| <title>Image Formats</title> |
| |
| <para>The V4L2 API was primarily designed for devices exchanging |
| image data with applications. The |
| <structname>v4l2_pix_format</structname> structure defines the format |
| and layout of an image in memory. Image formats are negotiated with |
| the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video |
| capturing and output, for overlay frame buffer formats see also |
| &VIDIOC-G-FBUF;.)</para> |
| |
| <table pgwide="1" frame="none" id="v4l2-pix-format"> |
| <title>struct <structname>v4l2_pix_format</structname></title> |
| <tgroup cols="3"> |
| &cs-str; |
| <tbody valign="top"> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>width</structfield></entry> |
| <entry>Image width in pixels.</entry> |
| </row> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>height</structfield></entry> |
| <entry>Image height in pixels.</entry> |
| </row> |
| <row> |
| <entry spanname="hspan">Applications set these fields to |
| request an image size, drivers return the closest possible values. In |
| case of planar formats the <structfield>width</structfield> and |
| <structfield>height</structfield> applies to the largest plane. To |
| avoid ambiguities drivers must return values rounded up to a multiple |
| of the scale factor of any smaller planes. For example when the image |
| format is YUV 4:2:0, <structfield>width</structfield> and |
| <structfield>height</structfield> must be multiples of two.</entry> |
| </row> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>pixelformat</structfield></entry> |
| <entry>The pixel format or type of compression, set by the |
| application. This is a little endian <link |
| linkend="v4l2-fourcc">four character code</link>. V4L2 defines |
| standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref |
| linkend="yuv-formats" />, and reserved codes in <xref |
| linkend="reserved-formats" /></entry> |
| </row> |
| <row> |
| <entry>&v4l2-field;</entry> |
| <entry><structfield>field</structfield></entry> |
| <entry>Video images are typically interlaced. Applications |
| can request to capture or output only the top or bottom field, or both |
| fields interlaced or sequentially stored in one buffer or alternating |
| in separate buffers. Drivers return the actual field order selected. |
| For details see <xref linkend="field-order" />.</entry> |
| </row> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>bytesperline</structfield></entry> |
| <entry>Distance in bytes between the leftmost pixels in two |
| adjacent lines.</entry> |
| </row> |
| <row> |
| <entry spanname="hspan"><para>Both applications and drivers |
| can set this field to request padding bytes at the end of each line. |
| Drivers however may ignore the value requested by the application, |
| returning <structfield>width</structfield> times bytes per pixel or a |
| larger value required by the hardware. That implies applications can |
| just set this field to zero to get a reasonable |
| default.</para><para>Video hardware may access padding bytes, |
| therefore they must reside in accessible memory. Consider cases where |
| padding bytes after the last line of an image cross a system page |
| boundary. Input devices may write padding bytes, the value is |
| undefined. Output devices ignore the contents of padding |
| bytes.</para><para>When the image format is planar the |
| <structfield>bytesperline</structfield> value applies to the largest |
| plane and is divided by the same factor as the |
| <structfield>width</structfield> field for any smaller planes. For |
| example the Cb and Cr planes of a YUV 4:2:0 image have half as many |
| padding bytes following each line as the Y plane. To avoid ambiguities |
