blob: 173f378428a96d477eddf937e7bdd3d46fd222a6 [file] [log] [blame]
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
extern void
radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_enum,
uint32_t supported_device, u16 caps);
/* from radeon_legacy_encoder.c */
extern void
radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_enum,
uint32_t supported_device);
union atom_supported_devices {
struct _ATOM_SUPPORTED_DEVICES_INFO info;
struct _ATOM_SUPPORTED_DEVICES_INFO_2 info_2;
struct _ATOM_SUPPORTED_DEVICES_INFO_2d1 info_2d1;
};
static void radeon_lookup_i2c_gpio_quirks(struct radeon_device *rdev,
ATOM_GPIO_I2C_ASSIGMENT *gpio,
u8 index)
{
/* r4xx mask is technically not used by the hw, so patch in the legacy mask bits */
if ((rdev->family == CHIP_R420) ||
(rdev->family == CHIP_R423) ||
(rdev->family == CHIP_RV410)) {
if ((le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x0018) ||
(le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x0019) ||
(le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x001a)) {
gpio->ucClkMaskShift = 0x19;
gpio->ucDataMaskShift = 0x18;
}
}
/* some evergreen boards have bad data for this entry */
if (ASIC_IS_DCE4(rdev)) {
if ((index == 7) &&
(le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x1936) &&
(gpio->sucI2cId.ucAccess == 0)) {
gpio->sucI2cId.ucAccess = 0x97;
gpio->ucDataMaskShift = 8;
gpio->ucDataEnShift = 8;
gpio->ucDataY_Shift = 8;
gpio->ucDataA_Shift = 8;
}
}
/* some DCE3 boards have bad data for this entry */
if (ASIC_IS_DCE3(rdev)) {
if ((index == 4) &&
(le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x1fda) &&
(gpio->sucI2cId.ucAccess == 0x94))
gpio->sucI2cId.ucAccess = 0x14;
}
}
static struct radeon_i2c_bus_rec radeon_get_bus_rec_for_i2c_gpio(ATOM_GPIO_I2C_ASSIGMENT *gpio)
{
struct radeon_i2c_bus_rec i2c;
memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec));
i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex) * 4;
i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex) * 4;
i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex) * 4;
i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex) * 4;
i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex) * 4;
i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex) * 4;
i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex) * 4;
i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex) * 4;
i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift);
i2c.mask_data_mask = (1 << gpio->ucDataMaskShift);
i2c.en_clk_mask = (1 << gpio->ucClkEnShift);
i2c.en_data_mask = (1 << gpio->ucDataEnShift);
i2c.y_clk_mask = (1 << gpio->ucClkY_Shift);
i2c.y_data_mask = (1 << gpio->ucDataY_Shift);
i2c.a_clk_mask = (1 << gpio->ucClkA_Shift);
i2c.a_data_mask = (1 << gpio->ucDataA_Shift);
if (gpio->sucI2cId.sbfAccess.bfHW_Capable)
i2c.hw_capable = true;
else
i2c.hw_capable = false;
if (gpio->sucI2cId.ucAccess == 0xa0)
i2c.mm_i2c = true;
else
i2c.mm_i2c = false;
i2c.i2c_id = gpio->sucI2cId.ucAccess;
if (i2c.mask_clk_reg)
i2c.valid = true;
else
i2c.valid = false;
return i2c;
}
static struct radeon_i2c_bus_rec radeon_lookup_i2c_gpio(struct radeon_device *rdev,
uint8_t id)
{
struct atom_context *ctx = rdev->mode_info.atom_context;
ATOM_GPIO_I2C_ASSIGMENT *gpio;
struct radeon_i2c_bus_rec i2c;
int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info);
struct _ATOM_GPIO_I2C_INFO *i2c_info;
uint16_t data_offset, size;
int i, num_indices;
memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec));
i2c.valid = false;
if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_I2C_ASSIGMENT);
gpio = &i2c_info->asGPIO_Info[0];
for (i = 0; i < num_indices; i++) {
radeon_lookup_i2c_gpio_quirks(rdev, gpio, i);
if (gpio->sucI2cId.ucAccess == id) {
i2c = radeon_get_bus_rec_for_i2c_gpio(gpio);
break;
}
gpio = (ATOM_GPIO_I2C_ASSIGMENT *)
((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT));
}
}
return i2c;
}
void radeon_atombios_i2c_init(struct radeon_device *rdev)
{
struct atom_context *ctx = rdev->mode_info.atom_context;
ATOM_GPIO_I2C_ASSIGMENT *gpio;
struct radeon_i2c_bus_rec i2c;
int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info);
struct _ATOM_GPIO_I2C_INFO *i2c_info;
uint16_t data_offset, size;
int i, num_indices;
char stmp[32];
if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_I2C_ASSIGMENT);
gpio = &i2c_info->asGPIO_Info[0];
for (i = 0; i < num_indices; i++) {
radeon_lookup_i2c_gpio_quirks(rdev, gpio, i);
i2c = radeon_get_bus_rec_for_i2c_gpio(gpio);
if (i2c.valid) {
sprintf(stmp, "0x%x", i2c.i2c_id);
rdev->i2c_bus[i] = radeon_i2c_create(rdev->ddev, &i2c, stmp);
}
gpio = (ATOM_GPIO_I2C_ASSIGMENT *)
((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT));
}
}
}
static struct radeon_gpio_rec radeon_lookup_gpio(struct radeon_device *rdev,
u8 id)
{
struct atom_context *ctx = rdev->mode_info.atom_context;
struct radeon_gpio_rec gpio;
int index = GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT);
struct _ATOM_GPIO_PIN_LUT *gpio_info;
ATOM_GPIO_PIN_ASSIGNMENT *pin;
u16 data_offset, size;
int i, num_indices;
memset(&gpio, 0, sizeof(struct radeon_gpio_rec));
gpio.valid = false;
if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
gpio_info = (struct _ATOM_GPIO_PIN_LUT *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_PIN_ASSIGNMENT);
pin = gpio_info->asGPIO_Pin;
for (i = 0; i < num_indices; i++) {
if (id == pin->ucGPIO_ID) {
gpio.id = pin->ucGPIO_ID;
gpio.reg = le16_to_cpu(pin->usGpioPin_AIndex) * 4;
gpio.mask = (1 << pin->ucGpioPinBitShift);
gpio.valid = true;
break;
}
pin = (ATOM_GPIO_PIN_ASSIGNMENT *)
((u8 *)pin + sizeof(ATOM_GPIO_PIN_ASSIGNMENT));
}
}
return gpio;
}
static struct radeon_hpd radeon_atom_get_hpd_info_from_gpio(struct radeon_device *rdev,
struct radeon_gpio_rec *gpio)
{
struct radeon_hpd hpd;
u32 reg;
memset(&hpd, 0, sizeof(struct radeon_hpd));
if (ASIC_IS_DCE6(rdev))
reg = SI_DC_GPIO_HPD_A;
else if (ASIC_IS_DCE4(rdev))
reg = EVERGREEN_DC_GPIO_HPD_A;
else
reg = AVIVO_DC_GPIO_HPD_A;
hpd.gpio = *gpio;
if (gpio->reg == reg) {
switch(gpio->mask) {
case (1 << 0):
hpd.hpd = RADEON_HPD_1;
break;
case (1 << 8):
hpd.hpd = RADEON_HPD_2;
break;
case (1 << 16):
hpd.hpd = RADEON_HPD_3;
break;
case (1 << 24):
hpd.hpd = RADEON_HPD_4;
break;
case (1 << 26):
hpd.hpd = RADEON_HPD_5;
break;
case (1 << 28):
hpd.hpd = RADEON_HPD_6;
break;
default:
hpd.hpd = RADEON_HPD_NONE;
break;
}
} else
hpd.hpd = RADEON_HPD_NONE;
return hpd;
}
static bool radeon_atom_apply_quirks(struct drm_device *dev,
uint32_t supported_device,
int *connector_type,
struct radeon_i2c_bus_rec *i2c_bus,
uint16_t *line_mux,
struct radeon_hpd *hpd)
{
/* Asus M2A-VM HDMI board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x791e) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x826d)) {
if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) &&
(supported_device == ATOM_DEVICE_DFP3_SUPPORT))
*connector_type = DRM_MODE_CONNECTOR_DVID;
}
/* Asrock RS600 board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x7941) &&
(dev->pdev->subsystem_vendor == 0x1849) &&
(dev->pdev->subsystem_device == 0x7941)) {
if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) &&
(supported_device == ATOM_DEVICE_DFP3_SUPPORT))
*connector_type = DRM_MODE_CONNECTOR_DVID;
}
/* MSI K9A2GM V2/V3 board has no HDMI or DVI */
if ((dev->pdev->device == 0x796e) &&
(dev->pdev->subsystem_vendor == 0x1462) &&
(dev->pdev->subsystem_device == 0x7302)) {
if ((supported_device == ATOM_DEVICE_DFP2_SUPPORT) ||
(supported_device == ATOM_DEVICE_DFP3_SUPPORT))
return false;
}
/* a-bit f-i90hd - ciaranm on #radeonhd - this board has no DVI */
if ((dev->pdev->device == 0x7941) &&
(dev->pdev->subsystem_vendor == 0x147b) &&
(dev->pdev->subsystem_device == 0x2412)) {
if (*connector_type == DRM_MODE_CONNECTOR_DVII)
return false;
}
/* Falcon NW laptop lists vga ddc line for LVDS */
if ((dev->pdev->device == 0x5653) &&
(dev->pdev->subsystem_vendor == 0x1462) &&
(dev->pdev->subsystem_device == 0x0291)) {
if (*connector_type == DRM_MODE_CONNECTOR_LVDS) {
i2c_bus->valid = false;
*line_mux = 53;
}
}
/* HIS X1300 is DVI+VGA, not DVI+DVI */
if ((dev->pdev->device == 0x7146) &&
(dev->pdev->subsystem_vendor == 0x17af) &&
(dev->pdev->subsystem_device == 0x2058)) {
if (supported_device == ATOM_DEVICE_DFP1_SUPPORT)
return false;
}
/* Gigabyte X1300 is DVI+VGA, not DVI+DVI */
if ((dev->pdev->device == 0x7142) &&
(dev->pdev->subsystem_vendor == 0x1458) &&
(dev->pdev->subsystem_device == 0x2134)) {
if (supported_device == ATOM_DEVICE_DFP1_SUPPORT)
return false;
}
/* Funky macbooks */
if ((dev->pdev->device == 0x71C5) &&
(dev->pdev->subsystem_vendor == 0x106b) &&
(dev->pdev->subsystem_device == 0x0080)) {
if ((supported_device == ATOM_DEVICE_CRT1_SUPPORT) ||
(supported_device == ATOM_DEVICE_DFP2_SUPPORT))
return false;
if (supported_device == ATOM_DEVICE_CRT2_SUPPORT)
*line_mux = 0x90;
}
/* mac rv630, rv730, others */
if ((supported_device == ATOM_DEVICE_TV1_SUPPORT) &&
(*connector_type == DRM_MODE_CONNECTOR_DVII)) {
*connector_type = DRM_MODE_CONNECTOR_9PinDIN;
*line_mux = CONNECTOR_7PIN_DIN_ENUM_ID1;
}
/* ASUS HD 3600 XT board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x9598) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x01da)) {
if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) {
*connector_type = DRM_MODE_CONNECTOR_DVII;
}
}
/* ASUS HD 3600 board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x9598) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x01e4)) {
if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) {
*connector_type = DRM_MODE_CONNECTOR_DVII;
}
}
/* ASUS HD 3450 board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x95C5) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x01e2)) {
if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) {
*connector_type = DRM_MODE_CONNECTOR_DVII;
}
}
/* some BIOSes seem to report DAC on HDMI - usually this is a board with
* HDMI + VGA reporting as HDMI
*/
if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) {
if (supported_device & (ATOM_DEVICE_CRT_SUPPORT)) {
*connector_type = DRM_MODE_CONNECTOR_VGA;
*line_mux = 0;
}
}
/* Acer laptop (Acer TravelMate 5730/5730G) has an HDMI port
* on the laptop and a DVI port on the docking station and
* both share the same encoder, hpd pin, and ddc line.
* So while the bios table is technically correct,
* we drop the DVI port here since xrandr has no concept of
* encoders and will try and drive both connectors
* with different crtcs which isn't possible on the hardware
* side and leaves no crtcs for LVDS or VGA.
