| /* zd_mac.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/wireless.h> |
| #include <linux/usb.h> |
| #include <linux/jiffies.h> |
| #include <net/ieee80211_radiotap.h> |
| |
| #include "zd_def.h" |
| #include "zd_chip.h" |
| #include "zd_mac.h" |
| #include "zd_ieee80211.h" |
| #include "zd_netdev.h" |
| #include "zd_rf.h" |
| #include "zd_util.h" |
| |
| static void ieee_init(struct ieee80211_device *ieee); |
| static void softmac_init(struct ieee80211softmac_device *sm); |
| |
| static void housekeeping_init(struct zd_mac *mac); |
| static void housekeeping_enable(struct zd_mac *mac); |
| static void housekeeping_disable(struct zd_mac *mac); |
| |
| int zd_mac_init(struct zd_mac *mac, |
| struct net_device *netdev, |
| struct usb_interface *intf) |
| { |
| struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev); |
| |
| memset(mac, 0, sizeof(*mac)); |
| spin_lock_init(&mac->lock); |
| mac->netdev = netdev; |
| |
| ieee_init(ieee); |
| softmac_init(ieee80211_priv(netdev)); |
| zd_chip_init(&mac->chip, netdev, intf); |
| housekeeping_init(mac); |
| return 0; |
| } |
| |
| static int reset_channel(struct zd_mac *mac) |
| { |
| int r; |
| unsigned long flags; |
| const struct channel_range *range; |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| range = zd_channel_range(mac->regdomain); |
| if (!range->start) { |
| r = -EINVAL; |
| goto out; |
| } |
| mac->requested_channel = range->start; |
| r = 0; |
| out: |
| spin_unlock_irqrestore(&mac->lock, flags); |
| return r; |
| } |
| |
| int zd_mac_init_hw(struct zd_mac *mac, u8 device_type) |
| { |
| int r; |
| struct zd_chip *chip = &mac->chip; |
| u8 addr[ETH_ALEN]; |
| u8 default_regdomain; |
| |
| r = zd_chip_enable_int(chip); |
| if (r) |
| goto out; |
| r = zd_chip_init_hw(chip, device_type); |
| if (r) |
| goto disable_int; |
| |
| zd_get_e2p_mac_addr(chip, addr); |
| r = zd_write_mac_addr(chip, addr); |
| if (r) |
| goto disable_int; |
| ZD_ASSERT(!irqs_disabled()); |
| spin_lock_irq(&mac->lock); |
| memcpy(mac->netdev->dev_addr, addr, ETH_ALEN); |
| spin_unlock_irq(&mac->lock); |
| |
| r = zd_read_regdomain(chip, &default_regdomain); |
| if (r) |
| goto disable_int; |
| if (!zd_regdomain_supported(default_regdomain)) { |
| dev_dbg_f(zd_mac_dev(mac), |
| "Regulatory Domain %#04x is not supported.\n", |
| default_regdomain); |
| r = -EINVAL; |
| goto disable_int; |
| } |
| spin_lock_irq(&mac->lock); |
| mac->regdomain = mac->default_regdomain = default_regdomain; |
| spin_unlock_irq(&mac->lock); |
| r = reset_channel(mac); |
| if (r) |
| goto disable_int; |
| |
| /* We must inform the device that we are doing encryption/decryption in |
| * software at the moment. */ |
| r = zd_set_encryption_type(chip, ENC_SNIFFER); |
| if (r) |
| goto disable_int; |
| |
| r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain); |
| if (r) |
| goto disable_int; |
| |
| r = 0; |
| disable_int: |
| zd_chip_disable_int(chip); |
| out: |
| return r; |
| } |
| |
| void zd_mac_clear(struct zd_mac *mac) |
| { |
| zd_chip_clear(&mac->chip); |
| ZD_ASSERT(!spin_is_locked(&mac->lock)); |
| ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); |
| } |
| |
| static int reset_mode(struct zd_mac *mac) |
| { |
| struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac); |
| struct zd_ioreq32 ioreqs[3] = { |
| { CR_RX_FILTER, STA_RX_FILTER }, |
| { CR_SNIFFER_ON, 0U }, |
| }; |
| |
| if (ieee->iw_mode == IW_MODE_MONITOR) { |
| ioreqs[0].value = 0xffffffff; |
| ioreqs[1].value = 0x1; |
| ioreqs[2].value = ENC_SNIFFER; |
| } |
| |
| return zd_iowrite32a(&mac->chip, ioreqs, 3); |
| } |
| |
| int zd_mac_open(struct net_device *netdev) |
| { |
| struct zd_mac *mac = zd_netdev_mac(netdev); |
| struct zd_chip *chip = &mac->chip; |
| int r; |
| |
| r = zd_chip_enable_int(chip); |
| if (r < 0) |
| goto out; |
| |
| r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); |
| if (r < 0) |
| goto disable_int; |
| r = reset_mode(mac); |
