the previous entry from; but that would take less | 
|  | * advantage of mmlist ordering, which clusters forked mms | 
|  | * together, child after parent.  If we race with dup_mmap(), we | 
|  | * prefer to resolve parent before child, lest we miss entries | 
|  | * duplicated after we scanned child: using last mm would invert | 
|  | * that.  Though it's only a serious concern when an overflowed | 
|  | * swap count is reset from SWAP_MAP_MAX, preventing a rescan. | 
|  | */ | 
|  | start_mm = &init_mm; | 
|  | atomic_inc(&init_mm.mm_users); | 
|  |  | 
|  | /* | 
|  | * Keep on scanning until all entries have gone.  Usually, | 
|  | * one pass through swap_map is enough, but not necessarily: | 
|  | * there are races when an instance of an entry might be missed. | 
|  | */ | 
|  | while ((i = find_next_to_unuse(si, i)) != 0) { | 
|  | if (signal_pending(current)) { | 
|  | retval = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page for the entry, using the existing swap | 
|  | * cache page if there is one.  Otherwise, get a clean | 
|  | * page and read the swap into it. | 
|  | */ | 
|  | swap_map = &si->swap_map[i]; | 
|  | entry = swp_entry(type, i); | 
|  | page = read_swap_cache_async(entry, NULL, 0); | 
|  | if (!page) { | 
|  | /* | 
|  | * Either swap_duplicate() failed because entry | 
|  | * has been freed independently, and will not be | 
|  | * reused since sys_swapoff() already disabled | 
|  | * allocation from here, or alloc_page() failed. | 
|  | */ | 
|  | if (!*swap_map) | 
|  | continue; | 
|  | retval = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't hold on to start_mm if it looks like exiting. | 
|  | */ | 
|  | if (atomic_read(&start_mm->mm_users) == 1) { | 
|  | mmput(start_mm); | 
|  | start_mm = &init_mm; | 
|  | atomic_inc(&init_mm.mm_users); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for and lock page.  When do_swap_page races with | 
|  | * try_to_unuse, do_swap_page can handle the fault much | 
|  | * faster than try_to_unuse can locate the entry.  This | 
|  | * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
|  | * defer to do_swap_page in such a case - in some tests, | 
|  | * do_swap_page and try_to_unuse repeatedly compete. | 
|  | */ | 
|  | wait_on_page_locked(page); | 
|  | wait_on_page_writeback(page); | 
|  | lock_page(page); | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | /* | 
|  | * Remove all references to entry. | 
|  | * Whenever we reach init_mm, there's no address space | 
|  | * to search, but use it as a reminder to search shmem. | 
|  | */ | 
|  | shmem = 0; | 
|  | swcount = *swap_map; | 
|  | if (swcount > 1) { | 
|  | if (start_mm == &init_mm) | 
|  | shmem = shmem_unuse(entry, page); | 
|  | else | 
|  | retval = unuse_mm(start_mm, entry, page); | 
|  | } | 
|  | if (*swap_map > 1) { | 
|  | int set_start_mm = (*swap_map >= swcount); | 
|  | struct list_head *p = &start_mm->mmlist; | 
|  | struct mm_struct *new_start_mm = start_mm; | 
|  | struct mm_struct *prev_mm = start_mm; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | atomic_inc(&new_start_mm->mm_users); | 
|  | atomic_inc(&prev_mm->mm_users); | 
|  | spin_lock(&mmlist_lock); | 
|  | while (*swap_map > 1 && !retval && | 
|  | (p = p->next) != &start_mm->mmlist) { | 
|  | mm = list_entry(p, struct mm_struct, mmlist); | 
|  | if (!atomic_inc_not_zero(&mm->mm_users)) | 
|  | continue; | 
|  | spin_unlock(&mmlist_lock); | 
|  | mmput(prev_mm); | 
|  | prev_mm = mm; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | swcount = *swap_map; | 
|  | if (swcount <= 1) | 
|  | ; | 
|  | else if (mm == &init_mm) { | 
|  | set_start_mm = 1; | 
|  | shmem = shmem_unuse(entry, page); | 
|  | } else | 
|  | retval = unuse_mm(mm, entry, page); | 
|  | if (set_start_mm && *swap_map < swcount) { | 
|  | mmput(new_start_mm); | 
|  | atomic_inc(&mm->mm_users); | 
|  | new_start_mm = mm; | 
|  | set_start_mm = 0; | 
|  | } | 
|  | spin_lock(&mmlist_lock); | 
|  | } | 
|  | spin_unlock(&mmlist_lock); | 
|  | mmput(prev_mm); | 
|  | mmput(start_mm); | 
|  | start_mm = new_start_mm; | 
|  | } | 