| drivers must return a <structfield>bytesperline</structfield> value |
| rounded up to a multiple of the scale factor.</para></entry> |
| </row> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>sizeimage</structfield></entry> |
| <entry>Size in bytes of the buffer to hold a complete image, |
| set by the driver. Usually this is |
| <structfield>bytesperline</structfield> times |
| <structfield>height</structfield>. When the image consists of variable |
| length compressed data this is the maximum number of bytes required to |
| hold an image.</entry> |
| </row> |
| <row> |
| <entry>&v4l2-colorspace;</entry> |
| <entry><structfield>colorspace</structfield></entry> |
| <entry>This information supplements the |
| <structfield>pixelformat</structfield> and must be set by the driver, |
| see <xref linkend="colorspaces" />.</entry> |
| </row> |
| <row> |
| <entry>__u32</entry> |
| <entry><structfield>priv</structfield></entry> |
| <entry>Reserved for custom (driver defined) additional |
| information about formats. When not used drivers and applications must |
| set this field to zero.</entry> |
| </row> |
| </tbody> |
| </tgroup> |
| </table> |
| |
| <section> |
| <title>Standard Image Formats</title> |
| |
| <para>In order to exchange images between drivers and |
| applications, it is necessary to have standard image data formats |
| which both sides will interpret the same way. V4L2 includes several |
| such formats, and this section is intended to be an unambiguous |
| specification of the standard image data formats in V4L2.</para> |
| |
| <para>V4L2 drivers are not limited to these formats, however. |
| Driver-specific formats are possible. In that case the application may |
| depend on a codec to convert images to one of the standard formats |
| when needed. But the data can still be stored and retrieved in the |
| proprietary format. For example, a device may support a proprietary |
| compressed format. Applications can still capture and save the data in |
| the compressed format, saving much disk space, and later use a codec |
| to convert the images to the X Windows screen format when the video is |
| to be displayed.</para> |
| |
| <para>Even so, ultimately, some standard formats are needed, so |
| the V4L2 specification would not be complete without well-defined |
| standard formats.</para> |
| |
| <para>The V4L2 standard formats are mainly uncompressed formats. The |
| pixels are always arranged in memory from left to right, and from top |
| to bottom. The first byte of data in the image buffer is always for |
| the leftmost pixel of the topmost row. Following that is the pixel |
| immediately to its right, and so on until the end of the top row of |
| pixels. Following the rightmost pixel of the row there may be zero or |
| more bytes of padding to guarantee that each row of pixel data has a |
| certain alignment. Following the pad bytes, if any, is data for the |
| leftmost pixel of the second row from the top, and so on. The last row |
| has just as many pad bytes after it as the other rows.</para> |
| |
| <para>In V4L2 each format has an identifier which looks like |
| <constant>PIX_FMT_XXX</constant>, defined in the <link |
| linkend="videodev">videodev.h</link> header file. These identifiers |
| represent <link linkend="v4l2-fourcc">four character codes</link> |
| which are also listed below, however they are not the same as those |
| used in the Windows world.</para> |
| </section> |
| |
| <section id="colorspaces"> |
| <title>Colorspaces</title> |
| |
| <para>[intro]</para> |
| |
| <!-- See proposal by Billy Biggs, video4linux-list@redhat.com |
| on 11 Oct 2002, subject: "Re: [V4L] Re: v4l2 api", and |
