blob: 7b94a6c7db3d50dd4feb53dd74e1973bd68f2e6d [file] [log] [blame]
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/export.h>
#include "hw.h"
#include "hw-ops.h"
#include "ar9003_phy.h"
#include "ar9003_mci.h"
static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah)
{
REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1);
udelay(1);
REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0);
}
static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
u32 bit_position, int time_out)
{
struct ath_common *common = ath9k_hw_common(ah);
while (time_out) {
if (!(REG_READ(ah, address) & bit_position)) {
udelay(10);
time_out -= 10;
if (time_out < 0)
break;
else
continue;
}
REG_WRITE(ah, address, bit_position);
if (address != AR_MCI_INTERRUPT_RX_MSG_RAW)
break;
if (bit_position & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
ar9003_mci_reset_req_wakeup(ah);
if (bit_position & (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_RX_MSG);
break;
}
if (time_out <= 0) {
ath_dbg(common, MCI,
"MCI Wait for Reg 0x%08x = 0x%08x timeout\n",
address, bit_position);
ath_dbg(common, MCI,
"MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n",
REG_READ(ah, AR_MCI_INTERRUPT_RAW),
REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
time_out = 0;
}
return time_out;
}
static void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done)
{
u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00};
ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16,
wait_done, false);
udelay(5);
}
static void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done)
{
u32 payload = 0x00000000;
ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1,
wait_done, false);
}
static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done)
{
ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP,
NULL, 0, wait_done, false);
udelay(5);
}
static void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done)
{
ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP,
NULL, 0, wait_done, false);
}
static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done)
{
u32 payload = 0x70000000;
ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1,
wait_done, false);
}
static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done)
{
ar9003_mci_send_message(ah, MCI_SYS_SLEEPING,
MCI_FLAG_DISABLE_TIMESTAMP,
NULL, 0, wait_done, false);
}
static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
bool wait_done)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0};
if (mci->bt_version_known ||
(mci->bt_state == MCI_BT_SLEEP))
return;
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_VERSION_QUERY);
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}
static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
bool wait_done)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0};
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_VERSION_RESPONSE);
*(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) =
mci->wlan_ver_major;
*(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) =
mci->wlan_ver_minor;
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}
static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
bool wait_done)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 *payload = &mci->wlan_channels[0];
if (!mci->wlan_channels_update ||
(mci->bt_state == MCI_BT_SLEEP))
return;
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_WLAN_CHANNELS);
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
}
static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
bool wait_done, u8 query_type)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0};
bool query_btinfo;
if (mci->bt_state == MCI_BT_SLEEP)
return;
query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_STATUS_QUERY);
*(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
/*
* If bt_status_query message is not sent successfully,
* then need_flush_btinfo should be set again.
*/
if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
wait_done, true)) {
if (query_btinfo)
mci->need_flush_btinfo = true;
}
if (query_btinfo)
mci->query_bt = false;
}
static void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
bool wait_done)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0};
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_HALT_BT_GPM);
if (halt) {
mci->query_bt = true;
/* Send next unhalt no matter halt sent or not */
mci->unhalt_bt_gpm = true;
mci->need_flush_btinfo = true;
*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
MCI_GPM_COEX_BT_GPM_HALT;
} else
*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
MCI_GPM_COEX_BT_GPM_UNHALT;
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}
static void ar9003_mci_prep_interface(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 saved_mci_int_en;
u32 mci_timeout = 150;
mci->bt_state = MCI_BT_SLEEP;
saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
REG_READ(ah, AR_MCI_INTERRUPT_RAW));
ar9003_mci_remote_reset(ah, true);
ar9003_mci_send_req_wake(ah, true);
if (!ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500))
goto clear_redunt;
mci->bt_state = MCI_BT_AWAKE;
/*
* we don't need to send more remote_reset at this moment.
* If BT receive first remote_reset, then BT HW will
* be cleaned up and will be able to receive req_wake
* and BT HW will respond sys_waking.
* In this case, WLAN will receive BT's HW sys_waking.
* Otherwise, if BT SW missed initial remote_reset,
* that remote_reset will still clean up BT MCI RX,
* and the req_wake will wake BT up,
* and BT SW will respond this req_wake with a remote_reset and
* sys_waking. In this case, WLAN will receive BT's SW
* sys_waking. In either case, BT's RX is cleaned up. So we
* don't need to reply BT's remote_reset now, if any.
* Similarly, if in any case, WLAN can receive BT's sys_waking,
* that means WLAN's RX is also fine.