|  | if (retval) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How could swap count reach 0x7fff when the maximum | 
|  | * pid is 0x7fff, and there's no way to repeat a swap | 
|  | * page within an mm (except in shmem, where it's the | 
|  | * shared object which takes the reference count)? | 
|  | * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. | 
|  | * | 
|  | * If that's wrong, then we should worry more about | 
|  | * exit_mmap() and do_munmap() cases described above: | 
|  | * we might be resetting SWAP_MAP_MAX too early here. | 
|  | * We know "Undead"s can happen, they're okay, so don't | 
|  | * report them; but do report if we reset SWAP_MAP_MAX. | 
|  | */ | 
|  | if (*swap_map == SWAP_MAP_MAX) { | 
|  | spin_lock(&swap_lock); | 
|  | *swap_map = 1; | 
|  | spin_unlock(&swap_lock); | 
|  | reset_overflow = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a reference remains (rare), we would like to leave | 
|  | * the page in the swap cache; but try_to_unmap could | 
|  | * then re-duplicate the entry once we drop page lock, | 
|  | * so we might loop indefinitely; also, that page could | 
|  | * not be swapped out to other storage meanwhile.  So: | 
|  | * delete from cache even if there's another reference, | 
|  | * after ensuring that the data has been saved to disk - | 
|  | * since if the reference remains (rarer), it will be | 
|  | * read from disk into another page.  Splitting into two | 
|  | * pages would be incorrect if swap supported "shared | 
|  | * private" pages, but they are handled by tmpfs files. | 
|  | * | 
|  | * Note shmem_unuse already deleted a swappage from | 
|  | * the swap cache, unless the move to filepage failed: | 
|  | * in which case it left swappage in cache, lowered its | 
|  | * swap count to pass quickly through the loops above, | 
|  | * and now we must reincrement count to try again later. | 
|  | */ | 
|  | if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | }; | 
|  |  | 
|  | swap_writepage(page, &wbc); | 
|  | lock_page(page); | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  | if (PageSwapCache(page)) { | 
|  | if (shmem) | 
|  | swap_duplicate(entry); | 
|  | else | 
|  | delete_from_swap_cache(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * So we could skip searching mms once swap count went | 
|  | * to 1, we did not mark any present ptes as dirty: must | 
|  | * mark page dirty so shrink_list will preserve it. | 
|  | */ | 
|  | SetPageDirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | /* | 
|  | * Make sure that we aren't completely killing | 
|  | * interactive performance. | 
|  | */ | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | mmput(start_mm); | 
|  | if (reset_overflow) { | 
|  | printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); | 
|  | swap_overflow = 0; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a successful try_to_unuse, if no swap is now in use, we know | 
|  | * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
|  | * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
|  | * added to the mmlist just after page_duplicate - before would be racy. | 
|  | */ | 
|  | static void drain_mmlist(void) | 
|  | { | 
|  | struct list_head *p, *next; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < nr_swapfiles; i++) | 
|  | if (swap_info[i].inuse_pages) | 
|  | return; | 
|  | spin_lock(&mmlist_lock); | 
|  | list_for_each_safe(p, next, &init_mm.mmlist) | 
|  | list_del_init(p); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
|  | * corresponds to page offset `offset'. | 
|  | */ | 
|  | sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) | 
|  | { | 
|  | struct swap_extent *se = sis->curr_swap_extent; | 
|  | struct swap_extent *start_se = se; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | struct list_head *lh; | 
|  |  | 
|  | if (se->start_page <= offset && | 
|  | offset < (se->start_page + se->nr_pages)) { | 
|  | return se->start_block + (offset - se->start_page); | 
|  | } | 
|  | lh = se->list.next; | 
|  | if (lh == &sis->extent_list) | 
|  | lh = lh->next; | 
|  | se = list_entry(lh, struct swap_extent, list); | 
|  | sis->curr_swap_extent = se; | 
