| /* |
| * Extensible Firmware Interface |
| * |
| * Based on Extensible Firmware Interface Specification version 1.0 |
| * |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 1999-2002 Hewlett-Packard Co. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * |
| * All EFI Runtime Services are not implemented yet as EFI only |
| * supports physical mode addressing on SoftSDV. This is to be fixed |
| * in a future version. --drummond 1999-07-20 |
| * |
| * Implemented EFI runtime services and virtual mode calls. --davidm |
| * |
| * Goutham Rao: <goutham.rao@intel.com> |
| * Skip non-WB memory and ignore empty memory ranges. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| #include <linux/time.h> |
| #include <linux/spinlock.h> |
| #include <linux/bootmem.h> |
| #include <linux/ioport.h> |
| #include <linux/module.h> |
| #include <linux/efi.h> |
| #include <linux/kexec.h> |
| |
| #include <asm/setup.h> |
| #include <asm/io.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/desc.h> |
| #include <asm/tlbflush.h> |
| |
| #define EFI_DEBUG 0 |
| #define PFX "EFI: " |
| |
| extern efi_status_t asmlinkage efi_call_phys(void *, ...); |
| |
| struct efi efi; |
| EXPORT_SYMBOL(efi); |
| static struct efi efi_phys; |
| struct efi_memory_map memmap; |
| |
| /* |
| * We require an early boot_ioremap mapping mechanism initially |
| */ |
| extern void * boot_ioremap(unsigned long, unsigned long); |
| |
| /* |
| * To make EFI call EFI runtime service in physical addressing mode we need |
| * prelog/epilog before/after the invocation to disable interrupt, to |
| * claim EFI runtime service handler exclusively and to duplicate a memory in |
| * low memory space say 0 - 3G. |
| */ |
| |
| static unsigned long efi_rt_eflags; |
| static DEFINE_SPINLOCK(efi_rt_lock); |
| static pgd_t efi_bak_pg_dir_pointer[2]; |
| |
| static void efi_call_phys_prelog(void) __acquires(efi_rt_lock) |
| { |
| unsigned long cr4; |
| unsigned long temp; |
| struct Xgt_desc_struct gdt_descr; |
| |
| spin_lock(&efi_rt_lock); |
| local_irq_save(efi_rt_eflags); |
| |
| /* |
| * If I don't have PSE, I should just duplicate two entries in page |
| * directory. If I have PSE, I just need to duplicate one entry in |
| * page directory. |
| */ |
| cr4 = read_cr4(); |
| |
| if (cr4 & X86_CR4_PSE) { |
| efi_bak_pg_dir_pointer[0].pgd = |
| swapper_pg_dir[pgd_index(0)].pgd; |
| swapper_pg_dir[0].pgd = |
| swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; |
| } else { |
| efi_bak_pg_dir_pointer[0].pgd = |
| swapper_pg_dir[pgd_index(0)].pgd; |
| efi_bak_pg_dir_pointer[1].pgd = |
| swapper_pg_dir[pgd_index(0x400000)].pgd; |
| swapper_pg_dir[pgd_index(0)].pgd = |
| swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; |
| temp = PAGE_OFFSET + 0x400000; |
| swapper_pg_dir[pgd_index(0x400000)].pgd = |
| swapper_pg_dir[pgd_index(temp)].pgd; |
| } |
| |
| /* |
| * After the lock is released, the original page table is restored. |
| */ |
| local_flush_tlb(); |
| |
| gdt_descr.address = __pa(get_cpu_gdt_table(0)); |
| gdt_descr.size = GDT_SIZE - 1; |
| load_gdt(&gdt_descr); |
| } |
| |
| static void efi_call_phys_epilog(void) __releases(efi_rt_lock) |
| { |
| unsigned long cr4; |
| struct Xgt_desc_struct gdt_descr; |
| |
| gdt_descr.address = (unsigned long)get_cpu_gdt_table(0); |
| gdt_descr.size = GDT_SIZE - 1; |
| load_gdt(&gdt_descr); |
| |
| cr4 = read_cr4(); |
| |
| if (cr4 & X86_CR4_PSE) { |
| swapper_pg_dir[pgd_index(0)].pgd = |
| efi_bak_pg_dir_pointer[0].pgd; |
| } else { |
| swapper_pg_dir[pgd_index(0)].pgd = |
| efi_bak_pg_dir_pointer[0].pgd; |
| swapper_pg_dir[pgd_index(0x400000)].pgd = |
| efi_bak_pg_dir_pointer[1].pgd; |
| } |
| |
| /* |
| * After the lock is released, the original page table is restored. |
| */ |
| local_flush_tlb(); |
| |
| local_irq_restore(efi_rt_eflags); |
| spin_unlock(&efi_rt_lock); |
| } |
| |
| static efi_status_t |
| phys_efi_set_virtual_address_map(unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| efi_status_t status; |
| |
| efi_call_phys_prelog(); |