*/
ar9003_mci_send_sys_waking(ah, true);
udelay(10);
/*
* Set BT priority interrupt value to be 0xff to
* avoid having too many BT PRIORITY interrupts.
*/
REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
/*
* A contention reset will be received after send out
* sys_waking. Also BT priority interrupt bits will be set.
* Clear those bits before the next step.
*/
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_BT_PRI);
if (mci->is_2g) {
ar9003_mci_send_lna_transfer(ah, true);
udelay(5);
}
if ((mci->is_2g && !mci->update_2g5g)) {
if (ar9003_mci_wait_for_interrupt(ah,
AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
mci_timeout))
ath_dbg(common, MCI,
"MCI WLAN has control over the LNA & BT obeys it\n");
else
ath_dbg(common, MCI,
"MCI BT didn't respond to LNA_TRANS\n");
}
clear_redunt:
/* Clear the extra redundant SYS_WAKING from BT */
if ((mci->bt_state == MCI_BT_AWAKE) &&
(REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
(REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
}
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
}
void ar9003_mci_set_full_sleep(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
if (ar9003_mci_state(ah, MCI_STATE_ENABLE) &&
(mci->bt_state != MCI_BT_SLEEP) &&
!mci->halted_bt_gpm) {
ar9003_mci_send_coex_halt_bt_gpm(ah, true, true);
}
mci->ready = false;
}
static void ar9003_mci_disable_interrupt(struct ath_hw *ah)
{
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
}
static void ar9003_mci_enable_interrupt(struct ath_hw *ah)
{
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT);
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
AR_MCI_INTERRUPT_RX_MSG_DEFAULT);
}
static bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints)
{
u32 intr;
intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
return ((intr & ints) == ints);
}
void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr,
u32 *rx_msg_intr)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
*raw_intr = mci->raw_intr;
*rx_msg_intr = mci->rx_msg_intr;
/* Clean int bits after the values are read. */
mci->raw_intr = 0;
mci->rx_msg_intr = 0;
}
EXPORT_SYMBOL(ar9003_mci_get_interrupt);
void ar9003_mci_get_isr(struct ath_hw *ah, enum ath9k_int *masked)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 raw_intr, rx_msg_intr;
rx_msg_intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
raw_intr = REG_READ(ah, AR_MCI_INTERRUPT_RAW);
if ((raw_intr == 0xdeadbeef) || (rx_msg_intr == 0xdeadbeef)) {
ath_dbg(common, MCI,
"MCI gets 0xdeadbeef during int processing\n");
} else {
mci->rx_msg_intr |= rx_msg_intr;
mci->raw_intr |= raw_intr;
*masked |= ATH9K_INT_MCI;
if (rx_msg_intr & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO)
mci->cont_status = REG_READ(ah, AR_MCI_CONT_STATUS);
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, rx_msg_intr);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, raw_intr);
}
}
static void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
if (!mci->update_2g5g &&
(mci->is_2g != is_2g))
mci->update_2g5g = true;
mci->is_2g = is_2g;
}
static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 *payload;
u32 recv_type, offset;
if (msg_index == MCI_GPM_INVALID)
return false;
offset = msg_index << 4;
payload = (u32 *)(mci->gpm_buf + offset);
recv_type = MCI_GPM_TYPE(payload);
if (recv_type == MCI_GPM_RSVD_PATTERN)
return false;
return true;
}
static void ar9003_mci_observation_set_up(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) {
ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA);
ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK);
ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
} else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) {
ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX);
ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX);
ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
} else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) {
ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
} else
return;
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_DS_JTAG_DISABLE, 1);
REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_WLAN_UART_INTF_EN, 0);
REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL, ATH_MCI_CONFIG_MCI_OBS_GPIO);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1);
REG_WRITE(ah, AR_OBS, 0x4b);
REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03);
REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01);
REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02);
REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03);
REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS,
AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07);
}
static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done,
u8 opcode, u32 bt_flags)
{
u32 pld[4] = {0, 0, 0, 0};
MCI_GPM_SET_TYPE_OPCODE(pld, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_BT_UPDATE_FLAGS);
*(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode;
*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF;
*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF;
*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF;
*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF;
return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16,
wait_done, true);
}
static void ar9003_mci_sync_bt_state(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 cur_bt_state;
cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP);
if (mci->bt_state != cur_bt_state)
mci->bt_state = cur_bt_state;
if (mci->bt_state != MCI_BT_SLEEP) {
ar9003_mci_send_coex_version_query(ah, true);
ar9003_mci_send_coex_wlan_channels(ah, true);
if (mci->unhalt_bt_gpm == true)
ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
}
}
void ar9003_mci_check_bt(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
if (!mci_hw->ready)
return;
/*
* check BT state again to make
* sure it's not changed.