|  | BUG_ON(se == start_se);		/* It *must* be present */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all of a swapdev's extent information | 
|  | */ | 
|  | static void destroy_swap_extents(struct swap_info_struct *sis) | 
|  | { | 
|  | while (!list_empty(&sis->extent_list)) { | 
|  | struct swap_extent *se; | 
|  |  | 
|  | se = list_entry(sis->extent_list.next, | 
|  | struct swap_extent, list); | 
|  | list_del(&se->list); | 
|  | kfree(se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a block range (and the corresponding page range) into this swapdev's | 
|  | * extent list.  The extent list is kept sorted in page order. | 
|  | * | 
|  | * This function rather assumes that it is called in ascending page order. | 
|  | */ | 
|  | static int | 
|  | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
|  | unsigned long nr_pages, sector_t start_block) | 
|  | { | 
|  | struct swap_extent *se; | 
|  | struct swap_extent *new_se; | 
|  | struct list_head *lh; | 
|  |  | 
|  | lh = sis->extent_list.prev;	/* The highest page extent */ | 
|  | if (lh != &sis->extent_list) { | 
|  | se = list_entry(lh, struct swap_extent, list); | 
|  | BUG_ON(se->start_page + se->nr_pages != start_page); | 
|  | if (se->start_block + se->nr_pages == start_block) { | 
|  | /* Merge it */ | 
|  | se->nr_pages += nr_pages; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No merge.  Insert a new extent, preserving ordering. | 
|  | */ | 
|  | new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
|  | if (new_se == NULL) | 
|  | return -ENOMEM; | 
|  | new_se->start_page = start_page; | 
|  | new_se->nr_pages = nr_pages; | 
|  | new_se->start_block = start_block; | 
|  |  | 
|  | list_add_tail(&new_se->list, &sis->extent_list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A `swap extent' is a simple thing which maps a contiguous range of pages | 
|  | * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
|  | * is built at swapon time and is then used at swap_writepage/swap_readpage | 
|  | * time for locating where on disk a page belongs. | 
|  | * | 
|  | * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
|  | * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
|  | * swap files identically. | 
|  | * | 
|  | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
|  | * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
|  | * swapfiles are handled *identically* after swapon time. | 
|  | * | 
|  | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
|  | * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
|  | * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
|  | * requirements, they are simply tossed out - we will never use those blocks | 
|  | * for swapping. | 
|  | * | 
|  | * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This | 
|  | * prevents root from shooting her foot off by ftruncating an in-use swapfile, | 
|  | * which will scribble on the fs. | 
|  | * | 
|  | * The amount of disk space which a single swap extent represents varies. | 
|  | * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
|  | * extents in the list.  To avoid much list walking, we cache the previous | 
|  | * search location in `curr_swap_extent', and start new searches from there. | 
|  | * This is extremely effective.  The average number of iterations in | 
|  | * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
|  | */ | 
|  | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
|  | { | 
|  | struct inode *inode; | 
|  | unsigned blocks_per_page; | 
|  | unsigned long page_no; | 
|  | unsigned blkbits; | 
|  | sector_t probe_block; | 
|  | sector_t last_block; | 
|  | sector_t lowest_block = -1; | 
|  | sector_t highest_block = 0; | 
|  | int nr_extents = 0; | 
|  | int ret; | 
|  |  | 
|  | inode = sis->swap_file->f_mapping->host; | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | ret = add_swap_extent(sis, 0, sis->max, 0); | 
|  | *span = sis->pages; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | blkbits = inode->i_blkbits; | 
|  | blocks_per_page = PAGE_SIZE >> blkbits; | 
|  |  | 
|  | /* | 
|  | * Map all the blocks into the extent list.  This code doesn't try | 