| http://vektor.theorem.ca/graphics/ycbcr/ and |
| http://www.inforamp.net/~poynton/notes/colour_and_gamma/index.html --> |
| |
| <para> |
| <variablelist> |
| <varlistentry> |
| <term>Gamma Correction</term> |
| <listitem> |
| <para>[to do]</para> |
| <para>E'<subscript>R</subscript> = f(R)</para> |
| <para>E'<subscript>G</subscript> = f(G)</para> |
| <para>E'<subscript>B</subscript> = f(B)</para> |
| </listitem> |
| </varlistentry> |
| <varlistentry> |
| <term>Construction of luminance and color-difference |
| signals</term> |
| <listitem> |
| <para>[to do]</para> |
| <para>E'<subscript>Y</subscript> = |
| Coeff<subscript>R</subscript> E'<subscript>R</subscript> |
| + Coeff<subscript>G</subscript> E'<subscript>G</subscript> |
| + Coeff<subscript>B</subscript> E'<subscript>B</subscript></para> |
| <para>(E'<subscript>R</subscript> - E'<subscript>Y</subscript>) = E'<subscript>R</subscript> |
| - Coeff<subscript>R</subscript> E'<subscript>R</subscript> |
| - Coeff<subscript>G</subscript> E'<subscript>G</subscript> |
| - Coeff<subscript>B</subscript> E'<subscript>B</subscript></para> |
| <para>(E'<subscript>B</subscript> - E'<subscript>Y</subscript>) = E'<subscript>B</subscript> |
| - Coeff<subscript>R</subscript> E'<subscript>R</subscript> |
| - Coeff<subscript>G</subscript> E'<subscript>G</subscript> |
| - Coeff<subscript>B</subscript> E'<subscript>B</subscript></para> |
| </listitem> |
| </varlistentry> |
| <varlistentry> |
| <term>Re-normalized color-difference signals</term> |
| <listitem> |
| <para>The color-difference signals are scaled back to unity |
| range [-0.5;+0.5]:</para> |
| <para>K<subscript>B</subscript> = 0.5 / (1 - Coeff<subscript>B</subscript>)</para> |
| <para>K<subscript>R</subscript> = 0.5 / (1 - Coeff<subscript>R</subscript>)</para> |
| <para>P<subscript>B</subscript> = |
| K<subscript>B</subscript> (E'<subscript>B</subscript> - E'<subscript>Y</subscript>) = |
| 0.5 (Coeff<subscript>R</subscript> / Coeff<subscript>B</subscript>) E'<subscript>R</subscript> |
| + 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>B</subscript>) E'<subscript>G</subscript> |
| + 0.5 E'<subscript>B</subscript></para> |
| <para>P<subscript>R</subscript> = |
| K<subscript>R</subscript> (E'<subscript>R</subscript> - E'<subscript>Y</subscript>) = |
| 0.5 E'<subscript>R</subscript> |
| + 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>R</subscript>) E'<subscript>G</subscript> |
| + 0.5 (Coeff<subscript>B</subscript> / Coeff<subscript>R</subscript>) E'<subscript>B</subscript></para> |
| </listitem> |
| </varlistentry> |
| <varlistentry> |
| <term>Quantization</term> |
| <listitem> |
| <para>[to do]</para> |
| <para>Y' = (Lum. Levels - 1) · E'<subscript>Y</subscript> + Lum. Offset</para> |
| <para>C<subscript>B</subscript> = (Chrom. Levels - 1) |
| · P<subscript>B</subscript> + Chrom. Offset</para> |
| <para>C<subscript>R</subscript> = (Chrom. Levels - 1) |
| · P<subscript>R</subscript> + Chrom. Offset</para> |
| <para>Rounding to the nearest integer and clamping to the range |
| [0;255] finally yields the digital color components Y'CbCr |
| stored in YUV images.</para> |
| </listitem> |
| </varlistentry> |
| </variablelist> |
| </para> |
| |
| <example> |
| <title>ITU-R Rec. BT.601 color conversion</title> |
| |
| <para>Forward Transformation</para> |
| |
| <programlisting> |
| int ER, EG, EB; /* gamma corrected RGB input [0;255] */ |
| int Y1, Cb, Cr; /* output [0;255] */ |
| |
| double r, g, b; /* temporaries */ |
| double y1, pb, pr; |
| |
| int |
| clamp (double x) |
| { |
| int r = x; /* round to nearest */ |
| |
| if (r < 0) return 0; |
| else if (r > 255) return 255; |
| else return r; |
| } |
| |
| r = ER / 255.0; |