*/
if (((dev->pdev->device == 0x95c4) || (dev->pdev->device == 0x9591)) &&
(dev->pdev->subsystem_vendor == 0x1025) &&
(dev->pdev->subsystem_device == 0x013c)) {
if ((*connector_type == DRM_MODE_CONNECTOR_DVII) &&
(supported_device == ATOM_DEVICE_DFP1_SUPPORT)) {
/* actually it's a DVI-D port not DVI-I */
*connector_type = DRM_MODE_CONNECTOR_DVID;
return false;
}
}
/* XFX Pine Group device rv730 reports no VGA DDC lines
* even though they are wired up to record 0x93
*/
if ((dev->pdev->device == 0x9498) &&
(dev->pdev->subsystem_vendor == 0x1682) &&
(dev->pdev->subsystem_device == 0x2452) &&
(i2c_bus->valid == false) &&
!(supported_device & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT))) {
struct radeon_device *rdev = dev->dev_private;
*i2c_bus = radeon_lookup_i2c_gpio(rdev, 0x93);
}
/* Fujitsu D3003-S2 board lists DVI-I as DVI-D and VGA */
if (((dev->pdev->device == 0x9802) || (dev->pdev->device == 0x9806)) &&
(dev->pdev->subsystem_vendor == 0x1734) &&
(dev->pdev->subsystem_device == 0x11bd)) {
if (*connector_type == DRM_MODE_CONNECTOR_VGA) {
*connector_type = DRM_MODE_CONNECTOR_DVII;
*line_mux = 0x3103;
} else if (*connector_type == DRM_MODE_CONNECTOR_DVID) {
*connector_type = DRM_MODE_CONNECTOR_DVII;
}
}
return true;
}
const int supported_devices_connector_convert[] = {
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_VGA,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_DVIA,
DRM_MODE_CONNECTOR_SVIDEO,
DRM_MODE_CONNECTOR_Composite,
DRM_MODE_CONNECTOR_LVDS,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_HDMIA,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_DisplayPort
};
const uint16_t supported_devices_connector_object_id_convert[] = {
CONNECTOR_OBJECT_ID_NONE,
CONNECTOR_OBJECT_ID_VGA,
CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I, /* not all boards support DL */
CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D, /* not all boards support DL */
CONNECTOR_OBJECT_ID_VGA, /* technically DVI-A */
CONNECTOR_OBJECT_ID_COMPOSITE,
CONNECTOR_OBJECT_ID_SVIDEO,
CONNECTOR_OBJECT_ID_LVDS,
CONNECTOR_OBJECT_ID_9PIN_DIN,
CONNECTOR_OBJECT_ID_9PIN_DIN,
CONNECTOR_OBJECT_ID_DISPLAYPORT,
CONNECTOR_OBJECT_ID_HDMI_TYPE_A,
CONNECTOR_OBJECT_ID_HDMI_TYPE_B,
CONNECTOR_OBJECT_ID_SVIDEO
};
const int object_connector_convert[] = {
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_VGA,
DRM_MODE_CONNECTOR_Composite,
DRM_MODE_CONNECTOR_SVIDEO,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_HDMIA,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_LVDS,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DisplayPort,
DRM_MODE_CONNECTOR_eDP,
DRM_MODE_CONNECTOR_Unknown
};
bool radeon_get_atom_connector_info_from_object_table(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, Object_Header);
u16 size, data_offset;
u8 frev, crev;
ATOM_CONNECTOR_OBJECT_TABLE *con_obj;
ATOM_ENCODER_OBJECT_TABLE *enc_obj;
ATOM_OBJECT_TABLE *router_obj;
ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj;
ATOM_OBJECT_HEADER *obj_header;
int i, j, k, path_size, device_support;
int connector_type;
u16 igp_lane_info, conn_id, connector_object_id;
struct radeon_i2c_bus_rec ddc_bus;
struct radeon_router router;
struct radeon_gpio_rec gpio;
struct radeon_hpd hpd;
if (!atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset))
return false;
if (crev < 2)
return false;
obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset);
path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usDisplayPathTableOffset));
con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usConnectorObjectTableOffset));
enc_obj = (ATOM_ENCODER_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usEncoderObjectTableOffset));
router_obj = (ATOM_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usRouterObjectTableOffset));
device_support = le16_to_cpu(obj_header->usDeviceSupport);
path_size = 0;
for (i = 0; i < path_obj->ucNumOfDispPath; i++) {
uint8_t *addr = (uint8_t *) path_obj->asDispPath;
ATOM_DISPLAY_OBJECT_PATH *path;
addr += path_size;
path = (ATOM_DISPLAY_OBJECT_PATH *) addr;
path_size += le16_to_cpu(path->usSize);
if (device_support & le16_to_cpu(path->usDeviceTag)) {
uint8_t con_obj_id, con_obj_num, con_obj_type;
con_obj_id =
(le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK)
>> OBJECT_ID_SHIFT;
con_obj_num =
(le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK)
>> ENUM_ID_SHIFT;
con_obj_type =
(le16_to_cpu(path->usConnObjectId) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
/* TODO CV support */
if (le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_CV_SUPPORT)
continue;
/* IGP chips */
if ((rdev->flags & RADEON_IS_IGP) &&
(con_obj_id ==
CONNECTOR_OBJECT_ID_PCIE_CONNECTOR)) {
uint16_t igp_offset = 0;
ATOM_INTEGRATED_SYSTEM_INFO_V2 *igp_obj;
index =
GetIndexIntoMasterTable(DATA,
IntegratedSystemInfo);
if (atom_parse_data_header(ctx, index, &size, &frev,
&crev, &igp_offset)) {
if (crev >= 2) {
igp_obj =
(ATOM_INTEGRATED_SYSTEM_INFO_V2
*) (ctx->bios + igp_offset);
if (igp_obj) {
uint32_t slot_config, ct;
if (con_obj_num == 1)
slot_config =
igp_obj->
ulDDISlot1Config;
else
slot_config =
igp_obj->
ulDDISlot2Config;
ct = (slot_config >> 16) & 0xff;
connector_type =
object_connector_convert
[ct];
connector_object_id = ct;
igp_lane_info =
slot_config & 0xffff;
} else
continue;
} else
continue;
} else {
igp_lane_info = 0;
connector_type =
object_connector_convert[con_obj_id];
connector_object_id = con_obj_id;
}
} else {
igp_lane_info = 0;
connector_type =
object_connector_convert[con_obj_id];
connector_object_id = con_obj_id;
}
if (connector_type == DRM_MODE_CONNECTOR_Unknown)
continue;
router.ddc_valid = false;
router.cd_valid = false;
for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2); j++) {
uint8_t grph_obj_id, grph_obj_num, grph_obj_type;
grph_obj_id =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
grph_obj_num =
(le16_to_cpu(path->usGraphicObjIds[j]) &
ENUM_ID_MASK) >> ENUM_ID_SHIFT;
grph_obj_type =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
if (grph_obj_type == GRAPH_OBJECT_TYPE_ENCODER) {
for (k = 0; k < enc_obj->ucNumberOfObjects; k++) {
u16 encoder_obj = le16_to_cpu(enc_obj->asObjects[k].usObjectID);
if (le16_to_cpu(path->usGraphicObjIds[j]) == encoder_obj) {
ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *)
(ctx->bios + data_offset +
le16_to_cpu(enc_obj->asObjects[k].usRecordOffset));
ATOM_ENCODER_CAP_RECORD *cap_record;
u16 caps = 0;
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_ENCODER_CAP_RECORD_TYPE:
cap_record =(ATOM_ENCODER_CAP_RECORD *)
record;
caps = le16_to_cpu(cap_record->usEncoderCap);
break;
}
record = (ATOM_COMMON_RECORD_HEADER *)
((char *)record + record->ucRecordSize);
}
radeon_add_atom_encoder(dev,
encoder_obj,
le16_to_cpu
(path->
usDeviceTag),
caps);
}
}
} else if (grph_obj_type == GRAPH_OBJECT_TYPE_ROUTER) {
for (k = 0; k < router_obj->ucNumberOfObjects; k++) {
u16 router_obj_id = le16_to_cpu(router_obj->asObjects[k].usObjectID);
if (le16_to_cpu(path->usGraphicObjIds[j]) == router_obj_id) {
ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *)
(ctx->bios + data_offset +
le16_to_cpu(router_obj->asObjects[k].usRecordOffset));
ATOM_I2C_RECORD *i2c_record;
ATOM_I2C_ID_CONFIG_ACCESS *i2c_config;
ATOM_ROUTER_DDC_PATH_SELECT_RECORD *ddc_path;
ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *cd_path;
ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *router_src_dst_table =
(ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *)
(ctx->bios + data_offset +
le16_to_cpu(router_obj->asObjects[k].usSrcDstTableOffset));
u8 *num_dst_objs = (u8 *)
((u8 *)router_src_dst_table + 1 +
(router_src_dst_table->ucNumberOfSrc * 2));
u16 *dst_objs = (u16 *)(num_dst_objs + 1);
int enum_id;
router.router_id = router_obj_id;
for (enum_id = 0; enum_id < (*num_dst_objs); enum_id++) {
if (le16_to_cpu(path->usConnObjectId) ==
le16_to_cpu(dst_objs[enum_id]))
break;
}
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_I2C_RECORD_TYPE:
i2c_record =
(ATOM_I2C_RECORD *)
record;
i2c_config =
(ATOM_I2C_ID_CONFIG_ACCESS *)
&i2c_record->sucI2cId;
router.i2c_info =
radeon_lookup_i2c_gpio(rdev,
i2c_config->
ucAccess);
router.i2c_addr = i2c_record->ucI2CAddr >> 1;
break;
case ATOM_ROUTER_DDC_PATH_SELECT_RECORD_TYPE:
ddc_path = (ATOM_ROUTER_DDC_PATH_SELECT_RECORD *)
record;
router.ddc_valid = true;
router.ddc_mux_type = ddc_path->ucMuxType;
router.ddc_mux_control_pin = ddc_path->ucMuxControlPin;
router.ddc_mux_state = ddc_path->ucMuxState[enum_id];
break;
case ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD_TYPE:
cd_path = (ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *)
record;
router.cd_valid = true;
router.cd_mux_type = cd_path->ucMuxType;
router.cd_mux_control_pin = cd_path->ucMuxControlPin;
router.cd_mux_state = cd_path->ucMuxState[enum_id];
break;
}
record = (ATOM_COMMON_RECORD_HEADER *)
((char *)record + record->ucRecordSize);
}
}
}
}
}
/* look up gpio for ddc, hpd */
ddc_bus.valid = false;
hpd.hpd = RADEON_HPD_NONE;
if ((le16_to_cpu(path->usDeviceTag) &
(ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) == 0) {
for (j = 0; j < con_obj->ucNumberOfObjects; j++) {
if (le16_to_cpu(path->usConnObjectId) ==
le16_to_cpu(con_obj->asObjects[j].
usObjectID)) {
ATOM_COMMON_RECORD_HEADER
*record =
(ATOM_COMMON_RECORD_HEADER
*)
(ctx->bios + data_offset +
le16_to_cpu(con_obj->
asObjects[j].
usRecordOffset));
ATOM_I2C_RECORD *i2c_record;
ATOM_HPD_INT_RECORD *hpd_record;
ATOM_I2C_ID_CONFIG_ACCESS *i2c_config;
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_I2C_RECORD_TYPE:
i2c_record =
(ATOM_I2C_RECORD *)
record;
i2c_config =
(ATOM_I2C_ID_CONFIG_ACCESS *)
&i2c_record->sucI2cId;
ddc_bus = radeon_lookup_i2c_gpio(rdev,
i2c_config->
ucAccess);
break;
case ATOM_HPD_INT_RECORD_TYPE:
hpd_record =
(ATOM_HPD_INT_RECORD *)
record;
gpio = radeon_lookup_gpio(rdev,
hpd_record->ucHPDIntGPIOID);
hpd = radeon_atom_get_hpd_info_from_gpio(rdev, &gpio);
hpd.plugged_state = hpd_record->ucPlugged_PinState;
break;
}
record =
(ATOM_COMMON_RECORD_HEADER
*) ((char *)record
+
record->
ucRecordSize);
}
break;
}
}
}
/* needed for aux chan transactions */
ddc_bus.hpd = hpd.hpd;
conn_id = le16_to_cpu(path->usConnObjectId);
if (!radeon_atom_apply_quirks
(dev, le16_to_cpu(path->usDeviceTag), &connector_type,
&ddc_bus, &conn_id, &hpd))
continue;
radeon_add_atom_connector(dev,
conn_id,
le16_to_cpu(path->
usDeviceTag),
connector_type, &ddc_bus,
igp_lane_info,
connector_object_id,
&hpd,
&router);
}
}
radeon_link_encoder_connector(dev);
return true;
}
static uint16_t atombios_get_connector_object_id(struct drm_device *dev,
int connector_type,
uint16_t devices)
{
struct radeon_device *rdev = dev->dev_private;
if (rdev->flags & RADEON_IS_IGP) {
return supported_devices_connector_object_id_convert
[connector_type];
} else if (((connector_type == DRM_MODE_CONNECTOR_DVII) ||
(connector_type == DRM_MODE_CONNECTOR_DVID)) &&
(devices & ATOM_DEVICE_DFP2_SUPPORT)) {
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, XTMDS_Info);
uint16_t size, data_offset;
uint8_t frev, crev;
ATOM_XTMDS_INFO *xtmds;
if (atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) {
xtmds = (ATOM_XTMDS_INFO *)(ctx->bios + data_offset);
if (xtmds->ucSupportedLink & ATOM_XTMDS_SUPPORTED_DUALLINK) {
if (connector_type == DRM_MODE_CONNECTOR_DVII)
return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I;
else
return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D;
} else {
if (connector_type == DRM_MODE_CONNECTOR_DVII)
return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_I;
else
return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_D;
}
} else
return supported_devices_connector_object_id_convert
[connector_type];
} else {
return supported_devices_connector_object_id_convert
[connector_type];
}
}
struct bios_connector {
bool valid;
uint16_t line_mux;
uint16_t devices;
int connector_type;
struct radeon_i2c_bus_rec ddc_bus;
struct radeon_hpd hpd;
};
bool radeon_get_atom_connector_info_from_supported_devices_table(struct
drm_device
*dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, SupportedDevicesInfo);
uint16_t size, data_offset;
uint8_t frev, crev;
uint16_t device_support;
uint8_t dac;
union atom_supported_devices *supported_devices;
int i, j, max_device;
struct bios_connector *bios_connectors;
size_t bc_size = sizeof(*bios_connectors) * ATOM_MAX_SUPPORTED_DEVICE;
struct radeon_router router;
router.ddc_valid = false;
router.cd_valid = false;
bios_connectors = kzalloc(bc_size, GFP_KERNEL);
if (!bios_connectors)
return false;
if (!atom_parse_data_header(ctx, index, &size, &frev, &crev,
&data_offset)) {
kfree(bios_connectors);
return false;
}
supported_devices =
(union atom_supported_devices *)(ctx->bios + data_offset);
device_support = le16_to_cpu(supported_devices->info.usDeviceSupport);
if (frev > 1)
max_device = ATOM_MAX_SUPPORTED_DEVICE;
else
max_device = ATOM_MAX_SUPPORTED_DEVICE_INFO;
for (i = 0; i < max_device; i++) {
ATOM_CONNECTOR_INFO_I2C ci =
supported_devices->info.asConnInfo[i];
bios_connectors[i].valid = false;
if (!(device_support & (1 << i))) {
continue;
}
if (i == ATOM_DEVICE_CV_INDEX) {
DRM_DEBUG_KMS("Skipping Component Video\n");
continue;
}
bios_connectors[i].connector_type =
supported_devices_connector_convert[ci.sucConnectorInfo.
sbfAccess.
bfConnectorType];
if (bios_connectors[i].connector_type ==
DRM_MODE_CONNECTOR_Unknown)
continue;
dac = ci.sucConnectorInfo.sbfAccess.bfAssociatedDAC;
bios_connectors[i].line_mux =
ci.sucI2cId.ucAccess;
/* give tv unique connector ids */
if (i == ATOM_DEVICE_TV1_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 50;
} else if (i == ATOM_DEVICE_TV2_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 51;
} else if (i == ATOM_DEVICE_CV_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 52;
} else
bios_connectors[i].ddc_bus =
radeon_lookup_i2c_gpio(rdev,
bios_connectors[i].line_mux);
if ((crev > 1) && (frev > 1)) {
u8 isb = supported_devices->info_2d1.asIntSrcInfo[i].ucIntSrcBitmap;
switch (isb) {
case 0x4:
bios_connectors[i].hpd.hpd = RADEON_HPD_1;
break;
case 0xa:
bios_connectors[i].hpd.hpd = RADEON_HPD_2;
break;
default:
bios_connectors[i].hpd.hpd = RADEON_HPD_NONE;
break;
}
} else {
if (i == ATOM_DEVICE_DFP1_INDEX)
bios_connectors[i].hpd.hpd = RADEON_HPD_1;
else if (i == ATOM_DEVICE_DFP2_INDEX)
bios_connectors[i].hpd.hpd = RADEON_HPD_2;
else
bios_connectors[i].hpd.hpd = RADEON_HPD_NONE;
}
/* Always set the connector type to VGA for CRT1/CRT2. if they are
* shared with a DVI port, we'll pick up the DVI connector when we
* merge the outputs. Some bioses incorrectly list VGA ports as DVI.