|  | * to be very smart. | 
|  | */ | 
|  | probe_block = 0; | 
|  | page_no = 0; | 
|  | last_block = i_size_read(inode) >> blkbits; | 
|  | while ((probe_block + blocks_per_page) <= last_block && | 
|  | page_no < sis->max) { | 
|  | unsigned block_in_page; | 
|  | sector_t first_block; | 
|  |  | 
|  | first_block = bmap(inode, probe_block); | 
|  | if (first_block == 0) | 
|  | goto bad_bmap; | 
|  |  | 
|  | /* | 
|  | * It must be PAGE_SIZE aligned on-disk | 
|  | */ | 
|  | if (first_block & (blocks_per_page - 1)) { | 
|  | probe_block++; | 
|  | goto reprobe; | 
|  | } | 
|  |  | 
|  | for (block_in_page = 1; block_in_page < blocks_per_page; | 
|  | block_in_page++) { | 
|  | sector_t block; | 
|  |  | 
|  | block = bmap(inode, probe_block + block_in_page); | 
|  | if (block == 0) | 
|  | goto bad_bmap; | 
|  | if (block != first_block + block_in_page) { | 
|  | /* Discontiguity */ | 
|  | probe_block++; | 
|  | goto reprobe; | 
|  | } | 
|  | } | 
|  |  | 
|  | first_block >>= (PAGE_SHIFT - blkbits); | 
|  | if (page_no) {	/* exclude the header page */ | 
|  | if (first_block < lowest_block) | 
|  | lowest_block = first_block; | 
|  | if (first_block > highest_block) | 
|  | highest_block = first_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks | 
|  | */ | 
|  | ret = add_swap_extent(sis, page_no, 1, first_block); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | nr_extents += ret; | 
|  | page_no++; | 
|  | probe_block += blocks_per_page; | 
|  | reprobe: | 
|  | continue; | 
|  | } | 
|  | ret = nr_extents; | 
|  | *span = 1 + highest_block - lowest_block; | 
|  | if (page_no == 0) | 
|  | page_no = 1;	/* force Empty message */ | 
|  | sis->max = page_no; | 
|  | sis->pages = page_no - 1; | 
|  | sis->highest_bit = page_no - 1; | 
|  | done: | 
|  | sis->curr_swap_extent = list_entry(sis->extent_list.prev, | 
|  | struct swap_extent, list); | 
|  | goto out; | 
|  | bad_bmap: | 
|  | printk(KERN_ERR "swapon: swapfile has holes\n"); | 
|  | ret = -EINVAL; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if 0	/* We don't need this yet */ | 
|  | #include <linux/backing-dev.h> | 
|  | int page_queue_congested(struct page *page) | 
|  | { | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */ | 
|  |  | 
|  | if (PageSwapCache(page)) { | 
|  | swp_entry_t entry = { .val = page_private(page) }; | 
|  | struct swap_info_struct *sis; | 
|  |  | 
|  | sis = get_swap_info_struct(swp_type(entry)); | 
|  | bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; | 
|  | } else | 
|  | bdi = page->mapping->backing_dev_info; | 
|  | return bdi_write_congested(bdi); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | asmlinkage long sys_swapoff(const char __user * specialfile) | 
|  | { | 
|  | struct swap_info_struct * p = NULL; | 
|  | unsigned short *swap_map; | 
|  | struct file *swap_file, *victim; | 
|  | struct address_space *mapping; | 
|  | struct inode *inode; | 
|  | char * pathname; | 
|  | int i, type, prev; | 
|  | int err; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | pathname = getname(specialfile); | 
|  | err = PTR_ERR(pathname); | 
|  | if (IS_ERR(pathname)) | 
|  | goto out; | 
|  |  | 
|  | victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); | 
|  | putname(pathname); | 
|  | err = PTR_ERR(victim); | 
|  | if (IS_ERR(victim)) | 
|  | goto out; | 
|  |  | 
|  | mapping = victim->f_mapping; | 
|  | prev = -1; | 
|  | spin_lock(&swap_lock); | 
|  | for (type = swap_list.head; type >= 0; type = swap_info[type].next) { | 
|  | p = swap_info + type; | 
|  | if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { | 
|  | if (p->swap_file->f_mapping == mapping) | 
|  | break; | 
|  | } | 
|  | prev = type; | 
|  | } | 
|  | if (type < 0) { | 
|  | err = -EINVAL; | 
|  | spin_unlock(&swap_lock); | 
|  | goto out_dput; | 
|  | } | 
|  | if (!security_vm_enough_memory(p->pages)) | 
|  | vm_unacct_memory(p->pages); | 
|  | else { | 
|  | err = -ENOMEM; | 
|  | spin_unlock(&swap_lock); | 
|  | goto out_dput; | 
|  | } | 
|  | if (prev < 0) { | 
|  | swap_list.head = p->next; | 
|  | } else { | 
|  | swap_info[prev].next = p->next; | 
|  | } | 