| g = EG / 255.0; |
| b = EB / 255.0; |
| |
| y1 = 0.299 * r + 0.587 * g + 0.114 * b; |
| pb = -0.169 * r - 0.331 * g + 0.5 * b; |
| pr = 0.5 * r - 0.419 * g - 0.081 * b; |
| |
| Y1 = clamp (219 * y1 + 16); |
| Cb = clamp (224 * pb + 128); |
| Cr = clamp (224 * pr + 128); |
| |
| /* or shorter */ |
| |
| y1 = 0.299 * ER + 0.587 * EG + 0.114 * EB; |
| |
| Y1 = clamp ( (219 / 255.0) * y1 + 16); |
| Cb = clamp (((224 / 255.0) / (2 - 2 * 0.114)) * (EB - y1) + 128); |
| Cr = clamp (((224 / 255.0) / (2 - 2 * 0.299)) * (ER - y1) + 128); |
| </programlisting> |
| |
| <para>Inverse Transformation</para> |
| |
| <programlisting> |
| int Y1, Cb, Cr; /* gamma pre-corrected input [0;255] */ |
| int ER, EG, EB; /* output [0;255] */ |
| |
| double r, g, b; /* temporaries */ |
| double y1, pb, pr; |
| |
| int |
| clamp (double x) |
| { |
| int r = x; /* round to nearest */ |
| |
| if (r < 0) return 0; |
| else if (r > 255) return 255; |
| else return r; |
| } |
| |
| y1 = (255 / 219.0) * (Y1 - 16); |
| pb = (255 / 224.0) * (Cb - 128); |
| pr = (255 / 224.0) * (Cr - 128); |
| |
| r = 1.0 * y1 + 0 * pb + 1.402 * pr; |
| g = 1.0 * y1 - 0.344 * pb - 0.714 * pr; |
| b = 1.0 * y1 + 1.772 * pb + 0 * pr; |
| |
| ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */ |
| EG = clamp (g * 255); |
| EB = clamp (b * 255); |
| </programlisting> |
| </example> |
| |
| <table pgwide="1" id="v4l2-colorspace" orient="land"> |
| <title>enum v4l2_colorspace</title> |
| <tgroup cols="11" align="center"> |
| <colspec align="left" /> |
| <colspec align="center" /> |
| <colspec align="left" /> |
| <colspec colname="cr" /> |
| <colspec colname="cg" /> |
| <colspec colname="cb" /> |
| <colspec colname="wp" /> |
| <colspec colname="gc" /> |
| <colspec colname="lum" /> |
| <colspec colname="qy" /> |
| <colspec colname="qc" /> |
| <spanspec namest="cr" nameend="cb" spanname="chrom" /> |
| <spanspec namest="qy" nameend="qc" spanname="quant" /> |
| <spanspec namest="lum" nameend="qc" spanname="spam" /> |
| <thead> |
| <row> |
| <entry morerows="1">Identifier</entry> |
| <entry morerows="1">Value</entry> |
| <entry morerows="1">Description</entry> |
| <entry spanname="chrom">Chromaticities<footnote> |
| <para>The coordinates of the color primaries are |
| given in the CIE system (1931)</para> |
| </footnote></entry> |
| <entry morerows="1">White Point</entry> |
| <entry morerows="1">Gamma Correction</entry> |
| <entry morerows="1">Luminance E'<subscript>Y</subscript></entry> |
| <entry spanname="quant">Quantization</entry> |
| </row> |
| <row> |
| <entry>Red</entry> |
| <entry>Green</entry> |
| <entry>Blue</entry> |
| <entry>Y'</entry> |
| <entry>Cb, Cr</entry> |
| </row> |
| </thead> |
| <tbody valign="top"> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry> |
| <entry>1</entry> |
| <entry>NTSC/PAL according to <xref linkend="smpte170m" />, |
| <xref linkend="itu601" /></entry> |
| <entry>x = 0.630, y = 0.340</entry> |
| <entry>x = 0.310, y = 0.595</entry> |
| <entry>x = 0.155, y = 0.070</entry> |
| <entry>x = 0.3127, y = 0.3290, |
| Illuminant D<subscript>65</subscript></entry> |
| <entry>E' = 4.5 I for I ≤0.018, |
| 1.099 I<superscript>0.45</superscript> - 0.099 for 0.018 < I</entry> |
| <entry>0.299 E'<subscript>R</subscript> |
| + 0.587 E'<subscript>G</subscript> |
| + 0.114 E'<subscript>B</subscript></entry> |
| <entry>219 E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry> |
| <entry>2</entry> |
| <entry>1125-Line (US) HDTV, see <xref |
| linkend="smpte240m" /></entry> |
| <entry>x = 0.630, y = 0.340</entry> |
| <entry>x = 0.310, y = 0.595</entry> |
| <entry>x = 0.155, y = 0.070</entry> |
| <entry>x = 0.3127, y = 0.3290, |
| Illuminant D<subscript>65</subscript></entry> |