*/
if (i == ATOM_DEVICE_CRT1_INDEX || i == ATOM_DEVICE_CRT2_INDEX)
bios_connectors[i].connector_type =
DRM_MODE_CONNECTOR_VGA;
if (!radeon_atom_apply_quirks
(dev, (1 << i), &bios_connectors[i].connector_type,
&bios_connectors[i].ddc_bus, &bios_connectors[i].line_mux,
&bios_connectors[i].hpd))
continue;
bios_connectors[i].valid = true;
bios_connectors[i].devices = (1 << i);
if (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom)
radeon_add_atom_encoder(dev,
radeon_get_encoder_enum(dev,
(1 << i),
dac),
(1 << i),
0);
else
radeon_add_legacy_encoder(dev,
radeon_get_encoder_enum(dev,
(1 << i),
dac),
(1 << i));
}
/* combine shared connectors */
for (i = 0; i < max_device; i++) {
if (bios_connectors[i].valid) {
for (j = 0; j < max_device; j++) {
if (bios_connectors[j].valid && (i != j)) {
if (bios_connectors[i].line_mux ==
bios_connectors[j].line_mux) {
/* make sure not to combine LVDS */
if (bios_connectors[i].devices & (ATOM_DEVICE_LCD_SUPPORT)) {
bios_connectors[i].line_mux = 53;
bios_connectors[i].ddc_bus.valid = false;
continue;
}
if (bios_connectors[j].devices & (ATOM_DEVICE_LCD_SUPPORT)) {
bios_connectors[j].line_mux = 53;
bios_connectors[j].ddc_bus.valid = false;
continue;
}
/* combine analog and digital for DVI-I */
if (((bios_connectors[i].devices & (ATOM_DEVICE_DFP_SUPPORT)) &&
(bios_connectors[j].devices & (ATOM_DEVICE_CRT_SUPPORT))) ||
((bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT)) &&
(bios_connectors[i].devices & (ATOM_DEVICE_CRT_SUPPORT)))) {
bios_connectors[i].devices |=
bios_connectors[j].devices;
bios_connectors[i].connector_type =
DRM_MODE_CONNECTOR_DVII;
if (bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT))
bios_connectors[i].hpd =
bios_connectors[j].hpd;
bios_connectors[j].valid = false;
}
}
}
}
}
}
/* add the connectors */
for (i = 0; i < max_device; i++) {
if (bios_connectors[i].valid) {
uint16_t connector_object_id =
atombios_get_connector_object_id(dev,
bios_connectors[i].connector_type,
bios_connectors[i].devices);
radeon_add_atom_connector(dev,
bios_connectors[i].line_mux,
bios_connectors[i].devices,
bios_connectors[i].
connector_type,
&bios_connectors[i].ddc_bus,
0,
connector_object_id,
&bios_connectors[i].hpd,
&router);
}
}
radeon_link_encoder_connector(dev);
kfree(bios_connectors);
return true;
}
union firmware_info {
ATOM_FIRMWARE_INFO info;
ATOM_FIRMWARE_INFO_V1_2 info_12;
ATOM_FIRMWARE_INFO_V1_3 info_13;
ATOM_FIRMWARE_INFO_V1_4 info_14;
ATOM_FIRMWARE_INFO_V2_1 info_21;
ATOM_FIRMWARE_INFO_V2_2 info_22;
};
bool radeon_atom_get_clock_info(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
union firmware_info *firmware_info;
uint8_t frev, crev;
struct radeon_pll *p1pll = &rdev->clock.p1pll;
struct radeon_pll *p2pll = &rdev->clock.p2pll;
struct radeon_pll *dcpll = &rdev->clock.dcpll;
struct radeon_pll *spll = &rdev->clock.spll;
struct radeon_pll *mpll = &rdev->clock.mpll;
uint16_t data_offset;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
/* pixel clocks */
p1pll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
p1pll->reference_div = 0;
if (crev < 2)
p1pll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Output);
else
p1pll->pll_out_min =
le32_to_cpu(firmware_info->info_12.ulMinPixelClockPLL_Output);
p1pll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output);
if (crev >= 4) {
p1pll->lcd_pll_out_min =
le16_to_cpu(firmware_info->info_14.usLcdMinPixelClockPLL_Output) * 100;
if (p1pll->lcd_pll_out_min == 0)
p1pll->lcd_pll_out_min = p1pll->pll_out_min;
p1pll->lcd_pll_out_max =
le16_to_cpu(firmware_info->info_14.usLcdMaxPixelClockPLL_Output) * 100;
if (p1pll->lcd_pll_out_max == 0)
p1pll->lcd_pll_out_max = p1pll->pll_out_max;
} else {
p1pll->lcd_pll_out_min = p1pll->pll_out_min;
p1pll->lcd_pll_out_max = p1pll->pll_out_max;
}
if (p1pll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
p1pll->pll_out_min = 64800;
else
p1pll->pll_out_min = 20000;
}
p1pll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input);
p1pll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input);
*p2pll = *p1pll;
/* system clock */
if (ASIC_IS_DCE4(rdev))
spll->reference_freq =
le16_to_cpu(firmware_info->info_21.usCoreReferenceClock);
else
spll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
spll->reference_div = 0;
spll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output);
spll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output);
/* ??? */
if (spll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
spll->pll_out_min = 64800;
else
spll->pll_out_min = 20000;
}
spll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input);
spll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input);
/* memory clock */
if (ASIC_IS_DCE4(rdev))
mpll->reference_freq =
le16_to_cpu(firmware_info->info_21.usMemoryReferenceClock);
else
mpll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
mpll->reference_div = 0;
mpll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output);
mpll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output);
/* ??? */
if (mpll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
mpll->pll_out_min = 64800;
else
mpll->pll_out_min = 20000;
}
mpll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input);
mpll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input);
rdev->clock.default_sclk =
le32_to_cpu(firmware_info->info.ulDefaultEngineClock);
rdev->clock.default_mclk =
le32_to_cpu(firmware_info->info.ulDefaultMemoryClock);
if (ASIC_IS_DCE4(rdev)) {
rdev->clock.default_dispclk =
le32_to_cpu(firmware_info->info_21.ulDefaultDispEngineClkFreq);
if (rdev->clock.default_dispclk == 0) {
if (ASIC_IS_DCE6(rdev))
rdev->clock.default_dispclk = 60000; /* 600 Mhz */
else if (ASIC_IS_DCE5(rdev))
rdev->clock.default_dispclk = 54000; /* 540 Mhz */
else
rdev->clock.default_dispclk = 60000; /* 600 Mhz */
}
/* set a reasonable default for DP */
if (ASIC_IS_DCE6(rdev) && (rdev->clock.default_dispclk < 53900)) {
DRM_INFO("Changing default dispclk from %dMhz to 600Mhz\n",
rdev->clock.default_dispclk / 100);
rdev->clock.default_dispclk = 60000;
}
rdev->clock.dp_extclk =
le16_to_cpu(firmware_info->info_21.usUniphyDPModeExtClkFreq);
rdev->clock.current_dispclk = rdev->clock.default_dispclk;
}
*dcpll = *p1pll;
rdev->clock.max_pixel_clock = le16_to_cpu(firmware_info->info.usMaxPixelClock);
if (rdev->clock.max_pixel_clock == 0)
rdev->clock.max_pixel_clock = 40000;
/* not technically a clock, but... */
rdev->mode_info.firmware_flags =
le16_to_cpu(firmware_info->info.usFirmwareCapability.susAccess);
return true;
}
return false;
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
};
bool radeon_atombios_sideport_present(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
/* sideport is AMD only */
if (rdev->family == CHIP_RS600)
return false;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
switch (crev) {
case 1:
if (le32_to_cpu(igp_info->info.ulBootUpMemoryClock))
return true;
break;
case 2:
if (le32_to_cpu(igp_info->info_2.ulBootUpSidePortClock))
return true;
break;
default:
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
break;
}
}
return false;
}
bool radeon_atombios_get_tmds_info(struct radeon_encoder *encoder,
struct radeon_encoder_int_tmds *tmds)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, TMDS_Info);
uint16_t data_offset;
struct _ATOM_TMDS_INFO *tmds_info;
uint8_t frev, crev;
uint16_t maxfreq;
int i;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
tmds_info =
(struct _ATOM_TMDS_INFO *)(mode_info->atom_context->bios +
data_offset);
maxfreq = le16_to_cpu(tmds_info->usMaxFrequency);
for (i = 0; i < 4; i++) {
tmds->tmds_pll[i].freq =
le16_to_cpu(tmds_info->asMiscInfo[i].usFrequency);
tmds->tmds_pll[i].value =
tmds_info->asMiscInfo[i].ucPLL_ChargePump & 0x3f;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_VCO_Gain & 0x3f) << 6;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_DutyCycle & 0xf) << 12;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_VoltageSwing & 0xf) << 16;
DRM_DEBUG_KMS("TMDS PLL From ATOMBIOS %u %x\n",
tmds->tmds_pll[i].freq,
tmds->tmds_pll[i].value);
if (maxfreq == tmds->tmds_pll[i].freq) {
tmds->tmds_pll[i].freq = 0xffffffff;
break;
}
}
return true;
}
return false;
}
bool radeon_atombios_get_ppll_ss_info(struct radeon_device *rdev,
struct radeon_atom_ss *ss,
int id)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, PPLL_SS_Info);
uint16_t data_offset, size;
struct _ATOM_SPREAD_SPECTRUM_INFO *ss_info;
struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT *ss_assign;
uint8_t frev, crev;
int i, num_indices;
memset(ss, 0, sizeof(struct radeon_atom_ss));
if (atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
ss_info =
(struct _ATOM_SPREAD_SPECTRUM_INFO *)(mode_info->atom_context->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT);
ss_assign = (struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT*)
((u8 *)&ss_info->asSS_Info[0]);
for (i = 0; i < num_indices; i++) {
if (ss_assign->ucSS_Id == id) {
ss->percentage =
le16_to_cpu(ss_assign->usSpreadSpectrumPercentage);
ss->type = ss_assign->ucSpreadSpectrumType;
ss->step = ss_assign->ucSS_Step;
ss->delay = ss_assign->ucSS_Delay;
ss->range = ss_assign->ucSS_Range;
ss->refdiv = ss_assign->ucRecommendedRef_Div;
return true;
}
ss_assign = (struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT*)
((u8 *)ss_assign + sizeof(struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT));
}
}
return false;
}
static void radeon_atombios_get_igp_ss_overrides(struct radeon_device *rdev,
struct radeon_atom_ss *ss,
int id)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
u16 data_offset, size;
union igp_info *igp_info;
u8 frev, crev;
u16 percentage = 0, rate = 0;
/* get any igp specific overrides */
if (atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 6:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_6.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_6.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_6.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_6.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_6.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_6.usLvdsSSpreadRateIn10Hz);
break;
}
break;
case 7:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_7.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_7.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_7.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_7.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_7.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_7.usLvdsSSpreadRateIn10Hz);
break;
}
break;
case 8:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_8.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_8.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_8.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_8.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_8.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_8.usLvdsSSpreadRateIn10Hz);
break;
}
break;
default:
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
break;
}
if (percentage)
ss->percentage = percentage;
if (rate)
ss->rate = rate;
}
}
union asic_ss_info {
struct _ATOM_ASIC_INTERNAL_SS_INFO info;
struct _ATOM_ASIC_INTERNAL_SS_INFO_V2 info_2;
struct _ATOM_ASIC_INTERNAL_SS_INFO_V3 info_3;
};
union asic_ss_assignment {
struct _ATOM_ASIC_SS_ASSIGNMENT v1;
struct _ATOM_ASIC_SS_ASSIGNMENT_V2 v2;
struct _ATOM_ASIC_SS_ASSIGNMENT_V3 v3;
};
bool radeon_atombios_get_asic_ss_info(struct radeon_device *rdev,
struct radeon_atom_ss *ss,
int id, u32 clock)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
uint16_t data_offset, size;
union asic_ss_info *ss_info;
union asic_ss_assignment *ss_assign;
uint8_t frev, crev;
int i, num_indices;
if (id == ASIC_INTERNAL_MEMORY_SS) {
if (!(rdev->mode_info.firmware_flags & ATOM_BIOS_INFO_MEMORY_CLOCK_SS_SUPPORT))
return false;
}
if (id == ASIC_INTERNAL_ENGINE_SS) {
if (!(rdev->mode_info.firmware_flags & ATOM_BIOS_INFO_ENGINE_CLOCK_SS_SUPPORT))
return false;
}
memset(ss, 0, sizeof(struct radeon_atom_ss));
if (atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
ss_info =
(union asic_ss_info *)(mode_info->atom_context->bios + data_offset);
switch (frev) {
case 1:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v1.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v1.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v1.usSpreadSpectrumPercentage);
ss->type = ss_assign->v1.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v1.usSpreadRateInKhz);
ss->percentage_divider = 100;
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT));
}
break;
case 2:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_2.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v2.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v2.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v2.usSpreadSpectrumPercentage);
ss->type = ss_assign->v2.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v2.usSpreadRateIn10Hz);
ss->percentage_divider = 100;
if ((crev == 2) &&
((id == ASIC_INTERNAL_ENGINE_SS) ||
(id == ASIC_INTERNAL_MEMORY_SS)))
ss->rate /= 100;
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2));
}
break;
case 3:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_3.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v3.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v3.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v3.usSpreadSpectrumPercentage);
ss->type = ss_assign->v3.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v3.usSpreadRateIn10Hz);
if (ss_assign->v3.ucSpreadSpectrumMode &
SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK)
ss->percentage_divider = 1000;
else
ss->percentage_divider = 100;
if ((id == ASIC_INTERNAL_ENGINE_SS) ||
(id == ASIC_INTERNAL_MEMORY_SS))
ss->rate /= 100;
if (rdev->flags & RADEON_IS_IGP)
radeon_atombios_get_igp_ss_overrides(rdev, ss, id);
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3));
}
break;
default:
DRM_ERROR("Unsupported ASIC_InternalSS_Info table: %d %d\n", frev, crev);
break;
}
}
return false;