|  | if (type == swap_list.next) { | 
|  | /* just pick something that's safe... */ | 
|  | swap_list.next = swap_list.head; | 
|  | } | 
|  | nr_swap_pages -= p->pages; | 
|  | total_swap_pages -= p->pages; | 
|  | p->flags &= ~SWP_WRITEOK; | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | current->flags |= PF_SWAPOFF; | 
|  | err = try_to_unuse(type); | 
|  | current->flags &= ~PF_SWAPOFF; | 
|  |  | 
|  | if (err) { | 
|  | /* re-insert swap space back into swap_list */ | 
|  | spin_lock(&swap_lock); | 
|  | for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) | 
|  | if (p->prio >= swap_info[i].prio) | 
|  | break; | 
|  | p->next = i; | 
|  | if (prev < 0) | 
|  | swap_list.head = swap_list.next = p - swap_info; | 
|  | else | 
|  | swap_info[prev].next = p - swap_info; | 
|  | nr_swap_pages += p->pages; | 
|  | total_swap_pages += p->pages; | 
|  | p->flags |= SWP_WRITEOK; | 
|  | spin_unlock(&swap_lock); | 
|  | goto out_dput; | 
|  | } | 
|  |  | 
|  | /* wait for any unplug function to finish */ | 
|  | down_write(&swap_unplug_sem); | 
|  | up_write(&swap_unplug_sem); | 
|  |  | 
|  | destroy_swap_extents(p); | 
|  | mutex_lock(&swapon_mutex); | 
|  | spin_lock(&swap_lock); | 
|  | drain_mmlist(); | 
|  |  | 
|  | /* wait for anyone still in scan_swap_map */ | 
|  | p->highest_bit = 0;		/* cuts scans short */ | 
|  | while (p->flags >= SWP_SCANNING) { | 
|  | spin_unlock(&swap_lock); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | spin_lock(&swap_lock); | 
|  | } | 
|  |  | 
|  | swap_file = p->swap_file; | 
|  | p->swap_file = NULL; | 
|  | p->max = 0; | 
|  | swap_map = p->swap_map; | 
|  | p->swap_map = NULL; | 
|  | p->flags = 0; | 
|  | spin_unlock(&swap_lock); | 
|  | mutex_unlock(&swapon_mutex); | 
|  | vfree(swap_map); | 
|  | inode = mapping->host; | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | struct block_device *bdev = I_BDEV(inode); | 
|  | set_blocksize(bdev, p->old_block_size); | 
|  | bd_release(bdev); | 
|  | } else { | 
|  | mutex_lock(&inode->i_mutex); | 
|  | inode->i_flags &= ~S_SWAPFILE; | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } | 
|  | filp_close(swap_file, NULL); | 
|  | err = 0; | 
|  |  | 
|  | out_dput: | 
|  | filp_close(victim, NULL); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /* iterator */ | 
|  | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
|  | { | 
|  | struct swap_info_struct *ptr = swap_info; | 
|  | int i; | 
|  | loff_t l = *pos; | 
|  |  | 
|  | mutex_lock(&swapon_mutex); | 
|  |  | 
|  | for (i = 0; i < nr_swapfiles; i++, ptr++) { | 
|  | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) | 
|  | continue; | 
|  | if (!l--) | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
|  | { | 
|  | struct swap_info_struct *ptr = v; | 
|  | struct swap_info_struct *endptr = swap_info + nr_swapfiles; | 
|  |  | 
|  | for (++ptr; ptr < endptr; ptr++) { | 
|  | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) | 
|  | continue; | 
|  | ++*pos; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void swap_stop(struct seq_file *swap, void *v) | 
|  | { | 
|  | mutex_unlock(&swapon_mutex); | 
|  | } | 
|  |  | 
|  | static int swap_show(struct seq_file *swap, void *v) | 
|  | { | 
|  | struct swap_info_struct *ptr = v; | 
|  | struct file *file; | 
|  | int len; | 
|  |  | 
|  | if (v == swap_info) | 
|  | seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
|  |  | 
|  | file = ptr->swap_file; | 
|  | len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); | 
|  | seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
|  | len < 40 ? 40 - len : 1, " ", | 
|  | S_ISBLK(file->f_dentry->d_inode->i_mode) ? | 
|  | "partition" : "file\t", | 
|  | ptr->pages << (PAGE_SHIFT - 10), | 
|  | ptr->inuse_pages << (PAGE_SHIFT - 10), | 
|  | ptr->prio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct seq_operations swaps_op = { | 
|  | .start =	swap_start, | 
|  | .next =		swap_next, | 
|  | .stop =		swap_stop, | 
|  | .show =		swap_show | 
|  | }; | 
|  |  | 
|  | static int swaps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &swaps_op); | 
|  | } | 
|  |  | 