| <entry>E' = 4 I for I ≤0.0228, |
| 1.1115 I<superscript>0.45</superscript> - 0.1115 for 0.0228 < I</entry> |
| <entry>0.212 E'<subscript>R</subscript> |
| + 0.701 E'<subscript>G</subscript> |
| + 0.087 E'<subscript>B</subscript></entry> |
| <entry>219 E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_REC709</constant></entry> |
| <entry>3</entry> |
| <entry>HDTV and modern devices, see <xref |
| linkend="itu709" /></entry> |
| <entry>x = 0.640, y = 0.330</entry> |
| <entry>x = 0.300, y = 0.600</entry> |
| <entry>x = 0.150, y = 0.060</entry> |
| <entry>x = 0.3127, y = 0.3290, |
| Illuminant D<subscript>65</subscript></entry> |
| <entry>E' = 4.5 I for I ≤0.018, |
| 1.099 I<superscript>0.45</superscript> - 0.099 for 0.018 < I</entry> |
| <entry>0.2125 E'<subscript>R</subscript> |
| + 0.7154 E'<subscript>G</subscript> |
| + 0.0721 E'<subscript>B</subscript></entry> |
| <entry>219 E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_BT878</constant></entry> |
| <entry>4</entry> |
| <entry>Broken Bt878 extents<footnote> |
| <para>The ubiquitous Bt878 video capture chip |
| quantizes E'<subscript>Y</subscript> to 238 levels, yielding a range |
| of Y' = 16 … 253, unlike Rec. 601 Y' = 16 … |
| 235. This is not a typo in the Bt878 documentation, it has been |
| implemented in silicon. The chroma extents are unclear.</para> |
| </footnote>, <xref linkend="itu601" /></entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>0.299 E'<subscript>R</subscript> |
| + 0.587 E'<subscript>G</subscript> |
| + 0.114 E'<subscript>B</subscript></entry> |
| <entry><emphasis>237</emphasis> E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128 (probably)</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry> |
| <entry>5</entry> |
| <entry>M/NTSC<footnote> |
| <para>No identifier exists for M/PAL which uses |
| the chromaticities of M/NTSC, the remaining parameters are equal to B and |
| G/PAL.</para> |
| </footnote> according to <xref linkend="itu470" />, <xref |
| linkend="itu601" /></entry> |
| <entry>x = 0.67, y = 0.33</entry> |
| <entry>x = 0.21, y = 0.71</entry> |
| <entry>x = 0.14, y = 0.08</entry> |
| <entry>x = 0.310, y = 0.316, Illuminant C</entry> |
| <entry>?</entry> |
| <entry>0.299 E'<subscript>R</subscript> |
| + 0.587 E'<subscript>G</subscript> |
| + 0.114 E'<subscript>B</subscript></entry> |
| <entry>219 E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry> |
| <entry>6</entry> |
| <entry>625-line PAL and SECAM systems according to <xref |
| linkend="itu470" />, <xref linkend="itu601" /></entry> |
| <entry>x = 0.64, y = 0.33</entry> |
| <entry>x = 0.29, y = 0.60</entry> |
| <entry>x = 0.15, y = 0.06</entry> |
| <entry>x = 0.313, y = 0.329, |
| Illuminant D<subscript>65</subscript></entry> |
| <entry>?</entry> |
| <entry>0.299 E'<subscript>R</subscript> |
| + 0.587 E'<subscript>G</subscript> |
| + 0.114 E'<subscript>B</subscript></entry> |
| <entry>219 E'<subscript>Y</subscript> + 16</entry> |
| <entry>224 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_JPEG</constant></entry> |
| <entry>7</entry> |
| <entry>JPEG Y'CbCr, see <xref linkend="jfif" />, <xref linkend="itu601" /></entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>?</entry> |
| <entry>0.299 E'<subscript>R</subscript> |
| + 0.587 E'<subscript>G</subscript> |
| + 0.114 E'<subscript>B</subscript></entry> |
| <entry>256 E'<subscript>Y</subscript> + 16<footnote> |
| <para>Note JFIF quantizes |
| Y'P<subscript>B</subscript>P<subscript>R</subscript> in range [0;+1] and |
| [-0.5;+0.5] to <emphasis>257</emphasis> levels, however Y'CbCr signals |
| are still clamped to [0;255].</para> |
| </footnote></entry> |
| <entry>256 P<subscript>B,R</subscript> + 128</entry> |