*/
ar9003_mci_sync_bt_state(ah);
ar9003_mci_2g5g_switch(ah, true);
if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
(mci_hw->query_bt == true)) {
mci_hw->need_flush_btinfo = true;
}
}
static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type,
u8 gpm_opcode, u32 *p_gpm)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u8 *p_data = (u8 *) p_gpm;
if (gpm_type != MCI_GPM_COEX_AGENT)
return;
switch (gpm_opcode) {
case MCI_GPM_COEX_VERSION_QUERY:
ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n");
ar9003_mci_send_coex_version_response(ah, true);
break;
case MCI_GPM_COEX_VERSION_RESPONSE:
ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n");
mci->bt_ver_major =
*(p_data + MCI_GPM_COEX_B_MAJOR_VERSION);
mci->bt_ver_minor =
*(p_data + MCI_GPM_COEX_B_MINOR_VERSION);
mci->bt_version_known = true;
ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n",
mci->bt_ver_major, mci->bt_ver_minor);
break;
case MCI_GPM_COEX_STATUS_QUERY:
ath_dbg(common, MCI,
"MCI Recv GPM COEX Status Query = 0x%02X\n",
*(p_data + MCI_GPM_COEX_B_WLAN_BITMAP));
mci->wlan_channels_update = true;
ar9003_mci_send_coex_wlan_channels(ah, true);
break;
case MCI_GPM_COEX_BT_PROFILE_INFO:
mci->query_bt = true;
ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n");
break;
case MCI_GPM_COEX_BT_STATUS_UPDATE:
mci->query_bt = true;
ath_dbg(common, MCI,
"MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n",
*(p_gpm + 3));
break;
default:
break;
}
}
static u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
u8 gpm_opcode, int time_out)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 *p_gpm = NULL, mismatch = 0, more_data;
u32 offset;
u8 recv_type = 0, recv_opcode = 0;
bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE);
more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE;
while (time_out > 0) {
if (p_gpm) {
MCI_GPM_RECYCLE(p_gpm);
p_gpm = NULL;
}
if (more_data != MCI_GPM_MORE)
time_out = ar9003_mci_wait_for_interrupt(ah,
AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_GPM,
time_out);
if (!time_out)
break;
offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data);
if (offset == MCI_GPM_INVALID)
continue;
p_gpm = (u32 *) (mci->gpm_buf + offset);
recv_type = MCI_GPM_TYPE(p_gpm);
recv_opcode = MCI_GPM_OPCODE(p_gpm);
if (MCI_GPM_IS_CAL_TYPE(recv_type)) {
if (recv_type == gpm_type) {
if ((gpm_type == MCI_GPM_BT_CAL_DONE) &&
!b_is_bt_cal_done) {
gpm_type = MCI_GPM_BT_CAL_GRANT;
continue;
}
break;
}
} else if ((recv_type == gpm_type) &&
(recv_opcode == gpm_opcode))
break;
/*
* check if it's cal_grant
*
* When we're waiting for cal_grant in reset routine,
* it's possible that BT sends out cal_request at the
* same time. Since BT's calibration doesn't happen
* that often, we'll let BT completes calibration then
* we continue to wait for cal_grant from BT.
* Orginal: Wait BT_CAL_GRANT.
* New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait
* BT_CAL_DONE -> Wait BT_CAL_GRANT.