}
union lvds_info {
struct _ATOM_LVDS_INFO info;
struct _ATOM_LVDS_INFO_V12 info_12;
};
struct radeon_encoder_atom_dig *radeon_atombios_get_lvds_info(struct
radeon_encoder
*encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, LVDS_Info);
uint16_t data_offset, misc;
union lvds_info *lvds_info;
uint8_t frev, crev;
struct radeon_encoder_atom_dig *lvds = NULL;
int encoder_enum = (encoder->encoder_enum & ENUM_ID_MASK) >> ENUM_ID_SHIFT;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
lvds_info =
(union lvds_info *)(mode_info->atom_context->bios + data_offset);
lvds =
kzalloc(sizeof(struct radeon_encoder_atom_dig), GFP_KERNEL);
if (!lvds)
return NULL;
lvds->native_mode.clock =
le16_to_cpu(lvds_info->info.sLCDTiming.usPixClk) * 10;
lvds->native_mode.hdisplay =
le16_to_cpu(lvds_info->info.sLCDTiming.usHActive);
lvds->native_mode.vdisplay =
le16_to_cpu(lvds_info->info.sLCDTiming.usVActive);
lvds->native_mode.htotal = lvds->native_mode.hdisplay +
le16_to_cpu(lvds_info->info.sLCDTiming.usHBlanking_Time);
lvds->native_mode.hsync_start = lvds->native_mode.hdisplay +
le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncOffset);
lvds->native_mode.hsync_end = lvds->native_mode.hsync_start +
le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncWidth);
lvds->native_mode.vtotal = lvds->native_mode.vdisplay +
le16_to_cpu(lvds_info->info.sLCDTiming.usVBlanking_Time);
lvds->native_mode.vsync_start = lvds->native_mode.vdisplay +
le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncOffset);
lvds->native_mode.vsync_end = lvds->native_mode.vsync_start +
le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncWidth);
lvds->panel_pwr_delay =
le16_to_cpu(lvds_info->info.usOffDelayInMs);
lvds->lcd_misc = lvds_info->info.ucLVDS_Misc;
misc = le16_to_cpu(lvds_info->info.sLCDTiming.susModeMiscInfo.usAccess);
if (misc & ATOM_VSYNC_POLARITY)
lvds->native_mode.flags |= DRM_MODE_FLAG_NVSYNC;
if (misc & ATOM_HSYNC_POLARITY)
lvds->native_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (misc & ATOM_COMPOSITESYNC)
lvds->native_mode.flags |= DRM_MODE_FLAG_CSYNC;
if (misc & ATOM_INTERLACE)
lvds->native_mode.flags |= DRM_MODE_FLAG_INTERLACE;
if (misc & ATOM_DOUBLE_CLOCK_MODE)
lvds->native_mode.flags |= DRM_MODE_FLAG_DBLSCAN;
lvds->native_mode.width_mm = le16_to_cpu(lvds_info->info.sLCDTiming.usImageHSize);
lvds->native_mode.height_mm = le16_to_cpu(lvds_info->info.sLCDTiming.usImageVSize);
/* set crtc values */
drm_mode_set_crtcinfo(&lvds->native_mode, CRTC_INTERLACE_HALVE_V);
lvds->lcd_ss_id = lvds_info->info.ucSS_Id;
encoder->native_mode = lvds->native_mode;
if (encoder_enum == 2)
lvds->linkb = true;
else
lvds->linkb = false;
/* parse the lcd record table */
if (le16_to_cpu(lvds_info->info.usModePatchTableOffset)) {
ATOM_FAKE_EDID_PATCH_RECORD *fake_edid_record;
ATOM_PANEL_RESOLUTION_PATCH_RECORD *panel_res_record;
bool bad_record = false;
u8 *record;
if ((frev == 1) && (crev < 2))
/* absolute */
record = (u8 *)(mode_info->atom_context->bios +
le16_to_cpu(lvds_info->info.usModePatchTableOffset));
else
/* relative */
record = (u8 *)(mode_info->atom_context->bios +
data_offset +
le16_to_cpu(lvds_info->info.usModePatchTableOffset));
while (*record != ATOM_RECORD_END_TYPE) {
switch (*record) {
case LCD_MODE_PATCH_RECORD_MODE_TYPE:
record += sizeof(ATOM_PATCH_RECORD_MODE);
break;
case LCD_RTS_RECORD_TYPE:
record += sizeof(ATOM_LCD_RTS_RECORD);
break;
case LCD_CAP_RECORD_TYPE:
record += sizeof(ATOM_LCD_MODE_CONTROL_CAP);
break;
case LCD_FAKE_EDID_PATCH_RECORD_TYPE:
fake_edid_record = (ATOM_FAKE_EDID_PATCH_RECORD *)record;
if (fake_edid_record->ucFakeEDIDLength) {
struct edid *edid;
int edid_size =
max((int)EDID_LENGTH, (int)fake_edid_record->ucFakeEDIDLength);
edid = kmalloc(edid_size, GFP_KERNEL);
if (edid) {
memcpy((u8 *)edid, (u8 *)&fake_edid_record->ucFakeEDIDString[0],
fake_edid_record->ucFakeEDIDLength);
if (drm_edid_is_valid(edid)) {
rdev->mode_info.bios_hardcoded_edid = edid;
rdev->mode_info.bios_hardcoded_edid_size = edid_size;
} else
kfree(edid);
}
}
record += fake_edid_record->ucFakeEDIDLength ?
fake_edid_record->ucFakeEDIDLength + 2 :
sizeof(ATOM_FAKE_EDID_PATCH_RECORD);
break;
case LCD_PANEL_RESOLUTION_RECORD_TYPE:
panel_res_record = (ATOM_PANEL_RESOLUTION_PATCH_RECORD *)record;
lvds->native_mode.width_mm = panel_res_record->usHSize;
lvds->native_mode.height_mm = panel_res_record->usVSize;
record += sizeof(ATOM_PANEL_RESOLUTION_PATCH_RECORD);
break;
default:
DRM_ERROR("Bad LCD record %d\n", *record);
bad_record = true;
break;
}
if (bad_record)
break;
}
}
}
return lvds;
}
struct radeon_encoder_primary_dac *
radeon_atombios_get_primary_dac_info(struct radeon_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, CompassionateData);
uint16_t data_offset;
struct _COMPASSIONATE_DATA *dac_info;
uint8_t frev, crev;
uint8_t bg, dac;
struct radeon_encoder_primary_dac *p_dac = NULL;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
dac_info = (struct _COMPASSIONATE_DATA *)
(mode_info->atom_context->bios + data_offset);
p_dac = kzalloc(sizeof(struct radeon_encoder_primary_dac), GFP_KERNEL);
if (!p_dac)
return NULL;
bg = dac_info->ucDAC1_BG_Adjustment;
dac = dac_info->ucDAC1_DAC_Adjustment;
p_dac->ps2_pdac_adj = (bg << 8) | (dac);
}
return p_dac;
}
bool radeon_atom_get_tv_timings(struct radeon_device *rdev, int index,
struct drm_display_mode *mode)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
ATOM_ANALOG_TV_INFO *tv_info;
ATOM_ANALOG_TV_INFO_V1_2 *tv_info_v1_2;
ATOM_DTD_FORMAT *dtd_timings;
int data_index = GetIndexIntoMasterTable(DATA, AnalogTV_Info);
u8 frev, crev;
u16 data_offset, misc;
if (!atom_parse_data_header(mode_info->atom_context, data_index, NULL,
&frev, &crev, &data_offset))
return false;
switch (crev) {
case 1:
tv_info = (ATOM_ANALOG_TV_INFO *)(mode_info->atom_context->bios + data_offset);
if (index >= MAX_SUPPORTED_TV_TIMING)
return false;
mode->crtc_htotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Total);
mode->crtc_hdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Disp);
mode->crtc_hsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart);
mode->crtc_hsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart) +
le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncWidth);
mode->crtc_vtotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Total);
mode->crtc_vdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Disp);
mode->crtc_vsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart);
mode->crtc_vsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart) +
le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncWidth);
mode->flags = 0;
misc = le16_to_cpu(tv_info->aModeTimings[index].susModeMiscInfo.usAccess);
if (misc & ATOM_VSYNC_POLARITY)
mode->flags |= DRM_MODE_FLAG_NVSYNC;
if (misc & ATOM_HSYNC_POLARITY)
mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (misc & ATOM_COMPOSITESYNC)
mode->flags |= DRM_MODE_FLAG_CSYNC;
if (misc & ATOM_INTERLACE)
mode->flags |= DRM_MODE_FLAG_INTERLACE;
if (misc & ATOM_DOUBLE_CLOCK_MODE)
mode->flags |= DRM_MODE_FLAG_DBLSCAN;
mode->crtc_clock = mode->clock =
le16_to_cpu(tv_info->aModeTimings[index].usPixelClock) * 10;
if (index == 1) {
/* PAL timings appear to have wrong values for totals */
mode->crtc_htotal -= 1;
mode->crtc_vtotal -= 1;
}
break;
case 2:
tv_info_v1_2 = (ATOM_ANALOG_TV_INFO_V1_2 *)(mode_info->atom_context->bios + data_offset);
if (index >= MAX_SUPPORTED_TV_TIMING_V1_2)
return false;
dtd_timings = &tv_info_v1_2->aModeTimings[index];
mode->crtc_htotal = le16_to_cpu(dtd_timings->usHActive) +
le16_to_cpu(dtd_timings->usHBlanking_Time);
mode->crtc_hdisplay = le16_to_cpu(dtd_timings->usHActive);
mode->crtc_hsync_start = le16_to_cpu(dtd_timings->usHActive) +
le16_to_cpu(dtd_timings->usHSyncOffset);
mode->crtc_hsync_end = mode->crtc_hsync_start +
le16_to_cpu(dtd_timings->usHSyncWidth);
mode->crtc_vtotal = le16_to_cpu(dtd_timings->usVActive) +
le16_to_cpu(dtd_timings->usVBlanking_Time);
mode->crtc_vdisplay = le16_to_cpu(dtd_timings->usVActive);
mode->crtc_vsync_start = le16_to_cpu(dtd_timings->usVActive) +
le16_to_cpu(dtd_timings->usVSyncOffset);
mode->crtc_vsync_end = mode->crtc_vsync_start +
le16_to_cpu(dtd_timings->usVSyncWidth);
mode->flags = 0;
misc = le16_to_cpu(dtd_timings->susModeMiscInfo.usAccess);
if (misc & ATOM_VSYNC_POLARITY)
mode->flags |= DRM_MODE_FLAG_NVSYNC;
if (misc & ATOM_HSYNC_POLARITY)
mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (misc & ATOM_COMPOSITESYNC)
mode->flags |= DRM_MODE_FLAG_CSYNC;
if (misc & ATOM_INTERLACE)
mode->flags |= DRM_MODE_FLAG_INTERLACE;
if (misc & ATOM_DOUBLE_CLOCK_MODE)
mode->flags |= DRM_MODE_FLAG_DBLSCAN;
mode->crtc_clock = mode->clock =
le16_to_cpu(dtd_timings->usPixClk) * 10;
break;
}
return true;
}
enum radeon_tv_std
radeon_atombios_get_tv_info(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, AnalogTV_Info);
uint16_t data_offset;
uint8_t frev, crev;
struct _ATOM_ANALOG_TV_INFO *tv_info;
enum radeon_tv_std tv_std = TV_STD_NTSC;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
tv_info = (struct _ATOM_ANALOG_TV_INFO *)
(mode_info->atom_context->bios + data_offset);
switch (tv_info->ucTV_BootUpDefaultStandard) {
case ATOM_TV_NTSC:
tv_std = TV_STD_NTSC;
DRM_DEBUG_KMS("Default TV standard: NTSC\n");
break;
case ATOM_TV_NTSCJ:
tv_std = TV_STD_NTSC_J;
DRM_DEBUG_KMS("Default TV standard: NTSC-J\n");
break;
case ATOM_TV_PAL:
tv_std = TV_STD_PAL;
DRM_DEBUG_KMS("Default TV standard: PAL\n");
break;
case ATOM_TV_PALM:
tv_std = TV_STD_PAL_M;
DRM_DEBUG_KMS("Default TV standard: PAL-M\n");
break;
case ATOM_TV_PALN:
tv_std = TV_STD_PAL_N;
DRM_DEBUG_KMS("Default TV standard: PAL-N\n");
break;
case ATOM_TV_PALCN:
tv_std = TV_STD_PAL_CN;
DRM_DEBUG_KMS("Default TV standard: PAL-CN\n");
break;
case ATOM_TV_PAL60:
tv_std = TV_STD_PAL_60;
DRM_DEBUG_KMS("Default TV standard: PAL-60\n");
break;
case ATOM_TV_SECAM:
tv_std = TV_STD_SECAM;
DRM_DEBUG_KMS("Default TV standard: SECAM\n");
break;
default:
tv_std = TV_STD_NTSC;
DRM_DEBUG_KMS("Unknown TV standard; defaulting to NTSC\n");
break;
}
}
return tv_std;
}
struct radeon_encoder_tv_dac *
radeon_atombios_get_tv_dac_info(struct radeon_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, CompassionateData);
uint16_t data_offset;
struct _COMPASSIONATE_DATA *dac_info;
uint8_t frev, crev;
uint8_t bg, dac;
struct radeon_encoder_tv_dac *tv_dac = NULL;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
dac_info = (struct _COMPASSIONATE_DATA *)
(mode_info->atom_context->bios + data_offset);
tv_dac = kzalloc(sizeof(struct radeon_encoder_tv_dac), GFP_KERNEL);
if (!tv_dac)
return NULL;
bg = dac_info->ucDAC2_CRT2_BG_Adjustment;
dac = dac_info->ucDAC2_CRT2_DAC_Adjustment;
tv_dac->ps2_tvdac_adj = (bg << 16) | (dac << 20);
bg = dac_info->ucDAC2_PAL_BG_Adjustment;
dac = dac_info->ucDAC2_PAL_DAC_Adjustment;
tv_dac->pal_tvdac_adj = (bg << 16) | (dac << 20);
bg = dac_info->ucDAC2_NTSC_BG_Adjustment;
dac = dac_info->ucDAC2_NTSC_DAC_Adjustment;
tv_dac->ntsc_tvdac_adj = (bg << 16) | (dac << 20);
tv_dac->tv_std = radeon_atombios_get_tv_info(rdev);
}
return tv_dac;
}
static const char *thermal_controller_names[] = {
"NONE",
"lm63",
"adm1032",
"adm1030",
"max6649",
"lm64",
"f75375",
"asc7xxx",
};
static const char *pp_lib_thermal_controller_names[] = {
"NONE",
"lm63",
"adm1032",
"adm1030",
"max6649",
"lm64",
"f75375",
"RV6xx",
"RV770",
"adt7473",
"NONE",
"External GPIO",
"Evergreen",
"emc2103",
"Sumo",
"Northern Islands",
"Southern Islands",
"lm96163",
"Sea Islands",
};
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_SI_CLOCK_INFO si;
struct _ATOM_PPLIB_CI_CLOCK_INFO ci;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void radeon_atombios_parse_misc_flags_1_3(struct radeon_device *rdev,
int state_index,
u32 misc, u32 misc2)
{
rdev->pm.power_state[state_index].misc = misc;
rdev->pm.power_state[state_index].misc2 = misc2;
/* order matters! */
if (misc & ATOM_PM_MISCINFO_POWER_SAVING_MODE)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_POWERSAVE;
if (misc & ATOM_PM_MISCINFO_DEFAULT_DC_STATE_ENTRY_TRUE)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BATTERY;
if (misc & ATOM_PM_MISCINFO_DEFAULT_LOW_DC_STATE_ENTRY_TRUE)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BATTERY;
if (misc & ATOM_PM_MISCINFO_LOAD_BALANCE_EN)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BALANCED;
if (misc & ATOM_PM_MISCINFO_3D_ACCELERATION_EN) {
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_PERFORMANCE;
rdev->pm.power_state[state_index].flags &=
~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
}
if (misc2 & ATOM_PM_MISCINFO2_SYSTEM_AC_LITE_MODE)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BALANCED;
if (misc & ATOM_PM_MISCINFO_DRIVER_DEFAULT_MODE) {
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.default_power_state_index = state_index;
rdev->pm.power_state[state_index].default_clock_mode =
&rdev->pm.power_state[state_index].clock_info[0];
} else if (state_index == 0) {
rdev->pm.power_state[state_index].clock_info[0].flags |=
RADEON_PM_MODE_NO_DISPLAY;
}
}
static int radeon_atombios_parse_power_table_1_3(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
u32 misc, misc2 = 0;
int num_modes = 0, i;
int state_index = 0;
struct radeon_i2c_bus_rec i2c_bus;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return state_index;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
/* add the i2c bus for thermal/fan chip */
if ((power_info->info.ucOverdriveThermalController > 0) &&
(power_info->info.ucOverdriveThermalController < ARRAY_SIZE(thermal_controller_names))) {
DRM_INFO("Possible %s thermal controller at 0x%02x\n",
thermal_controller_names[power_info->info.ucOverdriveThermalController],
power_info->info.ucOverdriveControllerAddress >> 1);
i2c_bus = radeon_lookup_i2c_gpio(rdev, power_info->info.ucOverdriveI2cLine);
rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus);
if (rdev->pm.i2c_bus) {
struct i2c_board_info info = { };
const char *name = thermal_controller_names[power_info->info.