| if (r) |
| goto disable_int; |
| r = zd_chip_switch_radio_on(chip); |
| if (r < 0) |
| goto disable_int; |
| r = zd_chip_set_channel(chip, mac->requested_channel); |
| if (r < 0) |
| goto disable_radio; |
| r = zd_chip_enable_rx(chip); |
| if (r < 0) |
| goto disable_radio; |
| r = zd_chip_enable_hwint(chip); |
| if (r < 0) |
| goto disable_rx; |
| |
| housekeeping_enable(mac); |
| ieee80211softmac_start(netdev); |
| return 0; |
| disable_rx: |
| zd_chip_disable_rx(chip); |
| disable_radio: |
| zd_chip_switch_radio_off(chip); |
| disable_int: |
| zd_chip_disable_int(chip); |
| out: |
| return r; |
| } |
| |
| int zd_mac_stop(struct net_device *netdev) |
| { |
| struct zd_mac *mac = zd_netdev_mac(netdev); |
| struct zd_chip *chip = &mac->chip; |
| |
| netif_stop_queue(netdev); |
| |
| /* |
| * The order here deliberately is a little different from the open() |
| * method, since we need to make sure there is no opportunity for RX |
| * frames to be processed by softmac after we have stopped it. |
| */ |
| |
| zd_chip_disable_rx(chip); |
| housekeeping_disable(mac); |
| ieee80211softmac_stop(netdev); |
| |
| zd_chip_disable_hwint(chip); |
| zd_chip_switch_radio_off(chip); |
| zd_chip_disable_int(chip); |
| |
| return 0; |
| } |
| |
| int zd_mac_set_mac_address(struct net_device *netdev, void *p) |
| { |
| int r; |
| unsigned long flags; |
| struct sockaddr *addr = p; |
| struct zd_mac *mac = zd_netdev_mac(netdev); |
| struct zd_chip *chip = &mac->chip; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| dev_dbg_f(zd_mac_dev(mac), |
| "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data)); |
| |
| r = zd_write_mac_addr(chip, addr->sa_data); |
| if (r) |
| return r; |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN); |
| spin_unlock_irqrestore(&mac->lock, flags); |
| |
| return 0; |
| } |
| |
| int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain) |
| { |
| int r; |
| u8 channel; |
| |
| ZD_ASSERT(!irqs_disabled()); |
| spin_lock_irq(&mac->lock); |
| if (regdomain == 0) { |
| regdomain = mac->default_regdomain; |
| } |
| if (!zd_regdomain_supported(regdomain)) { |
| spin_unlock_irq(&mac->lock); |
| return -EINVAL; |
| } |
| mac->regdomain = regdomain; |
| channel = mac->requested_channel; |
| spin_unlock_irq(&mac->lock); |
| |
| r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain); |
| if (r) |
| return r; |
| if (!zd_regdomain_supports_channel(regdomain, channel)) { |
| r = reset_channel(mac); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| u8 zd_mac_get_regdomain(struct zd_mac *mac) |
| { |
| unsigned long flags; |
| u8 regdomain; |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| regdomain = mac->regdomain; |
| spin_unlock_irqrestore(&mac->lock, flags); |
| return regdomain; |
| } |
| |
| static void set_channel(struct net_device *netdev, u8 channel) |
| { |
| struct zd_mac *mac = zd_netdev_mac(netdev); |
| |
| dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel); |
| |
| zd_chip_set_channel(&mac->chip, channel); |
| } |
| |
| /* TODO: Should not work in Managed mode. */ |
| int zd_mac_request_channel(struct zd_mac *mac, u8 channel) |
| { |
| unsigned long lock_flags; |
| struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac); |
| |
| if (ieee->iw_mode == IW_MODE_INFRA) |
| return -EPERM; |
| |
| spin_lock_irqsave(&mac->lock, lock_flags); |
| if (!zd_regdomain_supports_channel(mac->regdomain, channel)) { |
| spin_unlock_irqrestore(&mac->lock, lock_flags); |
| return -EINVAL; |
| } |
| mac->requested_channel = channel; |
| spin_unlock_irqrestore(&mac->lock, lock_flags); |
| if (netif_running(mac->netdev)) |
| return zd_chip_set_channel(&mac->chip, channel); |
| else |
| return 0; |
| } |
| |
| u8 zd_mac_get_channel(struct zd_mac *mac) |
| { |
| u8 channel = zd_chip_get_channel(&mac->chip); |
| |
| dev_dbg_f(zd_mac_dev(mac), "channel %u\n", channel); |
| return channel; |
| } |
| |
| /* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */ |
| static u8 cs_typed_rate(u8 cs_rate) |
| { |
| static const u8 typed_rates[16] = { |
| [ZD_CS_CCK_RATE_1M] = ZD_CS_CCK|ZD_CS_CCK_RATE_1M, |
| [ZD_CS_CCK_RATE_2M] = ZD_CS_CCK|ZD_CS_CCK_RATE_2M, |
| [ZD_CS_CCK_RATE_5_5M] = ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M, |
| [ZD_CS_CCK_RATE_11M] = ZD_CS_CCK|ZD_CS_CCK_RATE_11M, |
| [ZD_OFDM_RATE_6M] = ZD_CS_OFDM|ZD_OFDM_RATE_6M, |
| [ZD_OFDM_RATE_9M] = ZD_CS_OFDM|ZD_OFDM_RATE_9M, |
| [ZD_OFDM_RATE_12M] = ZD_CS_OFDM|ZD_OFDM_RATE_12M, |
| [ZD_OFDM_RATE_18M] = ZD_CS_OFDM|ZD_OFDM_RATE_18M, |
| [ZD_OFDM_RATE_24M] = ZD_CS_OFDM|ZD_OFDM_RATE_24M, |
| [ZD_OFDM_RATE_36M] = ZD_CS_OFDM|ZD_OFDM_RATE_36M, |
| [ZD_OFDM_RATE_48M] = ZD_CS_OFDM|ZD_OFDM_RATE_48M, |
| [ZD_OFDM_RATE_54M] = ZD_CS_OFDM|ZD_OFDM_RATE_54M, |
| }; |
| |
| ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f); |
| return typed_rates[cs_rate & ZD_CS_RATE_MASK]; |
| } |
| |
| /* Fallback to lowest rate, if rate is unknown. */ |
| static u8 rate_to_cs_rate(u8 rate) |
| { |
| switch (rate) { |
| case IEEE80211_CCK_RATE_2MB: |
| return ZD_CS_CCK_RATE_2M; |
| case IEEE80211_CCK_RATE_5MB: |
| return ZD_CS_CCK_RATE_5_5M; |
| case IEEE80211_CCK_RATE_11MB: |
| return ZD_CS_CCK_RATE_11M; |
| case IEEE80211_OFDM_RATE_6MB: |
| return ZD_OFDM_RATE_6M; |
| case IEEE80211_OFDM_RATE_9MB: |
| return ZD_OFDM_RATE_9M; |
| case IEEE80211_OFDM_RATE_12MB: |
| return ZD_OFDM_RATE_12M; |
| case IEEE80211_OFDM_RATE_18MB: |
| return ZD_OFDM_RATE_18M; |
| case IEEE80211_OFDM_RATE_24MB: |
| return ZD_OFDM_RATE_24M; |
| case IEEE80211_OFDM_RATE_36MB: |
| return ZD_OFDM_RATE_36M; |
| case IEEE80211_OFDM_RATE_48MB: |
| return ZD_OFDM_RATE_48M; |
| case IEEE80211_OFDM_RATE_54MB: |
| return ZD_OFDM_RATE_54M; |
| } |
| return ZD_CS_CCK_RATE_1M; |
| } |
| |
| int zd_mac_set_mode(struct zd_mac *mac, u32 mode) |
| { |
| struct ieee80211_device *ieee; |
| |
| switch (mode) { |
| case IW_MODE_AUTO: |
| case IW_MODE_ADHOC: |
| case IW_MODE_INFRA: |
| mac->netdev->type = ARPHRD_ETHER; |
| break; |
| case IW_MODE_MONITOR: |
| mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP; |
| break; |
| default: |
| dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode); |
| return -EINVAL; |
| } |
| |
| ieee = zd_mac_to_ieee80211(mac); |
| ZD_ASSERT(!irqs_disabled()); |
| spin_lock_irq(&ieee->lock); |
| ieee->iw_mode = mode; |
| spin_unlock_irq(&ieee->lock); |
| |
| if (netif_running(mac->netdev)) |
| return reset_mode(mac); |
| |
| return 0; |
| } |
| |
| int zd_mac_get_mode(struct zd_mac *mac, u32 *mode) |
| { |
| unsigned long flags; |
| struct ieee80211_device *ieee; |
| |
| ieee = zd_mac_to_ieee80211(mac); |
| spin_lock_irqsave(&ieee->lock, flags); |
| *mode = ieee->iw_mode; |
| spin_unlock_irqrestore(&ieee->lock, flags); |
| return 0; |
| } |
| |
| int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range) |
| { |
| int i; |
| const struct channel_range *channel_range; |
| u8 regdomain; |
| |
| memset(range, 0, sizeof(*range)); |
| |
| /* FIXME: Not so important and depends on the mode. For 802.11g |
| * usually this value is used. It seems to be that Bit/s number is |
| * given here. |
| */ |
| range->throughput = 27 * 1000 * 1000; |
| |
| range->max_qual.qual = 100; |
| range->max_qual.level = 100; |
| |
| /* FIXME: Needs still to be tuned. */ |
| range->avg_qual.qual = 71; |
| range->avg_qual.level = 80; |
| |
| /* FIXME: depends on standard? */ |
| range->min_rts = 256; |
| range->max_rts = 2346; |
| |
| range->min_frag = MIN_FRAG_THRESHOLD; |
| range->max_frag = MAX_FRAG_THRESHOLD; |
| |
| range->max_encoding_tokens = WEP_KEYS; |
| range->num_encoding_sizes = 2; |
| range->encoding_size[0] = 5; |
| range->encoding_size[1] = WEP_KEY_LEN; |
| |
| range->we_version_compiled = WIRELESS_EXT; |
| range->we_version_source = 20; |
| |
| ZD_ASSERT(!irqs_disabled()); |
| spin_lock_irq(&mac->lock); |
| regdomain = mac->regdomain; |
| spin_unlock_irq(&mac->lock); |