*/
if ((gpm_type == MCI_GPM_BT_CAL_GRANT) &&
(recv_type == MCI_GPM_BT_CAL_REQ)) {
u32 payload[4] = {0, 0, 0, 0};
gpm_type = MCI_GPM_BT_CAL_DONE;
MCI_GPM_SET_CAL_TYPE(payload,
MCI_GPM_WLAN_CAL_GRANT);
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
false, false);
continue;
} else {
ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n",
*(p_gpm + 1));
mismatch++;
ar9003_mci_process_gpm_extra(ah, recv_type,
recv_opcode, p_gpm);
}
}
if (p_gpm) {
MCI_GPM_RECYCLE(p_gpm);
p_gpm = NULL;
}
if (time_out <= 0)
time_out = 0;
while (more_data == MCI_GPM_MORE) {
offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data);
if (offset == MCI_GPM_INVALID)
break;
p_gpm = (u32 *) (mci->gpm_buf + offset);
recv_type = MCI_GPM_TYPE(p_gpm);
recv_opcode = MCI_GPM_OPCODE(p_gpm);
if (!MCI_GPM_IS_CAL_TYPE(recv_type))
ar9003_mci_process_gpm_extra(ah, recv_type,
recv_opcode, p_gpm);
MCI_GPM_RECYCLE(p_gpm);
}
return time_out;
}
bool ar9003_mci_start_reset(struct ath_hw *ah, struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0};
ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
if (mci_hw->bt_state != MCI_BT_CAL_START)
return false;
mci_hw->bt_state = MCI_BT_CAL;
/*
* MCI FIX: disable mci interrupt here. This is to avoid
* SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
* lead to mci_intr reentry.
*/
ar9003_mci_disable_interrupt(ah);
MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
16, true, false);
/* Wait BT calibration to be completed for 25ms */
if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
0, 25000))
ath_dbg(common, MCI, "MCI BT_CAL_DONE received\n");
else
ath_dbg(common, MCI,
"MCI BT_CAL_DONE not received\n");
mci_hw->bt_state = MCI_BT_AWAKE;
/* MCI FIX: enable mci interrupt here */
ar9003_mci_enable_interrupt(ah);
return true;
}
int ar9003_mci_end_reset(struct ath_hw *ah, struct ath9k_channel *chan,
struct ath9k_hw_cal_data *caldata)
{
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
if (!mci_hw->ready)
return 0;
if (!IS_CHAN_2GHZ(chan) || (mci_hw->bt_state != MCI_BT_SLEEP))
goto exit;
if (!ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) &&
!ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE))
goto exit;
/*
* BT is sleeping. Check if BT wakes up during
* WLAN calibration. If BT wakes up during
* WLAN calibration, need to go through all
* message exchanges again and recal.
*/
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
(AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE));
ar9003_mci_remote_reset(ah, true);
ar9003_mci_send_sys_waking(ah, true);
udelay(1);
if (IS_CHAN_2GHZ(chan))
ar9003_mci_send_lna_transfer(ah, true);
mci_hw->bt_state = MCI_BT_AWAKE;
REG_CLR_BIT(ah, AR_PHY_TIMING4,
1 << AR_PHY_TIMING_CONTROL4_DO_GAIN_DC_IQ_CAL_SHIFT);
if (caldata) {
clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
clear_bit(RTT_DONE, &caldata->cal_flags);
}
if (!ath9k_hw_init_cal(ah, chan))
return -EIO;
REG_SET_BIT(ah, AR_PHY_TIMING4,
1 << AR_PHY_TIMING_CONTROL4_DO_GAIN_DC_IQ_CAL_SHIFT);
exit:
ar9003_mci_enable_interrupt(ah);
return 0;
}
static void ar9003_mci_mute_bt(struct ath_hw *ah)
{
/* disable all MCI messages */
REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000);
REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
/* wait pending HW messages to flush out */
udelay(10);
/*
* Send LNA_TAKE and SYS_SLEEPING when
* 1. reset not after resuming from full sleep
* 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment
*/
ar9003_mci_send_lna_take(ah, true);
udelay(5);
ar9003_mci_send_sys_sleeping(ah, true);
}
static void ar9003_mci_osla_setup(struct ath_hw *ah, bool enable)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 thresh;
if (!enable) {
REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
return;
}
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
if (AR_SREV_9565(ah))
REG_RMW_FIELD(ah, AR_MCI_MISC, AR_MCI_MISC_HW_FIX_EN, 1);
if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_AGGR_THRESH, thresh);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 1);
} else
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 0);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN, 1);
}
int ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
bool is_full_sleep)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 regval, i;
ath_dbg(common, MCI, "MCI Reset (full_sleep = %d, is_2g = %d)\n",
is_full_sleep, is_2g);
if (!mci->gpm_addr && !mci->sched_addr) {
ath_err(common, "MCI GPM and schedule buffers are not allocated\n");
return -ENOMEM;
}
if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) {
ath_err(common, "BTCOEX control register is dead\n");
return -EINVAL;
}
/* Program MCI DMA related registers */
REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr);
REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len);
REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr);
/*
* To avoid MCI state machine be affected by incoming remote MCI msgs,
* MCI mode will be enabled later, right before reset the MCI TX and RX.