ucOverdriveThermalController];
info.addr = power_info->info.ucOverdriveControllerAddress >> 1;
strlcpy(info.type, name, sizeof(info.type));
i2c_new_device(&rdev->pm.i2c_bus->adapter, &info);
}
}
num_modes = power_info->info.ucNumOfPowerModeEntries;
if (num_modes > ATOM_MAX_NUMBEROF_POWER_BLOCK)
num_modes = ATOM_MAX_NUMBEROF_POWER_BLOCK;
if (num_modes == 0)
return state_index;
rdev->pm.power_state = kzalloc(sizeof(struct radeon_power_state) * num_modes, GFP_KERNEL);
if (!rdev->pm.power_state)
return state_index;
/* last mode is usually default, array is low to high */
for (i = 0; i < num_modes; i++) {
rdev->pm.power_state[state_index].clock_info =
kzalloc(sizeof(struct radeon_pm_clock_info) * 1, GFP_KERNEL);
if (!rdev->pm.power_state[state_index].clock_info)
return state_index;
rdev->pm.power_state[state_index].num_clock_modes = 1;
rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE;
switch (frev) {
case 1:
rdev->pm.power_state[state_index].clock_info[0].mclk =
le16_to_cpu(power_info->info.asPowerPlayInfo[i].usMemoryClock);
rdev->pm.power_state[state_index].clock_info[0].sclk =
le16_to_cpu(power_info->info.asPowerPlayInfo[i].usEngineClock);
/* skip invalid modes */
if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) ||
(rdev->pm.power_state[state_index].clock_info[0].sclk == 0))
continue;
rdev->pm.power_state[state_index].pcie_lanes =
power_info->info.asPowerPlayInfo[i].ucNumPciELanes;
misc = le32_to_cpu(power_info->info.asPowerPlayInfo[i].ulMiscInfo);
if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) ||
(misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_GPIO;
rdev->pm.power_state[state_index].clock_info[0].voltage.gpio =
radeon_lookup_gpio(rdev,
power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex);
if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
true;
else
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
false;
} else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_VDDC;
rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id =
power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex;
}
rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, 0);
state_index++;
break;
case 2:
rdev->pm.power_state[state_index].clock_info[0].mclk =
le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMemoryClock);
rdev->pm.power_state[state_index].clock_info[0].sclk =
le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulEngineClock);
/* skip invalid modes */
if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) ||
(rdev->pm.power_state[state_index].clock_info[0].sclk == 0))
continue;
rdev->pm.power_state[state_index].pcie_lanes =
power_info->info_2.asPowerPlayInfo[i].ucNumPciELanes;
misc = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo);
misc2 = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo2);
if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) ||
(misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_GPIO;
rdev->pm.power_state[state_index].clock_info[0].voltage.gpio =
radeon_lookup_gpio(rdev,
power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex);
if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
true;
else
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
false;
} else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_VDDC;
rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id =
power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex;
}
rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2);
state_index++;
break;
case 3:
rdev->pm.power_state[state_index].clock_info[0].mclk =
le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMemoryClock);
rdev->pm.power_state[state_index].clock_info[0].sclk =
le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulEngineClock);
/* skip invalid modes */
if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) ||
(rdev->pm.power_state[state_index].clock_info[0].sclk == 0))
continue;
rdev->pm.power_state[state_index].pcie_lanes =
power_info->info_3.asPowerPlayInfo[i].ucNumPciELanes;
misc = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo);
misc2 = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo2);
if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) ||
(misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_GPIO;
rdev->pm.power_state[state_index].clock_info[0].voltage.gpio =
radeon_lookup_gpio(rdev,
power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex);
if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
true;
else
rdev->pm.power_state[state_index].clock_info[0].voltage.active_high =
false;
} else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) {
rdev->pm.power_state[state_index].clock_info[0].voltage.type =
VOLTAGE_VDDC;
rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id =
power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex;
if (misc2 & ATOM_PM_MISCINFO2_VDDCI_DYNAMIC_VOLTAGE_EN) {
rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_enabled =
true;
rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_id =
power_info->info_3.asPowerPlayInfo[i].ucVDDCI_VoltageDropIndex;
}
}
rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2);
state_index++;
break;
}
}
/* last mode is usually default */
if (rdev->pm.default_power_state_index == -1) {
rdev->pm.power_state[state_index - 1].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.default_power_state_index = state_index - 1;
rdev->pm.power_state[state_index - 1].default_clock_mode =
&rdev->pm.power_state[state_index - 1].clock_info[0];
rdev->pm.power_state[state_index].flags &=
~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
rdev->pm.power_state[state_index].misc = 0;
rdev->pm.power_state[state_index].misc2 = 0;
}
return state_index;
}
static void radeon_atombios_add_pplib_thermal_controller(struct radeon_device *rdev,
ATOM_PPLIB_THERMALCONTROLLER *controller)
{
struct radeon_i2c_bus_rec i2c_bus;
/* add the i2c bus for thermal/fan chip */
if (controller->ucType > 0) {
if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_RV6XX;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_RV770;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_SUMO;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_NI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_SI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_CI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
rdev->pm.int_thermal_type = THERMAL_TYPE_KV;
} else if ((controller->ucType ==
ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) ||
(controller->ucType ==
ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) ||
(controller->ucType ==
ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL)) {
DRM_INFO("Special thermal controller config\n");
} else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) {
DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n",
pp_lib_thermal_controller_names[controller->ucType],
controller->ucI2cAddress >> 1,
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
i2c_bus = radeon_lookup_i2c_gpio(rdev, controller->ucI2cLine);
rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus);
if (rdev->pm.i2c_bus) {
struct i2c_board_info info = { };
const char *name = pp_lib_thermal_controller_names[controller->ucType];
info.addr = controller->ucI2cAddress >> 1;
strlcpy(info.type, name, sizeof(info.type));
i2c_new_device(&rdev->pm.i2c_bus->adapter, &info);
}
} else {
DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n",
controller->ucType,
controller->ucI2cAddress >> 1,
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
}
}
}
void radeon_atombios_get_default_voltages(struct radeon_device *rdev,
u16 *vddc, u16 *vddci, u16 *mvdd)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
u8 frev, crev;
u16 data_offset;
union firmware_info *firmware_info;
*vddc = 0;
*vddci = 0;
*mvdd = 0;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
*vddc = le16_to_cpu(firmware_info->info_14.usBootUpVDDCVoltage);
if ((frev == 2) && (crev >= 2)) {
*vddci = le16_to_cpu(firmware_info->info_22.usBootUpVDDCIVoltage);
*mvdd = le16_to_cpu(firmware_info->info_22.usBootUpMVDDCVoltage);
}
}
}
static void radeon_atombios_parse_pplib_non_clock_info(struct radeon_device *rdev,
int state_index, int mode_index,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info)
{
int j;
u32 misc = le32_to_cpu(non_clock_info->ulCapsAndSettings);
u32 misc2 = le16_to_cpu(non_clock_info->usClassification);
u16 vddc, vddci, mvdd;
radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd);
rdev->pm.power_state[state_index].misc = misc;
rdev->pm.power_state[state_index].misc2 = misc2;
rdev->pm.power_state[state_index].pcie_lanes =
((misc & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >>
ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1;
switch (misc2 & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BATTERY;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_BALANCED;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_PERFORMANCE;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
if (misc2 & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_PERFORMANCE;
break;
}
rdev->pm.power_state[state_index].flags = 0;
if (misc & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
rdev->pm.power_state[state_index].flags |=
RADEON_PM_STATE_SINGLE_DISPLAY_ONLY;
if (misc2 & ATOM_PPLIB_CLASSIFICATION_BOOT) {
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.default_power_state_index = state_index;
rdev->pm.power_state[state_index].default_clock_mode =
&rdev->pm.power_state[state_index].clock_info[mode_index - 1];
if ((rdev->family >= CHIP_BARTS) && !(rdev->flags & RADEON_IS_IGP)) {
/* NI chips post without MC ucode, so default clocks are strobe mode only */
rdev->pm.default_sclk = rdev->pm.power_state[state_index].clock_info[0].sclk;
rdev->pm.default_mclk = rdev->pm.power_state[state_index].clock_info[0].mclk;
rdev->pm.default_vddc = rdev->pm.power_state[state_index].clock_info[0].voltage.voltage;
rdev->pm.default_vddci = rdev->pm.power_state[state_index].clock_info[0].voltage.vddci;
} else {
u16 max_vddci = 0;
if (ASIC_IS_DCE4(rdev))
radeon_atom_get_max_voltage(rdev,
SET_VOLTAGE_TYPE_ASIC_VDDCI,
&max_vddci);
/* patch the table values with the default sclk/mclk from firmware info */
for (j = 0; j < mode_index; j++) {
rdev->pm.power_state[state_index].clock_info[j].mclk =
rdev->clock.default_mclk;
rdev->pm.power_state[state_index].clock_info[j].sclk =
rdev->clock.default_sclk;
if (vddc)
rdev->pm.power_state[state_index].clock_info[j].voltage.voltage =
vddc;
if (max_vddci)
rdev->pm.power_state[state_index].clock_info[j].voltage.vddci =
max_vddci;
}
}
}
}
static bool radeon_atombios_parse_pplib_clock_info(struct radeon_device *rdev,
int state_index, int mode_index,
union pplib_clock_info *clock_info)
{
u32 sclk, mclk;
u16 vddc;
if (rdev->flags & RADEON_IS_IGP) {
if (rdev->family >= CHIP_PALM) {
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
} else {
sclk = le16_to_cpu(clock_info->rs780.usLowEngineClockLow);
sclk |= clock_info->rs780.ucLowEngineClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
}
} else if (rdev->family >= CHIP_BONAIRE) {
sclk = le16_to_cpu(clock_info->ci.usEngineClockLow);
sclk |= clock_info->ci.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow);
mclk |= clock_info->ci.ucMemoryClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type =
VOLTAGE_NONE;
} else if (rdev->family >= CHIP_TAHITI) {
sclk = le16_to_cpu(clock_info->si.usEngineClockLow);
sclk |= clock_info->si.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->si.usMemoryClockLow);
mclk |= clock_info->si.ucMemoryClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type =
VOLTAGE_SW;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage =
le16_to_cpu(clock_info->si.usVDDC);
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.vddci =
le16_to_cpu(clock_info->si.usVDDCI);
} else if (rdev->family >= CHIP_CEDAR) {
sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow);
sclk |= clock_info->evergreen.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow);
mclk |= clock_info->evergreen.ucMemoryClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type =
VOLTAGE_SW;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage =
le16_to_cpu(clock_info->evergreen.usVDDC);
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.vddci =
le16_to_cpu(clock_info->evergreen.usVDDCI);
} else {
sclk = le16_to_cpu(clock_info->r600.usEngineClockLow);
sclk |= clock_info->r600.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow);
mclk |= clock_info->r600.ucMemoryClockHigh << 16;
rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk;
rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type =
VOLTAGE_SW;
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage =
le16_to_cpu(clock_info->r600.usVDDC);
}
/* patch up vddc if necessary */
switch (rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage) {
case ATOM_VIRTUAL_VOLTAGE_ID0:
case ATOM_VIRTUAL_VOLTAGE_ID1:
case ATOM_VIRTUAL_VOLTAGE_ID2:
case ATOM_VIRTUAL_VOLTAGE_ID3:
case ATOM_VIRTUAL_VOLTAGE_ID4:
case ATOM_VIRTUAL_VOLTAGE_ID5:
case ATOM_VIRTUAL_VOLTAGE_ID6:
case ATOM_VIRTUAL_VOLTAGE_ID7:
if (radeon_atom_get_max_vddc(rdev, VOLTAGE_TYPE_VDDC,
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage,
&vddc) == 0)
rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = vddc;
break;
default:
break;
}
if (rdev->flags & RADEON_IS_IGP) {
/* skip invalid modes */
if (rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0)
return false;
} else {
/* skip invalid modes */
if ((rdev->pm.power_state[state_index].clock_info[mode_index].mclk == 0) ||
(rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0))
return false;
}
return true;
}
static int radeon_atombios_parse_power_table_4_5(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j;
int state_index = 0, mode_index = 0;
union pplib_clock_info *clock_info;
bool valid;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return state_index;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController);
if (power_info->pplib.ucNumStates == 0)
return state_index;
rdev->pm.power_state = kzalloc(sizeof(struct radeon_power_state) *
power_info->pplib.ucNumStates, GFP_KERNEL);
if (!rdev->pm.power_state)
return state_index;
/* first mode is usually default, followed by low to high */
for (i = 0; i < power_info->pplib.ucNumStates; i++) {
mode_index = 0;
power_state = (union pplib_power_state *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset) +
i * power_info->pplib.ucStateEntrySize);
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) +
(power_state->v1.ucNonClockStateIndex *
power_info->pplib.ucNonClockSize));
rdev->pm.power_state[i].clock_info = kzalloc(sizeof(struct radeon_pm_clock_info) *
((power_info->pplib.ucStateEntrySize - 1) ?