| channel_range = zd_channel_range(regdomain); |
| |
| range->num_channels = channel_range->end - channel_range->start; |
| range->old_num_channels = range->num_channels; |
| range->num_frequency = range->num_channels; |
| range->old_num_frequency = range->num_frequency; |
| |
| for (i = 0; i < range->num_frequency; i++) { |
| struct iw_freq *freq = &range->freq[i]; |
| freq->i = channel_range->start + i; |
| zd_channel_to_freq(freq, freq->i); |
| } |
| |
| return 0; |
| } |
| |
| static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length) |
| { |
| static const u8 rate_divisor[] = { |
| [ZD_CS_CCK_RATE_1M] = 1, |
| [ZD_CS_CCK_RATE_2M] = 2, |
| [ZD_CS_CCK_RATE_5_5M] = 11, /* bits must be doubled */ |
| [ZD_CS_CCK_RATE_11M] = 11, |
| [ZD_OFDM_RATE_6M] = 6, |
| [ZD_OFDM_RATE_9M] = 9, |
| [ZD_OFDM_RATE_12M] = 12, |
| [ZD_OFDM_RATE_18M] = 18, |
| [ZD_OFDM_RATE_24M] = 24, |
| [ZD_OFDM_RATE_36M] = 36, |
| [ZD_OFDM_RATE_48M] = 48, |
| [ZD_OFDM_RATE_54M] = 54, |
| }; |
| |
| u32 bits = (u32)tx_length * 8; |
| u32 divisor; |
| |
| divisor = rate_divisor[cs_rate]; |
| if (divisor == 0) |
| return -EINVAL; |
| |
| switch (cs_rate) { |
| case ZD_CS_CCK_RATE_5_5M: |
| bits = (2*bits) + 10; /* round up to the next integer */ |
| break; |
| case ZD_CS_CCK_RATE_11M: |
| if (service) { |
| u32 t = bits % 11; |
| *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; |
| if (0 < t && t <= 3) { |
| *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; |
| } |
| } |
| bits += 10; /* round up to the next integer */ |
| break; |
| } |
| |
| return bits/divisor; |
| } |
| |
| enum { |
| R2M_SHORT_PREAMBLE = 0x01, |
| R2M_11A = 0x02, |
| }; |
| |
| static u8 cs_rate_to_modulation(u8 cs_rate, int flags) |
| { |
| u8 modulation; |
| |
| modulation = cs_typed_rate(cs_rate); |
| if (flags & R2M_SHORT_PREAMBLE) { |
| switch (ZD_CS_RATE(modulation)) { |
| case ZD_CS_CCK_RATE_2M: |
| case ZD_CS_CCK_RATE_5_5M: |
| case ZD_CS_CCK_RATE_11M: |
| modulation |= ZD_CS_CCK_PREA_SHORT; |
| return modulation; |
| } |
| } |
| if (flags & R2M_11A) { |
| if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM) |
| modulation |= ZD_CS_OFDM_MODE_11A; |
| } |
| return modulation; |
| } |
| |
| static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs, |
| struct ieee80211_hdr_4addr *hdr) |
| { |
| struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev); |
| u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl)); |
| u8 rate, cs_rate; |
| int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0; |
| |
| /* FIXME: 802.11a? short preamble? */ |
| rate = ieee80211softmac_suggest_txrate(softmac, |
| is_multicast_ether_addr(hdr->addr1), is_mgt); |
| |
| cs_rate = rate_to_cs_rate(rate); |
| cs->modulation = cs_rate_to_modulation(cs_rate, 0); |
| } |
| |
| static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, |
| struct ieee80211_hdr_4addr *header) |
| { |
| unsigned int tx_length = le16_to_cpu(cs->tx_length); |
| u16 fctl = le16_to_cpu(header->frame_ctl); |
| u16 ftype = WLAN_FC_GET_TYPE(fctl); |
| u16 stype = WLAN_FC_GET_STYPE(fctl); |
| |
| /* |
| * CONTROL: |
| * - start at 0x00 |
| * - if fragment 0, enable bit 0 |
| * - if backoff needed, enable bit 0 |
| * - if burst (backoff not needed) disable bit 0 |
| * - if multicast, enable bit 1 |
| * - if PS-POLL frame, enable bit 2 |
| * - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable |
| * bit 4 (FIXME: wtf) |
| * - if frag_len > RTS threshold, set bit 5 as long if it isnt |
| * multicast or mgt |
| * - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit |
| * 7 |
| */ |
| |
| cs->control = 0; |
| |
| /* First fragment */ |
| if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0) |
| cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; |
| |
| /* Multicast */ |
| if (is_multicast_ether_addr(header->addr1)) |
| cs->control |= ZD_CS_MULTICAST; |
| |
| /* PS-POLL */ |
| if (stype == IEEE80211_STYPE_PSPOLL) |
| cs->control |= ZD_CS_PS_POLL_FRAME; |