| </row> |
| <row> |
| <entry><constant>V4L2_COLORSPACE_SRGB</constant></entry> |
| <entry>8</entry> |
| <entry>[?]</entry> |
| <entry>x = 0.640, y = 0.330</entry> |
| <entry>x = 0.300, y = 0.600</entry> |
| <entry>x = 0.150, y = 0.060</entry> |
| <entry>x = 0.3127, y = 0.3290, |
| Illuminant D<subscript>65</subscript></entry> |
| <entry>E' = 4.5 I for I ≤0.018, |
| 1.099 I<superscript>0.45</superscript> - 0.099 for 0.018 < I</entry> |
| <entry spanname="spam">n/a</entry> |
| </row> |
| </tbody> |
| </tgroup> |
| </table> |
| </section> |
| |
| <section id="pixfmt-indexed"> |
| <title>Indexed Format</title> |
| |
| <para>In this format each pixel is represented by an 8 bit index |
| into a 256 entry ARGB palette. It is intended for <link |
| linkend="osd">Video Output Overlays</link> only. There are no ioctls to |
| access the palette, this must be done with ioctls of the Linux framebuffer API.</para> |
| |
| <table pgwide="0" frame="none"> |
| <title>Indexed Image Format</title> |
| <tgroup cols="37" align="center"> |
| <colspec colname="id" align="left" /> |
| <colspec colname="fourcc" /> |
| <colspec colname="bit" /> |
| |
| <colspec colnum="4" colname="b07" align="center" /> |
| <colspec colnum="5" colname="b06" align="center" /> |
| <colspec colnum="6" colname="b05" align="center" /> |
| <colspec colnum="7" colname="b04" align="center" /> |
| <colspec colnum="8" colname="b03" align="center" /> |
| <colspec colnum="9" colname="b02" align="center" /> |
| <colspec colnum="10" colname="b01" align="center" /> |
| <colspec colnum="11" colname="b00" align="center" /> |
| |
| <spanspec namest="b07" nameend="b00" spanname="b0" /> |
| <spanspec namest="b17" nameend="b10" spanname="b1" /> |
| <spanspec namest="b27" nameend="b20" spanname="b2" /> |
| <spanspec namest="b37" nameend="b30" spanname="b3" /> |
| <thead> |
| <row> |
| <entry>Identifier</entry> |
| <entry>Code</entry> |
| <entry> </entry> |
| <entry spanname="b0">Byte 0</entry> |
| </row> |
| <row> |
| <entry> </entry> |
| <entry> </entry> |
| <entry>Bit</entry> |
| <entry>7</entry> |
| <entry>6</entry> |
| <entry>5</entry> |
| <entry>4</entry> |
| <entry>3</entry> |
| <entry>2</entry> |
| <entry>1</entry> |
| <entry>0</entry> |
| </row> |
| </thead> |
| <tbody valign="top"> |
| <row id="V4L2-PIX-FMT-PAL8"> |
| <entry><constant>V4L2_PIX_FMT_PAL8</constant></entry> |
| <entry>'PAL8'</entry> |
| <entry></entry> |
| <entry>i<subscript>7</subscript></entry> |
| <entry>i<subscript>6</subscript></entry> |
| <entry>i<subscript>5</subscript></entry> |
| <entry>i<subscript>4</subscript></entry> |
| <entry>i<subscript>3</subscript></entry> |
| <entry>i<subscript>2</subscript></entry> |
| <entry>i<subscript>1</subscript></entry> |
| <entry>i<subscript>0</subscript></entry> |
| </row> |
| </tbody> |
| </tgroup> |
| </table> |
| </section> |
| |
| <section id="pixfmt-rgb"> |
| <title>RGB Formats</title> |
| |
| &sub-packed-rgb; |
| &sub-sbggr8; |
| &sub-sgbrg8; |
| &sub-sgrbg8; |
| &sub-sbggr16; |
| </section> |
| |
| <section id="yuv-formats"> |
| <title>YUV Formats</title> |
| |
| <para>YUV is the format native to TV broadcast and composite video |
| signals. It separates the brightness information (Y) from the color |
| information (U and V or Cb and Cr). The color information consists of |
| red and blue <emphasis>color difference</emphasis> signals, this way |
| the green component can be reconstructed by subtracting from the |
| brightness component. See <xref linkend="colorspaces" /> for conversion |
| examples. YUV was chosen because early television would only transmit |
| brightness information. To add color in a way compatible with existing |