(power_info->pplib.ucStateEntrySize - 1) : 1),
GFP_KERNEL);
if (!rdev->pm.power_state[i].clock_info)
return state_index;
if (power_info->pplib.ucStateEntrySize - 1) {
for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) {
clock_info = (union pplib_clock_info *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) +
(power_state->v1.ucClockStateIndices[j] *
power_info->pplib.ucClockInfoSize));
valid = radeon_atombios_parse_pplib_clock_info(rdev,
state_index, mode_index,
clock_info);
if (valid)
mode_index++;
}
} else {
rdev->pm.power_state[state_index].clock_info[0].mclk =
rdev->clock.default_mclk;
rdev->pm.power_state[state_index].clock_info[0].sclk =
rdev->clock.default_sclk;
mode_index++;
}
rdev->pm.power_state[state_index].num_clock_modes = mode_index;
if (mode_index) {
radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index,
non_clock_info);
state_index++;
}
}
/* if multiple clock modes, mark the lowest as no display */
for (i = 0; i < state_index; i++) {
if (rdev->pm.power_state[i].num_clock_modes > 1)
rdev->pm.power_state[i].clock_info[0].flags |=
RADEON_PM_MODE_NO_DISPLAY;
}
/* first mode is usually default */
if (rdev->pm.default_power_state_index == -1) {
rdev->pm.power_state[0].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.default_power_state_index = 0;
rdev->pm.power_state[0].default_clock_mode =
&rdev->pm.power_state[0].clock_info[0];
}
return state_index;
}
static int radeon_atombios_parse_power_table_6(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, non_clock_array_index, clock_array_index;
int state_index = 0, mode_index = 0;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
bool valid;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return state_index;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
if (state_array->ucNumEntries == 0)
return state_index;
rdev->pm.power_state = kzalloc(sizeof(struct radeon_power_state) *
state_array->ucNumEntries, GFP_KERNEL);
if (!rdev->pm.power_state)
return state_index;
power_state_offset = (u8 *)state_array->states;
for (i = 0; i < state_array->ucNumEntries; i++) {
mode_index = 0;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
rdev->pm.power_state[i].clock_info = kzalloc(sizeof(struct radeon_pm_clock_info) *
(power_state->v2.ucNumDPMLevels ?
power_state->v2.ucNumDPMLevels : 1),
GFP_KERNEL);
if (!rdev->pm.power_state[i].clock_info)
return state_index;
if (power_state->v2.ucNumDPMLevels) {
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = power_state->v2.clockInfoIndex[j];
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
valid = radeon_atombios_parse_pplib_clock_info(rdev,
state_index, mode_index,
clock_info);
if (valid)
mode_index++;
}
} else {
rdev->pm.power_state[state_index].clock_info[0].mclk =
rdev->clock.default_mclk;
rdev->pm.power_state[state_index].clock_info[0].sclk =
rdev->clock.default_sclk;
mode_index++;
}
rdev->pm.power_state[state_index].num_clock_modes = mode_index;
if (mode_index) {
radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index,
non_clock_info);
state_index++;
}
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
/* if multiple clock modes, mark the lowest as no display */
for (i = 0; i < state_index; i++) {
if (rdev->pm.power_state[i].num_clock_modes > 1)
rdev->pm.power_state[i].clock_info[0].flags |=
RADEON_PM_MODE_NO_DISPLAY;
}
/* first mode is usually default */
if (rdev->pm.default_power_state_index == -1) {
rdev->pm.power_state[0].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.default_power_state_index = 0;
rdev->pm.power_state[0].default_clock_mode =
&rdev->pm.power_state[0].clock_info[0];
}
return state_index;
}
void radeon_atombios_get_power_modes(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
int state_index = 0;
rdev->pm.default_power_state_index = -1;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
switch (frev) {
case 1:
case 2:
case 3:
state_index = radeon_atombios_parse_power_table_1_3(rdev);
break;
case 4:
case 5:
state_index = radeon_atombios_parse_power_table_4_5(rdev);
break;
case 6:
state_index = radeon_atombios_parse_power_table_6(rdev);
break;
default:
break;
}
}
if (state_index == 0) {
rdev->pm.power_state = kzalloc(sizeof(struct radeon_power_state), GFP_KERNEL);
if (rdev->pm.power_state) {
rdev->pm.power_state[0].clock_info =
kzalloc(sizeof(struct radeon_pm_clock_info) * 1, GFP_KERNEL);
if (rdev->pm.power_state[0].clock_info) {
/* add the default mode */
rdev->pm.power_state[state_index].type =
POWER_STATE_TYPE_DEFAULT;
rdev->pm.power_state[state_index].num_clock_modes = 1;
rdev->pm.power_state[state_index].clock_info[0].mclk = rdev->clock.default_mclk;
rdev->pm.power_state[state_index].clock_info[0].sclk = rdev->clock.default_sclk;
rdev->pm.power_state[state_index].default_clock_mode =
&rdev->pm.power_state[state_index].clock_info[0];
rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE;
rdev->pm.power_state[state_index].pcie_lanes = 16;
rdev->pm.default_power_state_index = state_index;
rdev->pm.power_state[state_index].flags = 0;
state_index++;
}
}
}
rdev->pm.num_power_states = state_index;
rdev->pm.current_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.current_clock_mode_index = 0;
if (rdev->pm.default_power_state_index >= 0)
rdev->pm.current_vddc =
rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage;
else
rdev->pm.current_vddc = 0;
}
union get_clock_dividers {
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS v1;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V2 v2;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V3 v3;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 v4;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V5 v5;
struct _COMPUTE_GPU_CLOCK_INPUT_PARAMETERS_V1_6 v6_in;
struct _COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 v6_out;
};
int radeon_atom_get_clock_dividers(struct radeon_device *rdev,
u8 clock_type,
u32 clock,
bool strobe_mode,
struct atom_clock_dividers *dividers)
{
union get_clock_dividers args;
int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL);
u8 frev, crev;
memset(&args, 0, sizeof(args));
memset(dividers, 0, sizeof(struct atom_clock_dividers));
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 1:
/* r4xx, r5xx */
args.v1.ucAction = clock_type;
args.v1.ulClock = cpu_to_le32(clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v1.ucPostDiv;
dividers->fb_div = args.v1.ucFbDiv;
dividers->enable_post_div = true;
break;
case 2:
case 3:
case 5:
/* r6xx, r7xx, evergreen, ni, si */
if (rdev->family <= CHIP_RV770) {
args.v2.ucAction = clock_type;
args.v2.ulClock = cpu_to_le32(clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v2.ucPostDiv;
dividers->fb_div = le16_to_cpu(args.v2.usFbDiv);
dividers->ref_div = args.v2.ucAction;
if (rdev->family == CHIP_RV770) {
dividers->enable_post_div = (le32_to_cpu(args.v2.ulClock) & (1 << 24)) ?
true : false;
dividers->vco_mode = (le32_to_cpu(args.v2.ulClock) & (1 << 25)) ? 1 : 0;
} else
dividers->enable_post_div = (dividers->fb_div & 1) ? true : false;
} else {
if (clock_type == COMPUTE_ENGINE_PLL_PARAM) {
args.v3.ulClockParams = cpu_to_le32((clock_type << 24) | clock);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v3.ucPostDiv;
dividers->enable_post_div = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false;
dividers->enable_dithen = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true;
dividers->whole_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v3.ucRefDiv;
dividers->vco_mode = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0;
} else {
/* for SI we use ComputeMemoryClockParam for memory plls */
if (rdev->family >= CHIP_TAHITI)
return -EINVAL;
args.v5.ulClockParams = cpu_to_le32((clock_type << 24) | clock);
if (strobe_mode)
args.v5.ucInputFlag = ATOM_PLL_INPUT_FLAG_PLL_STROBE_MODE_EN;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v5.ucPostDiv;
dividers->enable_post_div = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false;
dividers->enable_dithen = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true;
dividers->whole_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v5.ucRefDiv;
dividers->vco_mode = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0;
}
}
break;
case 4:
/* fusion */
args.v4.ulClock = cpu_to_le32(clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_divider = dividers->post_div = args.v4.ucPostDiv;
dividers->real_clock = le32_to_cpu(args.v4.ulClock);
break;
case 6:
/* CI */
/* COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, COMPUTE_GPUCLK_INPUT_FLAG_SCLK */
args.v6_in.ulClock.ulComputeClockFlag = clock_type;
args.v6_in.ulClock.ulClockFreq = cpu_to_le32(clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->whole_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v6_out.ucPllRefDiv;
dividers->post_div = args.v6_out.ucPllPostDiv;
dividers->flags = args.v6_out.ucPllCntlFlag;
dividers->real_clock = le32_to_cpu(args.v6_out.ulClock.ulClock);
dividers->post_divider = args.v6_out.ulClock.ucPostDiv;
break;
default:
return -EINVAL;
}
return 0;
}
int radeon_atom_get_memory_pll_dividers(struct radeon_device *rdev,
u32 clock,
bool strobe_mode,
struct atom_mpll_param *mpll_param)
{
COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 args;
int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam);
u8 frev, crev;
memset(&args, 0, sizeof(args));
memset(mpll_param, 0, sizeof(struct atom_mpll_param));
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (frev) {
case 2:
switch (crev) {
case 1:
/* SI */
args.ulClock = cpu_to_le32(clock); /* 10 khz */
args.ucInputFlag = 0;
if (strobe_mode)
args.ucInputFlag |= MPLL_INPUT_FLAG_STROBE_MODE_EN;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
mpll_param->clkfrac = le16_to_cpu(args.ulFbDiv.usFbDivFrac);
mpll_param->clkf = le16_to_cpu(args.ulFbDiv.usFbDiv);
mpll_param->post_div = args.ucPostDiv;
mpll_param->dll_speed = args.ucDllSpeed;
mpll_param->bwcntl = args.ucBWCntl;
mpll_param->vco_mode =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_VCO_MODE_MASK);
mpll_param->yclk_sel =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0;
mpll_param->qdr =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0;
mpll_param->half_rate =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
void radeon_atom_set_clock_gating(struct radeon_device *rdev, int enable)
{
DYNAMIC_CLOCK_GATING_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicClockGating);
args.ucEnable = enable;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
uint32_t radeon_atom_get_engine_clock(struct radeon_device *rdev)
{
GET_ENGINE_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, GetEngineClock);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
return le32_to_cpu(args.ulReturnEngineClock);
}
uint32_t radeon_atom_get_memory_clock(struct radeon_device *rdev)
{
GET_MEMORY_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, GetMemoryClock);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
return le32_to_cpu(args.ulReturnMemoryClock);
}
void radeon_atom_set_engine_clock(struct radeon_device *rdev,
uint32_t eng_clock)
{
SET_ENGINE_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetEngineClock);
args.ulTargetEngineClock = cpu_to_le32(eng_clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_set_memory_clock(struct radeon_device *rdev,
uint32_t mem_clock)
{
SET_MEMORY_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetMemoryClock);
if (rdev->flags & RADEON_IS_IGP)
return;
args.ulTargetMemoryClock = cpu_to_le32(mem_clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_set_engine_dram_timings(struct radeon_device *rdev,
u32 eng_clock, u32 mem_clock)
{
SET_ENGINE_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings);
u32 tmp;
memset(&args, 0, sizeof(args));
tmp = eng_clock & SET_CLOCK_FREQ_MASK;
tmp |= (COMPUTE_ENGINE_PLL_PARAM << 24);
args.ulTargetEngineClock = cpu_to_le32(tmp);
if (mem_clock)
args.sReserved.ulClock = cpu_to_le32(mem_clock & SET_CLOCK_FREQ_MASK);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_update_memory_dll(struct radeon_device *rdev,
u32 mem_clock)
{
u32 args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings);
args = cpu_to_le32(mem_clock); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_set_ac_timing(struct radeon_device *rdev,
u32 mem_clock)
{
SET_MEMORY_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings);
u32 tmp = mem_clock | (COMPUTE_MEMORY_PLL_PARAM << 24);
args.ulTargetMemoryClock = cpu_to_le32(tmp); /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
union set_voltage {
struct _SET_VOLTAGE_PS_ALLOCATION alloc;
struct _SET_VOLTAGE_PARAMETERS v1;
struct _SET_VOLTAGE_PARAMETERS_V2 v2;
struct _SET_VOLTAGE_PARAMETERS_V1_3 v3;
};
void radeon_atom_set_voltage(struct radeon_device *rdev, u16 voltage_level, u8 voltage_type)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev, volt_index = voltage_level;
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return;
/* 0xff01 is a flag rather then an actual voltage */
if (voltage_level == 0xff01)
return;
switch (crev) {
case 1:
args.v1.ucVoltageType = voltage_type;
args.v1.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_ALL_SOURCE;
args.v1.ucVoltageIndex = volt_index;
break;
case 2:
args.v2.ucVoltageType = voltage_type;
args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_SET_VOLTAGE;
args.v2.usVoltageLevel = cpu_to_le16(voltage_level);
break;
case 3:
args.v3.ucVoltageType = voltage_type;
args.v3.ucVoltageMode = ATOM_SET_VOLTAGE;
args.v3.usVoltageLevel = cpu_to_le16(voltage_level);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
int radeon_atom_get_max_vddc(struct radeon_device *rdev, u8 voltage_type,
u16 voltage_id, u16 *voltage)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev;
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 1:
return -EINVAL;
case 2:
args.v2.ucVoltageType = SET_VOLTAGE_GET_MAX_VOLTAGE;