|  | static struct file_operations proc_swaps_operations = { | 
|  | .open		= swaps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init procswaps_init(void) | 
|  | { | 
|  | struct proc_dir_entry *entry; | 
|  |  | 
|  | entry = create_proc_entry("swaps", 0, NULL); | 
|  | if (entry) | 
|  | entry->proc_fops = &proc_swaps_operations; | 
|  | return 0; | 
|  | } | 
|  | __initcall(procswaps_init); | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | /* | 
|  | * Written 01/25/92 by Simmule Turner, heavily changed by Linus. | 
|  | * | 
|  | * The swapon system call | 
|  | */ | 
|  | asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | 
|  | { | 
|  | struct swap_info_struct * p; | 
|  | char *name = NULL; | 
|  | struct block_device *bdev = NULL; | 
|  | struct file *swap_file = NULL; | 
|  | struct address_space *mapping; | 
|  | unsigned int type; | 
|  | int i, prev; | 
|  | int error; | 
|  | static int least_priority; | 
|  | union swap_header *swap_header = NULL; | 
|  | int swap_header_version; | 
|  | unsigned int nr_good_pages = 0; | 
|  | int nr_extents = 0; | 
|  | sector_t span; | 
|  | unsigned long maxpages = 1; | 
|  | int swapfilesize; | 
|  | unsigned short *swap_map; | 
|  | struct page *page = NULL; | 
|  | struct inode *inode = NULL; | 
|  | int did_down = 0; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | spin_lock(&swap_lock); | 
|  | p = swap_info; | 
|  | for (type = 0 ; type < nr_swapfiles ; type++,p++) | 
|  | if (!(p->flags & SWP_USED)) | 
|  | break; | 
|  | error = -EPERM; | 
|  | if (type >= MAX_SWAPFILES) { | 
|  | spin_unlock(&swap_lock); | 
|  | goto out; | 
|  | } | 
|  | if (type >= nr_swapfiles) | 
|  | nr_swapfiles = type+1; | 
|  | INIT_LIST_HEAD(&p->extent_list); | 
|  | p->flags = SWP_USED; | 
|  | p->swap_file = NULL; | 
|  | p->old_block_size = 0; | 
|  | p->swap_map = NULL; | 
|  | p->lowest_bit = 0; | 
|  | p->highest_bit = 0; | 
|  | p->cluster_nr = 0; | 
|  | p->inuse_pages = 0; | 
|  | p->next = -1; | 
|  | if (swap_flags & SWAP_FLAG_PREFER) { | 
|  | p->prio = | 
|  | (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; | 
|  | } else { | 
|  | p->prio = --least_priority; | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | name = getname(specialfile); | 
|  | error = PTR_ERR(name); | 
|  | if (IS_ERR(name)) { | 
|  | name = NULL; | 
|  | goto bad_swap_2; | 
|  | } | 
|  | swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); | 
|  | error = PTR_ERR(swap_file); | 
|  | if (IS_ERR(swap_file)) { | 
|  | swap_file = NULL; | 
|  | goto bad_swap_2; | 
|  | } | 
|  |  | 
|  | p->swap_file = swap_file; | 
|  | mapping = swap_file->f_mapping; | 
|  | inode = mapping->host; | 
|  |  | 
|  | error = -EBUSY; | 
|  | for (i = 0; i < nr_swapfiles; i++) { | 
|  | struct swap_info_struct *q = &swap_info[i]; | 
|  |  | 
|  | if (i == type || !q->swap_file) | 
|  | continue; | 
|  | if (mapping == q->swap_file->f_mapping) | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (S_ISBLK(inode->i_mode)) { | 
|  | bdev = I_BDEV(inode); | 
|  | error = bd_claim(bdev, sys_swapon); | 
|  | if (error < 0) { | 
|  | bdev = NULL; | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  | p->old_block_size = block_size(bdev); | 
|  | error = set_blocksize(bdev, PAGE_SIZE); | 
|  | if (error < 0) | 
|  | goto bad_swap; | 
|  | p->bdev = bdev; | 
|  | } else if (S_ISREG(inode->i_mode)) { | 
|  | p->bdev = inode->i_sb->s_bdev; | 
|  | mutex_lock(&inode->i_mutex); | 
|  | did_down = 1; | 
|  | if (IS_SWAPFILE(inode)) { | 
|  | error = -EBUSY; | 
|  | goto bad_swap; | 
|  | } | 
|  | } else { | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | swapfilesize = i_size_read(inode) >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Read the swap header. | 
|  | */ | 
|  | if (!mapping->a_ops->readpage) { | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  | page = read_mapping_page(mapping, 0, swap_file); | 
|  | if (IS_ERR(page)) { | 
|  | error = PTR_ERR(page); | 
|  | goto bad_swap; | 
|  | } | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) | 
|  | goto bad_swap; | 
|  | kmap(page); | 
|  | swap_header = page_address(page); | 
|  |  | 