| receivers a new signal carrier was added to transmit the color |
| difference signals. Secondary in the YUV format the U and V components |
| usually have lower resolution than the Y component. This is an analog |
| video compression technique taking advantage of a property of the |
| human visual system, being more sensitive to brightness |
| information.</para> |
| |
| &sub-packed-yuv; |
| &sub-grey; |
| &sub-y16; |
| &sub-yuyv; |
| &sub-uyvy; |
| &sub-yvyu; |
| &sub-vyuy; |
| &sub-y41p; |
| &sub-yuv420; |
| &sub-yuv410; |
| &sub-yuv422p; |
| &sub-yuv411p; |
| &sub-nv12; |
| &sub-nv16; |
| </section> |
| |
| <section> |
| <title>Compressed Formats</title> |
| |
| <table pgwide="1" frame="none" id="compressed-formats"> |
| <title>Compressed Image Formats</title> |
| <tgroup cols="3" align="left"> |
| &cs-def; |
| <thead> |
| <row> |
| <entry>Identifier</entry> |
| <entry>Code</entry> |
| <entry>Details</entry> |
| </row> |
| </thead> |
| <tbody valign="top"> |
| <row id="V4L2-PIX-FMT-JPEG"> |
| <entry><constant>V4L2_PIX_FMT_JPEG</constant></entry> |
| <entry>'JPEG'</entry> |
| <entry>TBD. See also &VIDIOC-G-JPEGCOMP;, |
| &VIDIOC-S-JPEGCOMP;.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-MPEG"> |
| <entry><constant>V4L2_PIX_FMT_MPEG</constant></entry> |
| <entry>'MPEG'</entry> |
| <entry>MPEG stream. The actual format is determined by |
| extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see |
| <xref linkend="mpeg-control-id" />.</entry> |
| </row> |
| </tbody> |
| </tgroup> |
| </table> |
| </section> |
| |
| <section id="pixfmt-reserved"> |
| <title>Reserved Format Identifiers</title> |
| |
| <para>These formats are not defined by this specification, they |
| are just listed for reference and to avoid naming conflicts. If you |
| want to register your own format, send an e-mail to the linux-media mailing |
| list &v4l-ml; for inclusion in the <filename>videodev2.h</filename> |
| file. If you want to share your format with other developers add a |
| link to your documentation and send a copy to the linux-media mailing list |
| for inclusion in this section. If you think your format should be listed |
| in a standard format section please make a proposal on the linux-media mailing |
| list.</para> |
| |
| <table pgwide="1" frame="none" id="reserved-formats"> |
| <title>Reserved Image Formats</title> |
| <tgroup cols="3" align="left"> |
| &cs-def; |
| <thead> |
| <row> |
| <entry>Identifier</entry> |
| <entry>Code</entry> |
| <entry>Details</entry> |
| </row> |
| </thead> |
| <tbody valign="top"> |
| <row id="V4L2-PIX-FMT-DV"> |
| <entry><constant>V4L2_PIX_FMT_DV</constant></entry> |
| <entry>'dvsd'</entry> |
| <entry>unknown</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-ET61X251"> |
| <entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry> |
| <entry>'E625'</entry> |
| <entry>Compressed format of the ET61X251 driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-HI240"> |
| <entry><constant>V4L2_PIX_FMT_HI240</constant></entry> |
| <entry>'HI24'</entry> |
| <entry><para>8 bit RGB format used by the BTTV driver.</para></entry> |
| </row> |
| <row id="V4L2-PIX-FMT-HM12"> |
| <entry><constant>V4L2_PIX_FMT_HM12</constant></entry> |
| <entry>'HM12'</entry> |
| <entry><para>YUV 4:2:0 format used by the |
| IVTV driver, <ulink url="http://www.ivtvdriver.org/"> |
| http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the |
| kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename> |
| </para></entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SPCA501"> |
| <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry> |
| <entry>'S501'</entry> |
| <entry>YUYV per line used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SPCA505"> |