args.v2.ucVoltageMode = 0;
args.v2.usVoltageLevel = 0;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*voltage = le16_to_cpu(args.v2.usVoltageLevel);
break;
case 3:
args.v3.ucVoltageType = voltage_type;
args.v3.ucVoltageMode = ATOM_GET_VOLTAGE_LEVEL;
args.v3.usVoltageLevel = cpu_to_le16(voltage_id);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*voltage = le16_to_cpu(args.v3.usVoltageLevel);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
int radeon_atom_get_leakage_vddc_based_on_leakage_idx(struct radeon_device *rdev,
u16 *voltage,
u16 leakage_idx)
{
return radeon_atom_get_max_vddc(rdev, VOLTAGE_TYPE_VDDC, leakage_idx, voltage);
}
int radeon_atom_get_leakage_id_from_vbios(struct radeon_device *rdev,
u16 *leakage_id)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev;
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 3:
case 4:
args.v3.ucVoltageType = 0;
args.v3.ucVoltageMode = ATOM_GET_LEAKAGE_ID;
args.v3.usVoltageLevel = 0;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*leakage_id = le16_to_cpu(args.v3.usVoltageLevel);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
int radeon_atom_get_leakage_vddc_based_on_leakage_params(struct radeon_device *rdev,
u16 *vddc, u16 *vddci,
u16 virtual_voltage_id,
u16 vbios_voltage_id)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
u8 frev, crev;
u16 data_offset, size;
int i, j;
ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
*vddc = 0;
*vddci = 0;
if (!atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset))
return -EINVAL;
profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
return -EINVAL;
case 2:
switch (crev) {
case 1:
if (size < sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))
return -EINVAL;
leakage_bin = (u16 *)
(rdev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usLeakageBinArrayOffset));
vddc_id_buf = (u16 *)
(rdev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDC_IdArrayOffset));
vddc_buf = (u16 *)
(rdev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDC_LevelArrayOffset));
vddci_id_buf = (u16 *)
(rdev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDCI_IdArrayOffset));
vddci_buf = (u16 *)
(rdev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDCI_LevelArrayOffset));
if (profile->ucElbVDDC_Num > 0) {
for (i = 0; i < profile->ucElbVDDC_Num; i++) {
if (vddc_id_buf[i] == virtual_voltage_id) {
for (j = 0; j < profile->ucLeakageBinNum; j++) {
if (vbios_voltage_id <= leakage_bin[j]) {
*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
break;
}
}
break;
}
}
}
if (profile->ucElbVDDCI_Num > 0) {
for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
if (vddci_id_buf[i] == virtual_voltage_id) {
for (j = 0; j < profile->ucLeakageBinNum; j++) {
if (vbios_voltage_id <= leakage_bin[j]) {
*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
break;
}
}
break;
}
}
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
int radeon_atom_get_voltage_gpio_settings(struct radeon_device *rdev,
u16 voltage_level, u8 voltage_type,
u32 *gpio_value, u32 *gpio_mask)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev;
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 1:
return -EINVAL;
case 2:
args.v2.ucVoltageType = voltage_type;
args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_GET_GPIOMASK;
args.v2.usVoltageLevel = cpu_to_le16(voltage_level);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*gpio_mask = le32_to_cpu(*(u32 *)&args.v2);
args.v2.ucVoltageType = voltage_type;
args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_GET_GPIOVAL;
args.v2.usVoltageLevel = cpu_to_le16(voltage_level);
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*gpio_value = le32_to_cpu(*(u32 *)&args.v2);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
union voltage_object_info {
struct _ATOM_VOLTAGE_OBJECT_INFO v1;
struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
};
union voltage_object {
struct _ATOM_VOLTAGE_OBJECT v1;
struct _ATOM_VOLTAGE_OBJECT_V2 v2;
union _ATOM_VOLTAGE_OBJECT_V3 v3;
};
static ATOM_VOLTAGE_OBJECT *atom_lookup_voltage_object_v1(ATOM_VOLTAGE_OBJECT_INFO *v1,
u8 voltage_type)
{
u32 size = le16_to_cpu(v1->sHeader.usStructureSize);
u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO, asVoltageObj[0]);
u8 *start = (u8 *)v1;
while (offset < size) {
ATOM_VOLTAGE_OBJECT *vo = (ATOM_VOLTAGE_OBJECT *)(start + offset);
if (vo->ucVoltageType == voltage_type)
return vo;
offset += offsetof(ATOM_VOLTAGE_OBJECT, asFormula.ucVIDAdjustEntries) +
vo->asFormula.ucNumOfVoltageEntries;
}
return NULL;
}
static ATOM_VOLTAGE_OBJECT_V2 *atom_lookup_voltage_object_v2(ATOM_VOLTAGE_OBJECT_INFO_V2 *v2,
u8 voltage_type)
{
u32 size = le16_to_cpu(v2->sHeader.usStructureSize);
u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V2, asVoltageObj[0]);
u8 *start = (u8*)v2;
while (offset < size) {
ATOM_VOLTAGE_OBJECT_V2 *vo = (ATOM_VOLTAGE_OBJECT_V2 *)(start + offset);
if (vo->ucVoltageType == voltage_type)
return vo;
offset += offsetof(ATOM_VOLTAGE_OBJECT_V2, asFormula.asVIDAdjustEntries) +
(vo->asFormula.ucNumOfVoltageEntries * sizeof(VOLTAGE_LUT_ENTRY));
}
return NULL;
}
static ATOM_VOLTAGE_OBJECT_V3 *atom_lookup_voltage_object_v3(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *v3,
u8 voltage_type, u8 voltage_mode)
{
u32 size = le16_to_cpu(v3->sHeader.usStructureSize);
u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
u8 *start = (u8*)v3;
while (offset < size) {
ATOM_VOLTAGE_OBJECT_V3 *vo = (ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
if ((vo->asGpioVoltageObj.sHeader.ucVoltageType == voltage_type) &&
(vo->asGpioVoltageObj.sHeader.ucVoltageMode == voltage_mode))
return vo;
offset += le16_to_cpu(vo->asGpioVoltageObj.sHeader.usSize);
}
return NULL;
}
bool
radeon_atom_is_voltage_gpio(struct radeon_device *rdev,
u8 voltage_type, u8 voltage_mode)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
case 2:
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type);
if (voltage_object &&
(voltage_object->v1.asControl.ucVoltageControlId == VOLTAGE_CONTROLLED_BY_GPIO))
return true;
break;
case 2:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type);
if (voltage_object &&
(voltage_object->v2.asControl.ucVoltageControlId == VOLTAGE_CONTROLLED_BY_GPIO))
return true;
break;
default:
DRM_ERROR("unknown voltage object table\n");
return false;
}
break;
case 3:
switch (crev) {
case 1:
if (atom_lookup_voltage_object_v3(&voltage_info->v3,
voltage_type, voltage_mode))
return true;
break;
default:
DRM_ERROR("unknown voltage object table\n");
return false;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return false;
}
}
return false;
}
int radeon_atom_get_max_voltage(struct radeon_device *rdev,
u8 voltage_type, u16 *max_voltage)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA *formula =
&voltage_object->v1.asFormula;
if (formula->ucFlag & 1)
*max_voltage =
le16_to_cpu(formula->usVoltageBaseLevel) +
formula->ucNumOfVoltageEntries / 2 *
le16_to_cpu(formula->usVoltageStep);
else
*max_voltage =
le16_to_cpu(formula->usVoltageBaseLevel) +
(formula->ucNumOfVoltageEntries - 1) *
le16_to_cpu(formula->usVoltageStep);
return 0;
}
break;
case 2:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA_V2 *formula =
&voltage_object->v2.asFormula;
if (formula->ucNumOfVoltageEntries) {
VOLTAGE_LUT_ENTRY *lut = (VOLTAGE_LUT_ENTRY *)
((u8 *)&formula->asVIDAdjustEntries[0] +
(sizeof(VOLTAGE_LUT_ENTRY) * (formula->ucNumOfVoltageEntries - 1)));
*max_voltage =
le16_to_cpu(lut->usVoltageValue);
return 0;
}
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return -EINVAL;
}
int radeon_atom_get_min_voltage(struct radeon_device *rdev,
u8 voltage_type, u16 *min_voltage)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA *formula =
&voltage_object->v1.asFormula;
*min_voltage =
le16_to_cpu(formula->usVoltageBaseLevel);
return 0;
}
break;
case 2:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA_V2 *formula =
&voltage_object->v2.asFormula;
if (formula->ucNumOfVoltageEntries) {
*min_voltage =
le16_to_cpu(formula->asVIDAdjustEntries[
0
].usVoltageValue);
return 0;
}
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return -EINVAL;
}
int radeon_atom_get_voltage_step(struct radeon_device *rdev,
u8 voltage_type, u16 *voltage_step)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA *formula =
&voltage_object->v1.asFormula;
if (formula->ucFlag & 1)
*voltage_step =
(le16_to_cpu(formula->usVoltageStep) + 1) / 2;
else
*voltage_step =
le16_to_cpu(formula->usVoltageStep);
return 0;
}
break;
case 2:
return -EINVAL;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return -EINVAL;
}
int radeon_atom_round_to_true_voltage(struct radeon_device *rdev,
u8 voltage_type,
u16 nominal_voltage,
u16 *true_voltage)
{
u16 min_voltage, max_voltage, voltage_step;
if (radeon_atom_get_max_voltage(rdev, voltage_type, &max_voltage))
return -EINVAL;
if (radeon_atom_get_min_voltage(rdev, voltage_type, &min_voltage))
return -EINVAL;
if (radeon_atom_get_voltage_step(rdev, voltage_type, &voltage_step))
return -EINVAL;
if (nominal_voltage <= min_voltage)
*true_voltage = min_voltage;
else if (nominal_voltage >= max_voltage)
*true_voltage = max_voltage;
else
*true_voltage = min_voltage +
((nominal_voltage - min_voltage) / voltage_step) *
voltage_step;
return 0;
}
int radeon_atom_get_voltage_table(struct radeon_device *rdev,
u8 voltage_type, u8 voltage_mode,
struct atom_voltage_table *voltage_table)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
int i, ret;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
case 2:
switch (crev) {
case 1:
DRM_ERROR("old table version %d, %d\n", frev, crev);
return -EINVAL;
case 2:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type);
if (voltage_object) {
ATOM_VOLTAGE_FORMULA_V2 *formula =
&voltage_object->v2.asFormula;
VOLTAGE_LUT_ENTRY *lut;
if (formula->ucNumOfVoltageEntries > MAX_VOLTAGE_ENTRIES)
return -EINVAL;
lut = &formula->asVIDAdjustEntries[0];
for (i = 0; i < formula->ucNumOfVoltageEntries; i++) {
voltage_table->entries[i].value =
le16_to_cpu(lut->usVoltageValue);
ret = radeon_atom_get_voltage_gpio_settings(rdev,
voltage_table->entries[i].value,
voltage_type,
&voltage_table->entries[i].smio_low,
&voltage_table->mask_low);
if (ret)
return ret;
lut = (VOLTAGE_LUT_ENTRY *)
((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY));
}
voltage_table->count = formula->ucNumOfVoltageEntries;
return 0;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
break;
case 3:
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
atom_lookup_voltage_object_v3(&voltage_info->v3,
voltage_type, voltage_mode);
if (voltage_object) {
ATOM_GPIO_VOLTAGE_OBJECT_V3 *gpio =
&voltage_object->v3.asGpioVoltageObj;
VOLTAGE_LUT_ENTRY_V2 *lut;
if (gpio->ucGpioEntryNum > MAX_VOLTAGE_ENTRIES)
return -EINVAL;
lut = &gpio->asVolGpioLut[0];
for (i = 0; i < gpio->ucGpioEntryNum; i++) {
voltage_table->entries[i].value =
le16_to_cpu(lut->usVoltageValue);
voltage_table->entries[i].smio_low =
le32_to_cpu(lut->ulVoltageId);
lut = (VOLTAGE_LUT_ENTRY_V2 *)
((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY_V2));
}
voltage_table->mask_low = le32_to_cpu(gpio->ulGpioMaskVal);
voltage_table->count = gpio->ucGpioEntryNum;
voltage_table->phase_delay = gpio->ucPhaseDelay;
return 0;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return -EINVAL;
}
union vram_info {
struct _ATOM_VRAM_INFO_V3 v1_3;
struct _ATOM_VRAM_INFO_V4 v1_4;
struct _ATOM_VRAM_INFO_HEADER_V2_1 v2_1;
};
int radeon_atom_get_memory_info(struct radeon_device *rdev,
u8 module_index, struct atom_memory_info *mem_info)
{
int index = GetIndexIntoMasterTable(DATA, VRAM_Info);
u8 frev, crev, i;
u16 data_offset, size;
union vram_info *vram_info;
memset(mem_info, 0, sizeof(struct atom_memory_info));
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
vram_info = (union vram_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
switch (crev) {
case 3:
/* r6xx */
if (module_index < vram_info->v1_3.ucNumOfVRAMModule) {
ATOM_VRAM_MODULE_V3 *vram_module =
(ATOM_VRAM_MODULE_V3 *)vram_info->v1_3.aVramInfo;
for (i = 0; i < module_index; i++) {
if (le16_to_cpu(vram_module->usSize) == 0)
return -EINVAL;
vram_module = (ATOM_VRAM_MODULE_V3 *)
((u8 *)vram_module + le16_to_cpu(vram_module->usSize));
}
mem_info->mem_vendor = vram_module->asMemory.ucMemoryVenderID & 0xf;
mem_info->mem_type = vram_module->asMemory.ucMemoryType & 0xf0;
} else
return -EINVAL;
break;
case 4:
/* r7xx, evergreen */
if (module_index < vram_info->v1_4.ucNumOfVRAMModule) {
ATOM_VRAM_MODULE_V4 *vram_module =
(ATOM_VRAM_MODULE_V4 *)vram_info->v1_4.aVramInfo;
for (i = 0; i < module_index; i++) {
if (le16_to_cpu(vram_module->usModuleSize) == 0)
return -EINVAL;
vram_module = (ATOM_VRAM_MODULE_V4 *)
((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize));
}
mem_info->mem_vendor = vram_module->ucMemoryVenderID & 0xf;
mem_info->mem_type = vram_module->ucMemoryType & 0xf0;
} else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
case 2:
switch (crev) {
case 1:
/* ni */
if (module_index < vram_info->v2_1.ucNumOfVRAMModule) {
ATOM_VRAM_MODULE_V7 *vram_module =
(ATOM_VRAM_MODULE_V7 *)vram_info->v2_1.aVramInfo;
for (i = 0; i < module_index; i++) {
if (le16_to_cpu(vram_module->usModuleSize) == 0)
return -EINVAL;
vram_module = (ATOM_VRAM_MODULE_V7 *)
((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize));
}
mem_info->mem_vendor = vram_module->ucMemoryVenderID & 0xf;
mem_info->mem_type = vram_module->ucMemoryType & 0xf0;
} else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
return -EINVAL;
}
int radeon_atom_get_mclk_range_table(struct radeon_device *rdev,
bool gddr5, u8 module_index,
struct atom_memory_clock_range_table *mclk_range_table)
{
int index = GetIndexIntoMasterTable(DATA, VRAM_Info);
u8 frev, crev, i;
u16 data_offset, size;
union vram_info *vram_info;
u32 mem_timing_size = gddr5 ?