| |
| if (!is_multicast_ether_addr(header->addr1) && |
| ftype != IEEE80211_FTYPE_MGMT && |
| tx_length > zd_netdev_ieee80211(mac->netdev)->rts) |
| { |
| /* FIXME: check the logic */ |
| if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) { |
| /* 802.11g */ |
| cs->control |= ZD_CS_SELF_CTS; |
| } else { /* 802.11b */ |
| cs->control |= ZD_CS_RTS; |
| } |
| } |
| |
| /* FIXME: Management frame? */ |
| } |
| |
| static int fill_ctrlset(struct zd_mac *mac, |
| struct ieee80211_txb *txb, |
| int frag_num) |
| { |
| int r; |
| struct sk_buff *skb = txb->fragments[frag_num]; |
| struct ieee80211_hdr_4addr *hdr = |
| (struct ieee80211_hdr_4addr *) skb->data; |
| unsigned int frag_len = skb->len + IEEE80211_FCS_LEN; |
| unsigned int next_frag_len; |
| unsigned int packet_length; |
| struct zd_ctrlset *cs = (struct zd_ctrlset *) |
| skb_push(skb, sizeof(struct zd_ctrlset)); |
| |
| if (frag_num+1 < txb->nr_frags) { |
| next_frag_len = txb->fragments[frag_num+1]->len + |
| IEEE80211_FCS_LEN; |
| } else { |
| next_frag_len = 0; |
| } |
| ZD_ASSERT(frag_len <= 0xffff); |
| ZD_ASSERT(next_frag_len <= 0xffff); |
| |
| cs_set_modulation(mac, cs, hdr); |
| |
| cs->tx_length = cpu_to_le16(frag_len); |
| |
| cs_set_control(mac, cs, hdr); |
| |
| packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; |
| ZD_ASSERT(packet_length <= 0xffff); |
| /* ZD1211B: Computing the length difference this way, gives us |
| * flexibility to compute the packet length. |
| */ |
| cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ? |
| packet_length - frag_len : packet_length); |
| |
| /* |
| * CURRENT LENGTH: |
| * - transmit frame length in microseconds |
| * - seems to be derived from frame length |
| * - see Cal_Us_Service() in zdinlinef.h |
| * - if macp->bTxBurstEnable is enabled, then multiply by 4 |
| * - bTxBurstEnable is never set in the vendor driver |
| * |
| * SERVICE: |
| * - "for PLCP configuration" |
| * - always 0 except in some situations at 802.11b 11M |
| * - see line 53 of zdinlinef.h |
| */ |
| cs->service = 0; |
| r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation), |
| le16_to_cpu(cs->tx_length)); |
| if (r < 0) |
| return r; |
| cs->current_length = cpu_to_le16(r); |
| |
| if (next_frag_len == 0) { |
| cs->next_frame_length = 0; |
| } else { |
| r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation), |
| next_frag_len); |
| if (r < 0) |
| return r; |
| cs->next_frame_length = cpu_to_le16(r); |
| } |
| |
| return 0; |
| } |
| |
| static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri) |
| { |
| int i, r; |
| |
| for (i = 0; i < txb->nr_frags; i++) { |
| struct sk_buff *skb = txb->fragments[i]; |
| |
| r = fill_ctrlset(mac, txb, i); |
| if (r) |
| return r; |
| r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len); |
| if (r) |
| return r; |
| } |
| |
| /* FIXME: shouldn't this be handled by the upper layers? */ |
| mac->netdev->trans_start = jiffies; |
| |
| ieee80211_txb_free(txb); |
| return 0; |
| } |
| |
| struct zd_rt_hdr { |
| struct ieee80211_radiotap_header rt_hdr; |
| u8 rt_flags; |
| u8 rt_rate; |
| u16 rt_channel; |
| u16 rt_chbitmask; |
| } __attribute__((packed)); |
| |
| static void fill_rt_header(void *buffer, struct zd_mac *mac, |
| const struct ieee80211_rx_stats *stats, |
| const struct rx_status *status) |
| { |
| struct zd_rt_hdr *hdr = buffer; |
| |
| hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; |
| hdr->rt_hdr.it_pad = 0; |
| hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr)); |
| hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | |
| (1 << IEEE80211_RADIOTAP_CHANNEL) | |
| (1 << IEEE80211_RADIOTAP_RATE)); |
| |
| hdr->rt_flags = 0; |
| if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256)) |
| hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP; |
| |
| hdr->rt_rate = stats->rate / 5; |
| |
| /* FIXME: 802.11a */ |
| hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz( |