| <entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry> |
| <entry>'S505'</entry> |
| <entry>YYUV per line used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SPCA508"> |
| <entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry> |
| <entry>'S508'</entry> |
| <entry>YUVY per line used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SPCA561"> |
| <entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry> |
| <entry>'S561'</entry> |
| <entry>Compressed GBRG Bayer format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SGRBG10"> |
| <entry><constant>V4L2_PIX_FMT_SGRBG10</constant></entry> |
| <entry>'DA10'</entry> |
| <entry>10 bit raw Bayer, expanded to 16 bits.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SGRBG10DPCM8"> |
| <entry><constant>V4L2_PIX_FMT_SGRBG10DPCM8</constant></entry> |
| <entry>'DB10'</entry> |
| <entry>10 bit raw Bayer DPCM compressed to 8 bits.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-PAC207"> |
| <entry><constant>V4L2_PIX_FMT_PAC207</constant></entry> |
| <entry>'P207'</entry> |
| <entry>Compressed BGGR Bayer format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-MR97310A"> |
| <entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry> |
| <entry>'M310'</entry> |
| <entry>Compressed BGGR Bayer format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-OV511"> |
| <entry><constant>V4L2_PIX_FMT_OV511</constant></entry> |
| <entry>'O511'</entry> |
| <entry>OV511 JPEG format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-OV518"> |
| <entry><constant>V4L2_PIX_FMT_OV518</constant></entry> |
| <entry>'O518'</entry> |
| <entry>OV518 JPEG format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-PJPG"> |
| <entry><constant>V4L2_PIX_FMT_PJPG</constant></entry> |
| <entry>'PJPG'</entry> |
| <entry>Pixart 73xx JPEG format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SQ905C"> |
| <entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry> |
| <entry>'905C'</entry> |
| <entry>Compressed RGGB bayer format used by the gspca driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-MJPEG"> |
| <entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry> |
| <entry>'MJPG'</entry> |
| <entry>Compressed format used by the Zoran driver</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-PWC1"> |
| <entry><constant>V4L2_PIX_FMT_PWC1</constant></entry> |
| <entry>'PWC1'</entry> |
| <entry>Compressed format of the PWC driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-PWC2"> |
| <entry><constant>V4L2_PIX_FMT_PWC2</constant></entry> |
| <entry>'PWC2'</entry> |
| <entry>Compressed format of the PWC driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SN9C10X"> |
| <entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry> |
| <entry>'S910'</entry> |
| <entry>Compressed format of the SN9C102 driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-SN9C20X-I420"> |
| <entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry> |
| <entry>'S920'</entry> |
| <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry> |
| </row> |
| <row id="V4L2-PIX-FMT-WNVA"> |
| <entry><constant>V4L2_PIX_FMT_WNVA</constant></entry> |
| <entry>'WNVA'</entry> |
| <entry><para>Used by the Winnov Videum driver, <ulink |
| url="http://www.thedirks.org/winnov/"> |
| http://www.thedirks.org/winnov/</ulink></para></entry> |
| </row> |
| <row id="V4L2-PIX-FMT-YYUV"> |
| <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry> |
| <entry>'YYUV'</entry> |
| <entry>unknown</entry> |
| </row> |
| </tbody> |
| </tgroup> |
| </table> |
| </section> |
| |
| <!-- |
| Local Variables: |
| mode: sgml |
| sgml-parent-document: "v4l2.sgml" |
| indent-tabs-mode: nil |
| End: |
| --> |