*/
regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) |
SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) |
SM(1, AR_BTCOEX_CTRL_PA_SHARED) |
SM(1, AR_BTCOEX_CTRL_LNA_SHARED) |
SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) |
SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) |
SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
if (AR_SREV_9565(ah)) {
regval |= SM(1, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
SM(1, AR_BTCOEX_CTRL_RX_CHAIN_MASK);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2,
AR_BTCOEX_CTRL2_TX_CHAIN_MASK, 0x1);
} else {
regval |= SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK);
}
REG_WRITE(ah, AR_BTCOEX_CTRL, regval);
if (is_2g && !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA))
ar9003_mci_osla_setup(ah, true);
else
ar9003_mci_osla_setup(ah, false);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
AR_BTCOEX_CTRL_SPDT_ENABLE);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3,
AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 0);
REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
/* Set the time out to 3.125ms (5 BT slots) */
REG_RMW_FIELD(ah, AR_BTCOEX_WL_LNA, AR_BTCOEX_WL_LNA_TIMEOUT, 0x3D090);
/* concurrent tx priority */
if (mci->config & ATH_MCI_CONFIG_CONCUR_TX) {
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2,
AR_BTCOEX_CTRL2_DESC_BASED_TXPWR_ENABLE, 0);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2,
AR_BTCOEX_CTRL2_TXPWR_THRESH, 0x7f);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_REDUCE_TXPWR, 0);
for (i = 0; i < 8; i++)
REG_WRITE(ah, AR_BTCOEX_MAX_TXPWR(i), 0x7f7f7f7f);
}
regval = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV);
REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, regval);
REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN);
/* Resetting the Rx and Tx paths of MCI */
regval = REG_READ(ah, AR_MCI_COMMAND2);
regval |= SM(1, AR_MCI_COMMAND2_RESET_TX);
REG_WRITE(ah, AR_MCI_COMMAND2, regval);
udelay(1);
regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX);
REG_WRITE(ah, AR_MCI_COMMAND2, regval);
if (is_full_sleep) {
ar9003_mci_mute_bt(ah);
udelay(100);
}
/* Check pending GPM msg before MCI Reset Rx */
ar9003_mci_check_gpm_offset(ah);
regval |= SM(1, AR_MCI_COMMAND2_RESET_RX);
REG_WRITE(ah, AR_MCI_COMMAND2, regval);
udelay(1);
regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX);
REG_WRITE(ah, AR_MCI_COMMAND2, regval);
ar9003_mci_get_next_gpm_offset(ah, true, NULL);
REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE,
(SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) |
SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM)));
REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
ar9003_mci_observation_set_up(ah);
mci->ready = true;
ar9003_mci_prep_interface(ah);
if (AR_SREV_9565(ah))
REG_RMW_FIELD(ah, AR_MCI_DBG_CNT_CTRL,
AR_MCI_DBG_CNT_CTRL_ENABLE, 0);
if (en_int)
ar9003_mci_enable_interrupt(ah);
return 0;
}
void ar9003_mci_stop_bt(struct ath_hw *ah, bool save_fullsleep)
{
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
ar9003_mci_disable_interrupt(ah);
if (mci_hw->ready && !save_fullsleep) {
ar9003_mci_mute_bt(ah);
udelay(20);
REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
}
mci_hw->bt_state = MCI_BT_SLEEP;
mci_hw->ready = false;
}
static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 new_flags, to_set, to_clear;
if (!mci->update_2g5g || (mci->bt_state == MCI_BT_SLEEP))
return;
if (mci->is_2g) {
new_flags = MCI_2G_FLAGS;
to_clear = MCI_2G_FLAGS_CLEAR_MASK;
to_set = MCI_2G_FLAGS_SET_MASK;
} else {
new_flags = MCI_5G_FLAGS;
to_clear = MCI_5G_FLAGS_CLEAR_MASK;
to_set = MCI_5G_FLAGS_SET_MASK;
}
if (to_clear)
ar9003_mci_send_coex_bt_flags(ah, wait_done,
MCI_GPM_COEX_BT_FLAGS_CLEAR,
to_clear);
if (to_set)
ar9003_mci_send_coex_bt_flags(ah, wait_done,
MCI_GPM_COEX_BT_FLAGS_SET,
to_set);
}
static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
u32 *payload, bool queue)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u8 type, opcode;
/* check if the message is to be queued */
if (header != MCI_GPM)
return;
type = MCI_GPM_TYPE(payload);
opcode = MCI_GPM_OPCODE(payload);
if (type != MCI_GPM_COEX_AGENT)
return;
switch (opcode) {
case MCI_GPM_COEX_BT_UPDATE_FLAGS:
if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) ==
MCI_GPM_COEX_BT_FLAGS_READ)
break;
mci->update_2g5g = queue;
break;
case MCI_GPM_COEX_WLAN_CHANNELS:
mci->wlan_channels_update = queue;
break;
case MCI_GPM_COEX_HALT_BT_GPM:
if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
MCI_GPM_COEX_BT_GPM_UNHALT) {
mci->unhalt_bt_gpm = queue;
if (!queue)
mci->halted_bt_gpm = false;
}