| _zd_chip_get_channel(&mac->chip))); |
| hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ | |
| ((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) == |
| ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK)); |
| } |
| |
| /* Returns 1 if the data packet is for us and 0 otherwise. */ |
| static int is_data_packet_for_us(struct ieee80211_device *ieee, |
| struct ieee80211_hdr_4addr *hdr) |
| { |
| struct net_device *netdev = ieee->dev; |
| u16 fc = le16_to_cpu(hdr->frame_ctl); |
| |
| ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA); |
| |
| switch (ieee->iw_mode) { |
| case IW_MODE_ADHOC: |
| if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 || |
| memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0) |
| return 0; |
| break; |
| case IW_MODE_AUTO: |
| case IW_MODE_INFRA: |
| if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != |
| IEEE80211_FCTL_FROMDS || |
| memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0) |
| return 0; |
| break; |
| default: |
| ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR); |
| return 0; |
| } |
| |
| return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 || |
| is_multicast_ether_addr(hdr->addr1) || |
| (netdev->flags & IFF_PROMISC); |
| } |
| |
| /* Filters receiving packets. If it returns 1 send it to ieee80211_rx, if 0 |
| * return. If an error is detected -EINVAL is returned. ieee80211_rx_mgt() is |
| * called here. |
| * |
| * It has been based on ieee80211_rx_any. |
| */ |
| static int filter_rx(struct ieee80211_device *ieee, |
| const u8 *buffer, unsigned int length, |
| struct ieee80211_rx_stats *stats) |
| { |
| struct ieee80211_hdr_4addr *hdr; |
| u16 fc; |
| |
| if (ieee->iw_mode == IW_MODE_MONITOR) |
| return 1; |
| |
| hdr = (struct ieee80211_hdr_4addr *)buffer; |
| fc = le16_to_cpu(hdr->frame_ctl); |
| if ((fc & IEEE80211_FCTL_VERS) != 0) |
| return -EINVAL; |
| |
| switch (WLAN_FC_GET_TYPE(fc)) { |
| case IEEE80211_FTYPE_MGMT: |
| if (length < sizeof(struct ieee80211_hdr_3addr)) |
| return -EINVAL; |
| ieee80211_rx_mgt(ieee, hdr, stats); |
| return 0; |
| case IEEE80211_FTYPE_CTL: |
| /* Ignore invalid short buffers */ |
| return 0; |
| case IEEE80211_FTYPE_DATA: |
| if (length < sizeof(struct ieee80211_hdr_3addr)) |
| return -EINVAL; |
| return is_data_packet_for_us(ieee, hdr); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void update_qual_rssi(struct zd_mac *mac, |
| const u8 *buffer, unsigned int length, |
| u8 qual_percent, u8 rssi_percent) |
| { |
| unsigned long flags; |
| struct ieee80211_hdr_3addr *hdr; |
| int i; |
| |
| hdr = (struct ieee80211_hdr_3addr *)buffer; |
| if (length < offsetof(struct ieee80211_hdr_3addr, addr3)) |
| return; |
| if (memcmp(hdr->addr2, zd_mac_to_ieee80211(mac)->bssid, ETH_ALEN) != 0) |
| return; |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| i = mac->stats_count % ZD_MAC_STATS_BUFFER_SIZE; |
| mac->qual_buffer[i] = qual_percent; |
| mac->rssi_buffer[i] = rssi_percent; |
| mac->stats_count++; |
| spin_unlock_irqrestore(&mac->lock, flags); |
| } |
| |
| static int fill_rx_stats(struct ieee80211_rx_stats *stats, |
| const struct rx_status **pstatus, |
| struct zd_mac *mac, |
| const u8 *buffer, unsigned int length) |
| { |
| const struct rx_status *status; |
| |
| *pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status)); |
| if (status->frame_status & ZD_RX_ERROR) { |
| /* FIXME: update? */ |
| return -EINVAL; |
| } |
| memset(stats, 0, sizeof(struct ieee80211_rx_stats)); |
| stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN + |
| + sizeof(struct rx_status)); |
| /* FIXME: 802.11a */ |
| stats->freq = IEEE80211_24GHZ_BAND; |
| stats->received_channel = _zd_chip_get_channel(&mac->chip); |
| stats->rssi = zd_rx_strength_percent(status->signal_strength); |
| stats->signal = zd_rx_qual_percent(buffer, |
| length - sizeof(struct rx_status), |
| status); |
| stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL; |