sizeof(ATOM_MEMORY_TIMING_FORMAT_V2) : sizeof(ATOM_MEMORY_TIMING_FORMAT);
memset(mclk_range_table, 0, sizeof(struct atom_memory_clock_range_table));
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
vram_info = (union vram_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
switch (crev) {
case 3:
DRM_ERROR("old table version %d, %d\n", frev, crev);
return -EINVAL;
case 4:
/* r7xx, evergreen */
if (module_index < vram_info->v1_4.ucNumOfVRAMModule) {
ATOM_VRAM_MODULE_V4 *vram_module =
(ATOM_VRAM_MODULE_V4 *)vram_info->v1_4.aVramInfo;
ATOM_MEMORY_TIMING_FORMAT *format;
for (i = 0; i < module_index; i++) {
if (le16_to_cpu(vram_module->usModuleSize) == 0)
return -EINVAL;
vram_module = (ATOM_VRAM_MODULE_V4 *)
((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize));
}
mclk_range_table->num_entries = (u8)
((le16_to_cpu(vram_module->usModuleSize) - offsetof(ATOM_VRAM_MODULE_V4, asMemTiming)) /
mem_timing_size);
format = &vram_module->asMemTiming[0];
for (i = 0; i < mclk_range_table->num_entries; i++) {
mclk_range_table->mclk[i] = le32_to_cpu(format->ulClkRange);
format = (ATOM_MEMORY_TIMING_FORMAT *)
((u8 *)format + mem_timing_size);
}
} else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
case 2:
DRM_ERROR("new table version %d, %d\n", frev, crev);
return -EINVAL;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
return -EINVAL;
}
#define MEM_ID_MASK 0xff000000
#define MEM_ID_SHIFT 24
#define CLOCK_RANGE_MASK 0x00ffffff
#define CLOCK_RANGE_SHIFT 0
#define LOW_NIBBLE_MASK 0xf
#define DATA_EQU_PREV 0
#define DATA_FROM_TABLE 4
int radeon_atom_init_mc_reg_table(struct radeon_device *rdev,
u8 module_index,
struct atom_mc_reg_table *reg_table)
{
int index = GetIndexIntoMasterTable(DATA, VRAM_Info);
u8 frev, crev, num_entries, t_mem_id, num_ranges = 0;
u32 i = 0, j;
u16 data_offset, size;
union vram_info *vram_info;
memset(reg_table, 0, sizeof(struct atom_mc_reg_table));
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
vram_info = (union vram_info *)
(rdev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
DRM_ERROR("old table version %d, %d\n", frev, crev);
return -EINVAL;
case 2:
switch (crev) {
case 1:
if (module_index < vram_info->v2_1.ucNumOfVRAMModule) {
ATOM_INIT_REG_BLOCK *reg_block =
(ATOM_INIT_REG_BLOCK *)
((u8 *)vram_info + le16_to_cpu(vram_info->v2_1.usMemClkPatchTblOffset));
ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data =
(ATOM_MEMORY_SETTING_DATA_BLOCK *)
((u8 *)reg_block + (2 * sizeof(u16)) +
le16_to_cpu(reg_block->usRegIndexTblSize));
ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
num_entries = (u8)((le16_to_cpu(reg_block->usRegIndexTblSize)) /
sizeof(ATOM_INIT_REG_INDEX_FORMAT)) - 1;
if (num_entries > VBIOS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
while (i < num_entries) {
if (format->ucPreRegDataLength & ACCESS_PLACEHOLDER)
break;
reg_table->mc_reg_address[i].s1 =
(u16)(le16_to_cpu(format->usRegIndex));
reg_table->mc_reg_address[i].pre_reg_data =
(u8)(format->ucPreRegDataLength);
i++;
format = (ATOM_INIT_REG_INDEX_FORMAT *)
((u8 *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
}
reg_table->last = i;
while ((le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) &&
(num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES)) {
t_mem_id = (u8)((le32_to_cpu(*(u32 *)reg_data) & MEM_ID_MASK)
>> MEM_ID_SHIFT);
if (module_index == t_mem_id) {
reg_table->mc_reg_table_entry[num_ranges].mclk_max =
(u32)((le32_to_cpu(*(u32 *)reg_data) & CLOCK_RANGE_MASK)
>> CLOCK_RANGE_SHIFT);
for (i = 0, j = 1; i < reg_table->last; i++) {
if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
reg_table->mc_reg_table_entry[num_ranges].mc_data[i] =
(u32)le32_to_cpu(*((u32 *)reg_data + j));
j++;
} else if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
reg_table->mc_reg_table_entry[num_ranges].mc_data[i] =
reg_table->mc_reg_table_entry[num_ranges].mc_data[i - 1];
}
}
num_ranges++;
}
reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
((u8 *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize));
}
if (le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK)
return -EINVAL;
reg_table->num_entries = num_ranges;
} else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
return -EINVAL;
}
void radeon_atom_initialize_bios_scratch_regs(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
uint32_t bios_2_scratch, bios_6_scratch;
if (rdev->family >= CHIP_R600) {
bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH);
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
} else {
bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH);
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
}
/* let the bios control the backlight */
bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE;
/* tell the bios not to handle mode switching */
bios_6_scratch |= ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH;
/* clear the vbios dpms state */
if (ASIC_IS_DCE4(rdev))
bios_2_scratch &= ~ATOM_S2_DEVICE_DPMS_STATE;
if (rdev->family >= CHIP_R600) {
WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch);
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
} else {
WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch);
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
}
void radeon_save_bios_scratch_regs(struct radeon_device *rdev)
{
uint32_t scratch_reg;
int i;
if (rdev->family >= CHIP_R600)
scratch_reg = R600_BIOS_0_SCRATCH;
else
scratch_reg = RADEON_BIOS_0_SCRATCH;
for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++)
rdev->bios_scratch[i] = RREG32(scratch_reg + (i * 4));
}
void radeon_restore_bios_scratch_regs(struct radeon_device *rdev)
{
uint32_t scratch_reg;
int i;
if (rdev->family >= CHIP_R600)
scratch_reg = R600_BIOS_0_SCRATCH;
else
scratch_reg = RADEON_BIOS_0_SCRATCH;
for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++)
WREG32(scratch_reg + (i * 4), rdev->bios_scratch[i]);
}
void radeon_atom_output_lock(struct drm_encoder *encoder, bool lock)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t bios_6_scratch;
if (rdev->family >= CHIP_R600)
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
else
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
if (lock) {
bios_6_scratch |= ATOM_S6_CRITICAL_STATE;
bios_6_scratch &= ~ATOM_S6_ACC_MODE;
} else {
bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE;
bios_6_scratch |= ATOM_S6_ACC_MODE;
}
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
else
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
/* at some point we may want to break this out into individual functions */
void
radeon_atombios_connected_scratch_regs(struct drm_connector *connector,
struct drm_encoder *encoder,
bool connected)
{
struct drm_device *dev = connector->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_connector *radeon_connector =
to_radeon_connector(connector);
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_0_scratch, bios_3_scratch, bios_6_scratch;
if (rdev->family >= CHIP_R600) {
bios_0_scratch = RREG32(R600_BIOS_0_SCRATCH);
bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH);
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
} else {
bios_0_scratch = RREG32(RADEON_BIOS_0_SCRATCH);
bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH);
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
}
if ((radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_TV1_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("TV1 connected\n");
bios_3_scratch |= ATOM_S3_TV1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_TV1;
} else {
DRM_DEBUG_KMS("TV1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_TV1_MASK;
bios_3_scratch &= ~ATOM_S3_TV1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_TV1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CV_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("CV connected\n");
bios_3_scratch |= ATOM_S3_CV_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CV;
} else {
DRM_DEBUG_KMS("CV disconnected\n");
bios_0_scratch &= ~ATOM_S0_CV_MASK;
bios_3_scratch &= ~ATOM_S3_CV_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CV;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_LCD1_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("LCD1 connected\n");
bios_0_scratch |= ATOM_S0_LCD1;
bios_3_scratch |= ATOM_S3_LCD1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_LCD1;
} else {
DRM_DEBUG_KMS("LCD1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_LCD1;
bios_3_scratch &= ~ATOM_S3_LCD1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_LCD1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CRT1_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("CRT1 connected\n");
bios_0_scratch |= ATOM_S0_CRT1_COLOR;
bios_3_scratch |= ATOM_S3_CRT1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CRT1;
} else {
DRM_DEBUG_KMS("CRT1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_CRT1_MASK;
bios_3_scratch &= ~ATOM_S3_CRT1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CRT2_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("CRT2 connected\n");
bios_0_scratch |= ATOM_S0_CRT2_COLOR;
bios_3_scratch |= ATOM_S3_CRT2_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CRT2;
} else {
DRM_DEBUG_KMS("CRT2 disconnected\n");
bios_0_scratch &= ~ATOM_S0_CRT2_MASK;
bios_3_scratch &= ~ATOM_S3_CRT2_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT2;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP1_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP1 connected\n");
bios_0_scratch |= ATOM_S0_DFP1;
bios_3_scratch |= ATOM_S3_DFP1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP1;
} else {
DRM_DEBUG_KMS("DFP1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP1;
bios_3_scratch &= ~ATOM_S3_DFP1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP2_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP2 connected\n");
bios_0_scratch |= ATOM_S0_DFP2;
bios_3_scratch |= ATOM_S3_DFP2_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP2;
} else {
DRM_DEBUG_KMS("DFP2 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP2;
bios_3_scratch &= ~ATOM_S3_DFP2_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP2;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP3_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP3 connected\n");
bios_0_scratch |= ATOM_S0_DFP3;
bios_3_scratch |= ATOM_S3_DFP3_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP3;
} else {
DRM_DEBUG_KMS("DFP3 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP3;
bios_3_scratch &= ~ATOM_S3_DFP3_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP3;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP4_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP4 connected\n");
bios_0_scratch |= ATOM_S0_DFP4;
bios_3_scratch |= ATOM_S3_DFP4_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP4;
} else {
DRM_DEBUG_KMS("DFP4 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP4;
bios_3_scratch &= ~ATOM_S3_DFP4_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP4;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP5_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP5 connected\n");
bios_0_scratch |= ATOM_S0_DFP5;
bios_3_scratch |= ATOM_S3_DFP5_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP5;
} else {
DRM_DEBUG_KMS("DFP5 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP5;
bios_3_scratch &= ~ATOM_S3_DFP5_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP5;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP6_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP6_SUPPORT)) {
if (connected) {
DRM_DEBUG_KMS("DFP6 connected\n");
bios_0_scratch |= ATOM_S0_DFP6;
bios_3_scratch |= ATOM_S3_DFP6_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP6;
} else {
DRM_DEBUG_KMS("DFP6 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP6;
bios_3_scratch &= ~ATOM_S3_DFP6_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP6;
}
}
if (rdev->family >= CHIP_R600) {
WREG32(R600_BIOS_0_SCRATCH, bios_0_scratch);
WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch);
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
} else {
WREG32(RADEON_BIOS_0_SCRATCH, bios_0_scratch);
WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch);
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
}
void
radeon_atombios_encoder_crtc_scratch_regs(struct drm_encoder *encoder, int crtc)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_3_scratch;
if (ASIC_IS_DCE4(rdev))
return;
if (rdev->family >= CHIP_R600)
bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH);
else
bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH);
if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_TV1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 18);
}
if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CV_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 24);
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CRT1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 16);
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CRT2_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 20);
}
if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_LCD1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 17);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 19);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP2_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 23);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP3_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 25);
}
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch);
else
WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch);
}
void
radeon_atombios_encoder_dpms_scratch_regs(struct drm_encoder *encoder, bool on)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_2_scratch;
if (ASIC_IS_DCE4(rdev))
return;
if (rdev->family >= CHIP_R600)
bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH);
else
bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH);
if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_TV1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_TV1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CV_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CV_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CRT1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CRT1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CRT2_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CRT2_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_LCD1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_LCD1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP2_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP2_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP3_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP3_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP4_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP4_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP5_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP5_DPMS_STATE;
}
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch);
else
WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch);
}