if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
MCI_GPM_COEX_BT_GPM_HALT) {
mci->halted_bt_gpm = !queue;
}
break;
default:
break;
}
}
void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool force)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
if (!mci->update_2g5g && !force)
return;
if (mci->is_2g) {
ar9003_mci_send_2g5g_status(ah, true);
ar9003_mci_send_lna_transfer(ah, true);
udelay(5);
REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA))
ar9003_mci_osla_setup(ah, true);
if (AR_SREV_9462(ah))
REG_WRITE(ah, AR_SELFGEN_MASK, 0x02);
} else {
ar9003_mci_send_lna_take(ah, true);
udelay(5);
REG_SET_BIT(ah, AR_MCI_TX_CTRL,
AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
ar9003_mci_osla_setup(ah, false);
ar9003_mci_send_2g5g_status(ah, true);
}
}
bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag,
u32 *payload, u8 len, bool wait_done,
bool check_bt)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
bool msg_sent = false;
u32 regval;
u32 saved_mci_int_en;
int i;
saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
regval = REG_READ(ah, AR_BTCOEX_CTRL);
if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) {
ath_dbg(common, MCI,
"MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n",
header, (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0);
ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
return false;
} else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) {
ath_dbg(common, MCI,
"MCI Don't send message 0x%x. BT is in sleep state\n",
header);
ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
return false;
}
if (wait_done)
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
/* Need to clear SW_MSG_DONE raw bit before wait */
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
(AR_MCI_INTERRUPT_SW_MSG_DONE |
AR_MCI_INTERRUPT_MSG_FAIL_MASK));
if (payload) {
for (i = 0; (i * 4) < len; i++)
REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4),
*(payload + i));
}
REG_WRITE(ah, AR_MCI_COMMAND0,
(SM((flag & MCI_FLAG_DISABLE_TIMESTAMP),
AR_MCI_COMMAND0_DISABLE_TIMESTAMP) |
SM(len, AR_MCI_COMMAND0_LEN) |
SM(header, AR_MCI_COMMAND0_HEADER)));
if (wait_done &&
!(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_SW_MSG_DONE, 500)))
ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
else {
ar9003_mci_queue_unsent_gpm(ah, header, payload, false);
msg_sent = true;
}
if (wait_done)
REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
return msg_sent;
}
EXPORT_SYMBOL(ar9003_mci_send_message);
void ar9003_mci_init_cal_req(struct ath_hw *ah, bool *is_reusable)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
u32 pld[4] = {0, 0, 0, 0};
if ((mci_hw->bt_state != MCI_BT_AWAKE) ||
(mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL))
return;
MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_REQ);
pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_seq++;
ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false);
if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000)) {
ath_dbg(common, MCI, "MCI BT_CAL_GRANT received\n");
} else {
*is_reusable = false;
ath_dbg(common, MCI, "MCI BT_CAL_GRANT not received\n");
}
}
void ar9003_mci_init_cal_done(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
u32 pld[4] = {0, 0, 0, 0};
if ((mci_hw->bt_state != MCI_BT_AWAKE) ||
(mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL))
return;
MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_DONE);
pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_done++;
ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false);
}
int ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf,
u16 len, u32 sched_addr)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
mci->gpm_addr = gpm_addr;
mci->gpm_buf = gpm_buf;
mci->gpm_len = len;
mci->sched_addr = sched_addr;
return ar9003_mci_reset(ah, true, true, true);
}
EXPORT_SYMBOL(ar9003_mci_setup);
void ar9003_mci_cleanup(struct ath_hw *ah)
{
/* Turn off MCI and Jupiter mode. */
REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00);
ar9003_mci_disable_interrupt(ah);
}
EXPORT_SYMBOL(ar9003_mci_cleanup);
u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 value = 0, tsf;
u8 query_type;
switch (state_type) {
case MCI_STATE_ENABLE:
if (mci->ready) {
value = REG_READ(ah, AR_BTCOEX_CTRL);
if ((value == 0xdeadbeef) || (value == 0xffffffff))
value = 0;
}
value &= AR_BTCOEX_CTRL_MCI_MODE_EN;
break;
case MCI_STATE_LAST_SCHD_MSG_OFFSET:
value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
AR_MCI_RX_LAST_SCHD_MSG_INDEX);
/* Make it in bytes */
value <<= 4;
break;
case MCI_STATE_REMOTE_SLEEP:
value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
AR_MCI_RX_REMOTE_SLEEP) ?