| stats->rate = zd_rx_rate(buffer, status); |
| if (stats->rate) |
| stats->mask |= IEEE80211_STATMASK_RATE; |
| |
| return 0; |
| } |
| |
| int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length) |
| { |
| int r; |
| struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac); |
| struct ieee80211_rx_stats stats; |
| const struct rx_status *status; |
| struct sk_buff *skb; |
| |
| if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN + |
| IEEE80211_FCS_LEN + sizeof(struct rx_status)) |
| return -EINVAL; |
| |
| r = fill_rx_stats(&stats, &status, mac, buffer, length); |
| if (r) |
| return r; |
| |
| length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+ |
| sizeof(struct rx_status); |
| buffer += ZD_PLCP_HEADER_SIZE; |
| |
| update_qual_rssi(mac, buffer, length, stats.signal, stats.rssi); |
| |
| r = filter_rx(ieee, buffer, length, &stats); |
| if (r <= 0) |
| return r; |
| |
| skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length); |
| if (!skb) |
| return -ENOMEM; |
| if (ieee->iw_mode == IW_MODE_MONITOR) |
| fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac, |
| &stats, status); |
| memcpy(skb_put(skb, length), buffer, length); |
| |
| r = ieee80211_rx(ieee, skb, &stats); |
| if (!r) { |
| ZD_ASSERT(in_irq()); |
| dev_kfree_skb_irq(skb); |
| } |
| return 0; |
| } |
| |
| static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev, |
| int pri) |
| { |
| return zd_mac_tx(zd_netdev_mac(netdev), txb, pri); |
| } |
| |
| static void set_security(struct net_device *netdev, |
| struct ieee80211_security *sec) |
| { |
| struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev); |
| struct ieee80211_security *secinfo = &ieee->sec; |
| int keyidx; |
| |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n"); |
| |
| for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) |
| if (sec->flags & (1<<keyidx)) { |
| secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx]; |
| secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx]; |
| memcpy(secinfo->keys[keyidx], sec->keys[keyidx], |
| SCM_KEY_LEN); |
| } |
| |
| if (sec->flags & SEC_ACTIVE_KEY) { |
| secinfo->active_key = sec->active_key; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .active_key = %d\n", sec->active_key); |
| } |
| if (sec->flags & SEC_UNICAST_GROUP) { |
| secinfo->unicast_uses_group = sec->unicast_uses_group; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .unicast_uses_group = %d\n", |
| sec->unicast_uses_group); |
| } |
| if (sec->flags & SEC_LEVEL) { |
| secinfo->level = sec->level; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .level = %d\n", sec->level); |
| } |
| if (sec->flags & SEC_ENABLED) { |
| secinfo->enabled = sec->enabled; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .enabled = %d\n", sec->enabled); |
| } |
| if (sec->flags & SEC_ENCRYPT) { |
| secinfo->encrypt = sec->encrypt; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .encrypt = %d\n", sec->encrypt); |
| } |
| if (sec->flags & SEC_AUTH_MODE) { |
| secinfo->auth_mode = sec->auth_mode; |
| dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), |
| " .auth_mode = %d\n", sec->auth_mode); |
| } |
| } |
| |
| static void ieee_init(struct ieee80211_device *ieee) |
| { |
| ieee->mode = IEEE_B | IEEE_G; |
| ieee->freq_band = IEEE80211_24GHZ_BAND; |
| ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION; |
| ieee->tx_headroom = sizeof(struct zd_ctrlset); |
| ieee->set_security = set_security; |
| ieee->hard_start_xmit = netdev_tx; |
| |
| /* Software encryption/decryption for now */ |
| ieee->host_build_iv = 0; |
| ieee->host_encrypt = 1; |
| ieee->host_decrypt = 1; |
| |
| /* FIXME: default to managed mode, until ieee80211 and zd1211rw can |
| * correctly support AUTO */ |
| ieee->iw_mode = IW_MODE_INFRA; |
| } |
| |
| static void softmac_init(struct ieee80211softmac_device *sm) |
| { |
| sm->set_channel = set_channel; |
| } |
| |
| struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev) |