|  | if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) | 
|  | swap_header_version = 1; | 
|  | else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) | 
|  | swap_header_version = 2; | 
|  | else { | 
|  | printk(KERN_ERR "Unable to find swap-space signature\n"); | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | switch (swap_header_version) { | 
|  | case 1: | 
|  | printk(KERN_ERR "version 0 swap is no longer supported. " | 
|  | "Use mkswap -v1 %s\n", name); | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | case 2: | 
|  | /* Check the swap header's sub-version and the size of | 
|  | the swap file and bad block lists */ | 
|  | if (swap_header->info.version != 1) { | 
|  | printk(KERN_WARNING | 
|  | "Unable to handle swap header version %d\n", | 
|  | swap_header->info.version); | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | p->lowest_bit  = 1; | 
|  | p->cluster_next = 1; | 
|  |  | 
|  | /* | 
|  | * Find out how many pages are allowed for a single swap | 
|  | * device. There are two limiting factors: 1) the number of | 
|  | * bits for the swap offset in the swp_entry_t type and | 
|  | * 2) the number of bits in the a swap pte as defined by | 
|  | * the different architectures. In order to find the | 
|  | * largest possible bit mask a swap entry with swap type 0 | 
|  | * and swap offset ~0UL is created, encoded to a swap pte, | 
|  | * decoded to a swp_entry_t again and finally the swap | 
|  | * offset is extracted. This will mask all the bits from | 
|  | * the initial ~0UL mask that can't be encoded in either | 
|  | * the swp_entry_t or the architecture definition of a | 
|  | * swap pte. | 
|  | */ | 
|  | maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; | 
|  | if (maxpages > swap_header->info.last_page) | 
|  | maxpages = swap_header->info.last_page; | 
|  | p->highest_bit = maxpages - 1; | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (!maxpages) | 
|  | goto bad_swap; | 
|  | if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
|  | goto bad_swap; | 
|  | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
|  | goto bad_swap; | 
|  |  | 
|  | /* OK, set up the swap map and apply the bad block list */ | 
|  | if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { | 
|  | error = -ENOMEM; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | memset(p->swap_map, 0, maxpages * sizeof(short)); | 
|  | for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
|  | int page_nr = swap_header->info.badpages[i]; | 
|  | if (page_nr <= 0 || page_nr >= swap_header->info.last_page) | 
|  | error = -EINVAL; | 
|  | else | 
|  | p->swap_map[page_nr] = SWAP_MAP_BAD; | 
|  | } | 
|  | nr_good_pages = swap_header->info.last_page - | 
|  | swap_header->info.nr_badpages - | 
|  | 1 /* header page */; | 
|  | if (error) | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | if (swapfilesize && maxpages > swapfilesize) { | 
|  | printk(KERN_WARNING | 
|  | "Swap area shorter than signature indicates\n"); | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  | if (nr_good_pages) { | 
|  | p->swap_map[0] = SWAP_MAP_BAD; | 
|  | p->max = maxpages; | 
|  | p->pages = nr_good_pages; | 
|  | nr_extents = setup_swap_extents(p, &span); | 
|  | if (nr_extents < 0) { | 
|  | error = nr_extents; | 
|  | goto bad_swap; | 
|  | } | 
|  | nr_good_pages = p->pages; | 
|  | } | 
|  | if (!nr_good_pages) { | 
|  | printk(KERN_WARNING "Empty swap-file\n"); | 
|  | error = -EINVAL; | 
|  | goto bad_swap; | 
|  | } | 
|  |  | 
|  | mutex_lock(&swapon_mutex); | 
|  | spin_lock(&swap_lock); | 
|  | p->flags = SWP_ACTIVE; | 
|  | nr_swap_pages += nr_good_pages; | 
|  | total_swap_pages += nr_good_pages; | 
|  |  | 
|  | printk(KERN_INFO "Adding %uk swap on %s.  " | 
|  | "Priority:%d extents:%d across:%lluk\n", | 
|  | nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, | 
|  | nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); | 
|  |  | 
|  | /* insert swap space into swap_list: */ | 
|  | prev = -1; | 
|  | for (i = swap_list.head; i >= 0; i = swap_info[i].next) { | 
|  | if (p->prio >= swap_info[i].prio) { | 
|  | break; | 
|  | } | 
|  | prev = i; | 