MCI_BT_SLEEP : MCI_BT_AWAKE;
break;
case MCI_STATE_SET_BT_AWAKE:
mci->bt_state = MCI_BT_AWAKE;
ar9003_mci_send_coex_version_query(ah, true);
ar9003_mci_send_coex_wlan_channels(ah, true);
if (mci->unhalt_bt_gpm)
ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
ar9003_mci_2g5g_switch(ah, false);
break;
case MCI_STATE_RESET_REQ_WAKE:
ar9003_mci_reset_req_wakeup(ah);
mci->update_2g5g = true;
if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK) {
/* Check if we still have control of the GPIOs */
if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) &
ATH_MCI_CONFIG_MCI_OBS_GPIO) !=
ATH_MCI_CONFIG_MCI_OBS_GPIO) {
ar9003_mci_observation_set_up(ah);
}
}
break;
case MCI_STATE_SEND_WLAN_COEX_VERSION:
ar9003_mci_send_coex_version_response(ah, true);
break;
case MCI_STATE_SEND_VERSION_QUERY:
ar9003_mci_send_coex_version_query(ah, true);
break;
case MCI_STATE_SEND_STATUS_QUERY:
query_type = MCI_GPM_COEX_QUERY_BT_TOPOLOGY;
ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
break;
case MCI_STATE_RECOVER_RX:
tsf = ath9k_hw_gettsf32(ah);
if ((tsf - mci->last_recovery) <= MCI_RECOVERY_DUR_TSF) {
ath_dbg(ath9k_hw_common(ah), MCI,
"(MCI) ignore Rx recovery\n");
break;
}
ath_dbg(ath9k_hw_common(ah), MCI, "(MCI) RECOVER RX\n");
mci->last_recovery = tsf;
ar9003_mci_prep_interface(ah);
mci->query_bt = true;
mci->need_flush_btinfo = true;
ar9003_mci_send_coex_wlan_channels(ah, true);
ar9003_mci_2g5g_switch(ah, false);
break;
case MCI_STATE_NEED_FTP_STOMP:
value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP);
break;
case MCI_STATE_NEED_FLUSH_BT_INFO:
value = (!mci->unhalt_bt_gpm && mci->need_flush_btinfo) ? 1 : 0;
mci->need_flush_btinfo = false;
break;
default:
break;
}
return value;
}
EXPORT_SYMBOL(ar9003_mci_state);
void ar9003_mci_bt_gain_ctrl(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
ath_dbg(common, MCI, "Give LNA and SPDT control to BT\n");
ar9003_mci_send_lna_take(ah, true);
udelay(50);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
mci->is_2g = false;
mci->update_2g5g = true;
ar9003_mci_send_2g5g_status(ah, true);
/* Force another 2g5g update at next scanning */
mci->update_2g5g = true;
}
void ar9003_mci_set_power_awake(struct ath_hw *ah)
{
u32 btcoex_ctrl2, diag_sw;
int i;
u8 lna_ctrl, bt_sleep;
for (i = 0; i < AH_WAIT_TIMEOUT; i++) {
btcoex_ctrl2 = REG_READ(ah, AR_BTCOEX_CTRL2);
if (btcoex_ctrl2 != 0xdeadbeef)
break;
udelay(AH_TIME_QUANTUM);
}
REG_WRITE(ah, AR_BTCOEX_CTRL2, (btcoex_ctrl2 | BIT(23)));
for (i = 0; i < AH_WAIT_TIMEOUT; i++) {
diag_sw = REG_READ(ah, AR_DIAG_SW);
if (diag_sw != 0xdeadbeef)
break;
udelay(AH_TIME_QUANTUM);
}
REG_WRITE(ah, AR_DIAG_SW, (diag_sw | BIT(27) | BIT(19) | BIT(18)));
lna_ctrl = REG_READ(ah, AR_OBS_BUS_CTRL) & 0x3;
bt_sleep = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_REMOTE_SLEEP);
REG_WRITE(ah, AR_BTCOEX_CTRL2, btcoex_ctrl2);
REG_WRITE(ah, AR_DIAG_SW, diag_sw);
if (bt_sleep && (lna_ctrl == 2)) {
REG_SET_BIT(ah, AR_BTCOEX_RC, 0x1);
REG_CLR_BIT(ah, AR_BTCOEX_RC, 0x1);
udelay(50);
}
}
void ar9003_mci_check_gpm_offset(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 offset;
/*
* This should only be called before "MAC Warm Reset" or "MCI Reset Rx".