| { |
| struct zd_mac *mac = zd_netdev_mac(ndev); |
| struct iw_statistics *iw_stats = &mac->iw_stats; |
| unsigned int i, count, qual_total, rssi_total; |
| |
| memset(iw_stats, 0, sizeof(struct iw_statistics)); |
| /* We are not setting the status, because ieee->state is not updated |
| * at all and this driver doesn't track authentication state. |
| */ |
| spin_lock_irq(&mac->lock); |
| count = mac->stats_count < ZD_MAC_STATS_BUFFER_SIZE ? |
| mac->stats_count : ZD_MAC_STATS_BUFFER_SIZE; |
| qual_total = rssi_total = 0; |
| for (i = 0; i < count; i++) { |
| qual_total += mac->qual_buffer[i]; |
| rssi_total += mac->rssi_buffer[i]; |
| } |
| spin_unlock_irq(&mac->lock); |
| iw_stats->qual.updated = IW_QUAL_NOISE_INVALID; |
| if (count > 0) { |
| iw_stats->qual.qual = qual_total / count; |
| iw_stats->qual.level = rssi_total / count; |
| iw_stats->qual.updated |= |
| IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED; |
| } else { |
| iw_stats->qual.updated |= |
| IW_QUAL_QUAL_INVALID|IW_QUAL_LEVEL_INVALID; |
| } |
| /* TODO: update counter */ |
| return iw_stats; |
| } |
| |
| #ifdef DEBUG |
| static const char* decryption_types[] = { |
| [ZD_RX_NO_WEP] = "none", |
| [ZD_RX_WEP64] = "WEP64", |
| [ZD_RX_TKIP] = "TKIP", |
| [ZD_RX_AES] = "AES", |
| [ZD_RX_WEP128] = "WEP128", |
| [ZD_RX_WEP256] = "WEP256", |
| }; |
| |
| static const char *decryption_type_string(u8 type) |
| { |
| const char *s; |
| |
| if (type < ARRAY_SIZE(decryption_types)) { |
| s = decryption_types[type]; |
| } else { |
| s = NULL; |
| } |
| return s ? s : "unknown"; |
| } |
| |
| static int is_ofdm(u8 frame_status) |
| { |
| return (frame_status & ZD_RX_OFDM); |
| } |
| |
| void zd_dump_rx_status(const struct rx_status *status) |
| { |
| const char* modulation; |
| u8 quality; |
| |
| if (is_ofdm(status->frame_status)) { |
| modulation = "ofdm"; |
| quality = status->signal_quality_ofdm; |
| } else { |
| modulation = "cck"; |
| quality = status->signal_quality_cck; |
| } |
| pr_debug("rx status %s strength %#04x qual %#04x decryption %s\n", |
| modulation, status->signal_strength, quality, |
| decryption_type_string(status->decryption_type)); |
| if (status->frame_status & ZD_RX_ERROR) { |
| pr_debug("rx error %s%s%s%s%s%s\n", |
| (status->frame_status & ZD_RX_TIMEOUT_ERROR) ? |
| "timeout " : "", |
| (status->frame_status & ZD_RX_FIFO_OVERRUN_ERROR) ? |
| "fifo " : "", |
| (status->frame_status & ZD_RX_DECRYPTION_ERROR) ? |
| "decryption " : "", |
| (status->frame_status & ZD_RX_CRC32_ERROR) ? |
| "crc32 " : "", |
| (status->frame_status & ZD_RX_NO_ADDR1_MATCH_ERROR) ? |
| "addr1 " : "", |
| (status->frame_status & ZD_RX_CRC16_ERROR) ? |
| "crc16" : ""); |
| } |
| } |
| #endif /* DEBUG */ |
| |
| #define LINK_LED_WORK_DELAY HZ |
| |
| static void link_led_handler(void *p) |
| { |
| struct zd_mac *mac = p; |
| struct zd_chip *chip = &mac->chip; |
| struct ieee80211softmac_device *sm = ieee80211_priv(mac->netdev); |
| int is_associated; |
| int r; |
| |
| spin_lock_irq(&mac->lock); |
| is_associated = sm->associnfo.associated != 0; |
| spin_unlock_irq(&mac->lock); |
| |
| r = zd_chip_control_leds(chip, |
| is_associated ? LED_ASSOCIATED : LED_SCANNING); |
| if (r) |
| dev_err(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); |
| |
| queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, |
| LINK_LED_WORK_DELAY); |
| } |
| |
| static void housekeeping_init(struct zd_mac *mac) |
| { |
| INIT_WORK(&mac->housekeeping.link_led_work, link_led_handler, mac); |
| } |
| |
| static void housekeeping_enable(struct zd_mac *mac) |
| { |
| dev_dbg_f(zd_mac_dev(mac), "\n"); |
| queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, |
| 0); |
| } |
| |
| static void housekeeping_disable(struct zd_mac *mac) |
| { |
| dev_dbg_f(zd_mac_dev(mac), "\n"); |
| cancel_rearming_delayed_workqueue(zd_workqueue, |
| &mac->housekeeping.link_led_work); |
| zd_chip_control_leds(&mac->chip, LED_OFF); |
| } |