|  | } | 
|  | p->next = i; | 
|  | if (prev < 0) { | 
|  | swap_list.head = swap_list.next = p - swap_info; | 
|  | } else { | 
|  | swap_info[prev].next = p - swap_info; | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | mutex_unlock(&swapon_mutex); | 
|  | error = 0; | 
|  | goto out; | 
|  | bad_swap: | 
|  | if (bdev) { | 
|  | set_blocksize(bdev, p->old_block_size); | 
|  | bd_release(bdev); | 
|  | } | 
|  | destroy_swap_extents(p); | 
|  | bad_swap_2: | 
|  | spin_lock(&swap_lock); | 
|  | swap_map = p->swap_map; | 
|  | p->swap_file = NULL; | 
|  | p->swap_map = NULL; | 
|  | p->flags = 0; | 
|  | if (!(swap_flags & SWAP_FLAG_PREFER)) | 
|  | ++least_priority; | 
|  | spin_unlock(&swap_lock); | 
|  | vfree(swap_map); | 
|  | if (swap_file) | 
|  | filp_close(swap_file, NULL); | 
|  | out: | 
|  | if (page && !IS_ERR(page)) { | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | if (name) | 
|  | putname(name); | 
|  | if (did_down) { | 
|  | if (!error) | 
|  | inode->i_flags |= S_SWAPFILE; | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void si_swapinfo(struct sysinfo *val) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned long nr_to_be_unused = 0; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | for (i = 0; i < nr_swapfiles; i++) { | 
|  | if (!(swap_info[i].flags & SWP_USED) || | 
|  | (swap_info[i].flags & SWP_WRITEOK)) | 
|  | continue; | 
|  | nr_to_be_unused += swap_info[i].inuse_pages; | 
|  | } | 
|  | val->freeswap = nr_swap_pages + nr_to_be_unused; | 
|  | val->totalswap = total_swap_pages + nr_to_be_unused; | 
|  | spin_unlock(&swap_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that a swap entry is valid and increment its swap map count. | 
|  | * | 
|  | * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as | 
|  | * "permanent", but will be reclaimed by the next swapoff. | 
|  | */ | 
|  | int swap_duplicate(swp_entry_t entry) | 
|  | { | 
|  | struct swap_info_struct * p; | 
|  | unsigned long offset, type; | 
|  | int result = 0; | 
|  |  | 
|  | if (is_migration_entry(entry)) | 
|  | return 1; | 
|  |  | 
|  | type = swp_type(entry); | 
|  | if (type >= nr_swapfiles) | 
|  | goto bad_file; | 
|  | p = type + swap_info; | 
|  | offset = swp_offset(entry); | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | if (offset < p->max && p->swap_map[offset]) { | 
|  | if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { | 
|  | p->swap_map[offset]++; | 
|  | result = 1; | 
|  | } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { | 
|  | if (swap_overflow++ < 5) | 
|  | printk(KERN_WARNING "swap_dup: swap entry overflow\n"); | 
|  | p->swap_map[offset] = SWAP_MAP_MAX; | 
|  | result = 1; | 
|  | } | 
|  | } | 
|  | spin_unlock(&swap_lock); | 
|  | out: | 
|  | return result; | 
|  |  | 
|  | bad_file: | 
|  | printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | struct swap_info_struct * | 
|  | get_swap_info_struct(unsigned type) | 
|  | { | 
|  | return &swap_info[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * swap_lock prevents swap_map being freed. Don't grab an extra | 
|  | * reference on the swaphandle, it doesn't matter if it becomes unused. | 
|  | */ | 
|  | int valid_swaphandles(swp_entry_t entry, unsigned long *offset) | 
|  | { | 
|  | int our_page_cluster = page_cluster; | 
|  | int ret = 0, i = 1 << our_page_cluster; | 
|  | unsigned long toff; | 
|  | struct swap_info_struct *swapdev = swp_type(entry) + swap_info; | 
|  |  | 
|  | if (!our_page_cluster)	/* no readahead */ | 
|  | return 0; | 
|  | toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster; | 
|  | if (!toff)		/* first page is swap header */ | 
|  | toff++, i--; | 
|  | *offset = toff; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | do { | 
|  | /* Don't read-ahead past the end of the swap area */ | 
|  | if (toff >= swapdev->max) | 
|  | break; | 
|  | /* Don't read in free or bad pages */ | 
|  | if (!swapdev->swap_map[toff]) | 
|  | break; | 
|  | if (swapdev->swap_map[toff] == SWAP_MAP_BAD) | 
|  | break; | 
|  | toff++; | 
|  | ret++; | 
|  | } while (--i); | 
|  | spin_unlock(&swap_lock); | 
|  | return ret; | 
|  | } |