*/
offset = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
if (mci->gpm_idx == offset)
return;
ath_dbg(common, MCI, "GPM cached write pointer mismatch %d %d\n",
mci->gpm_idx, offset);
mci->query_bt = true;
mci->need_flush_btinfo = true;
mci->gpm_idx = 0;
}
u32 ar9003_mci_get_next_gpm_offset(struct ath_hw *ah, bool first, u32 *more)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 offset, more_gpm = 0, gpm_ptr;
if (first) {
gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
if (gpm_ptr >= mci->gpm_len)
gpm_ptr = 0;
mci->gpm_idx = gpm_ptr;
return gpm_ptr;
}
/*
* This could be useful to avoid new GPM message interrupt which
* may lead to spurious interrupt after power sleep, or multiple
* entry of ath_mci_intr().
* Adding empty GPM check by returning HAL_MCI_GPM_INVALID can
* alleviate this effect, but clearing GPM RX interrupt bit is
* safe, because whether this is called from hw or driver code
* there must be an interrupt bit set/triggered initially
*/
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_GPM);
gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
offset = gpm_ptr;
if (!offset)
offset = mci->gpm_len - 1;
else if (offset >= mci->gpm_len) {
if (offset != 0xFFFF)
offset = 0;
} else {
offset--;
}
if ((offset == 0xFFFF) || (gpm_ptr == mci->gpm_idx)) {
offset = MCI_GPM_INVALID;
more_gpm = MCI_GPM_NOMORE;
goto out;
}
for (;;) {
u32 temp_index;
/* skip reserved GPM if any */
if (offset != mci->gpm_idx)
more_gpm = MCI_GPM_MORE;
else
more_gpm = MCI_GPM_NOMORE;
temp_index = mci->gpm_idx;
if (temp_index >= mci->gpm_len)
temp_index = 0;
mci->gpm_idx++;
if (mci->gpm_idx >= mci->gpm_len)
mci->gpm_idx = 0;
if (ar9003_mci_is_gpm_valid(ah, temp_index)) {
offset = temp_index;
break;
}
if (more_gpm == MCI_GPM_NOMORE) {
offset = MCI_GPM_INVALID;
break;
}
}
if (offset != MCI_GPM_INVALID)
offset <<= 4;
out:
if (more)
*more = more_gpm;
return offset;
}
EXPORT_SYMBOL(ar9003_mci_get_next_gpm_offset);
void ar9003_mci_set_bt_version(struct ath_hw *ah, u8 major, u8 minor)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
mci->bt_ver_major = major;
mci->bt_ver_minor = minor;
mci->bt_version_known = true;
ath_dbg(ath9k_hw_common(ah), MCI, "MCI BT version set: %d.%d\n",
mci->bt_ver_major, mci->bt_ver_minor);
}
EXPORT_SYMBOL(ar9003_mci_set_bt_version);
void ar9003_mci_send_wlan_channels(struct ath_hw *ah)
{
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
mci->wlan_channels_update = true;
ar9003_mci_send_coex_wlan_channels(ah, true);
}
EXPORT_SYMBOL(ar9003_mci_send_wlan_channels);
u16 ar9003_mci_get_max_txpower(struct ath_hw *ah, u8 ctlmode)
{
if (!ah->btcoex_hw.mci.concur_tx)
goto out;
if (ctlmode == CTL_2GHT20)
return ATH_BTCOEX_HT20_MAX_TXPOWER;
else if (ctlmode == CTL_2GHT40)
return ATH_BTCOEX_HT40_MAX_TXPOWER;
out:
return -1;
}