| status = efi_call_phys(efi_phys.set_virtual_address_map, |
| memory_map_size, descriptor_size, |
| descriptor_version, virtual_map); |
| efi_call_phys_epilog(); |
| return status; |
| } |
| |
| static efi_status_t |
| phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| { |
| efi_status_t status; |
| |
| efi_call_phys_prelog(); |
| status = efi_call_phys(efi_phys.get_time, tm, tc); |
| efi_call_phys_epilog(); |
| return status; |
| } |
| |
| inline int efi_set_rtc_mmss(unsigned long nowtime) |
| { |
| int real_seconds, real_minutes; |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| |
| spin_lock(&efi_rt_lock); |
| status = efi.get_time(&eft, &cap); |
| spin_unlock(&efi_rt_lock); |
| if (status != EFI_SUCCESS) |
| panic("Ooops, efitime: can't read time!\n"); |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| |
| if (((abs(real_minutes - eft.minute) + 15)/30) & 1) |
| real_minutes += 30; |
| real_minutes %= 60; |
| |
| eft.minute = real_minutes; |
| eft.second = real_seconds; |
| |
| if (status != EFI_SUCCESS) { |
| printk("Ooops: efitime: can't read time!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| /* |
| * This is used during kernel init before runtime |
| * services have been remapped and also during suspend, therefore, |
| * we'll need to call both in physical and virtual modes. |
| */ |
| inline unsigned long efi_get_time(void) |
| { |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| |
| if (efi.get_time) { |
| /* if we are in virtual mode use remapped function */ |
| status = efi.get_time(&eft, &cap); |
| } else { |
| /* we are in physical mode */ |
| status = phys_efi_get_time(&eft, &cap); |
| } |
| |
| if (status != EFI_SUCCESS) |
| printk("Oops: efitime: can't read time status: 0x%lx\n",status); |
| |
| return mktime(eft.year, eft.month, eft.day, eft.hour, |
| eft.minute, eft.second); |
| } |
| |
| int is_available_memory(efi_memory_desc_t * md) |
| { |
| if (!(md->attribute & EFI_MEMORY_WB)) |
| return 0; |
| |
| switch (md->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * We need to map the EFI memory map again after paging_init(). |
| */ |
| void __init efi_map_memmap(void) |
| { |
| memmap.map = NULL; |
| |
| memmap.map = bt_ioremap((unsigned long) memmap.phys_map, |
| (memmap.nr_map * memmap.desc_size)); |
| if (memmap.map == NULL) |
| printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); |
| |
| memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); |
| } |
| |
| #if EFI_DEBUG |
| static void __init print_efi_memmap(void) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| int i; |
| |
| for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { |
| md = p; |
| printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " |
| "range=[0x%016llx-0x%016llx) (%lluMB)\n", |
| i, md->type, md->attribute, md->phys_addr, |
| md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), |
| (md->num_pages >> (20 - EFI_PAGE_SHIFT))); |
| } |
| } |
| #endif /* EFI_DEBUG */ |
| |
| /* |
| * Walks the EFI memory map and calls CALLBACK once for each EFI |
| * memory descriptor that has memory that is available for kernel use. |
| */ |
| void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) |
| { |
| int prev_valid = 0; |
| struct range { |
| unsigned long start; |
| unsigned long end; |
| } uninitialized_var(prev), curr; |
| efi_memory_desc_t *md; |
| unsigned long start, end; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if ((md->num_pages == 0) || (!is_available_memory(md))) |
| continue; |
| |
| curr.start = md->phys_addr; |
| curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); |
| |
| if (!prev_valid) { |
| prev = curr; |
| prev_valid = 1; |
| } else { |
| if (curr.start < prev.start) |
| printk(KERN_INFO PFX "Unordered memory map\n"); |
| if (prev.end == curr.start) |
| prev.end = curr.end; |
| else { |
| start = |
| (unsigned long) (PAGE_ALIGN(prev.start)); |
| end = (unsigned long) (prev.end & PAGE_MASK); |
| if ((end > start) |
| && (*callback) (start, end, arg) < 0) |
| return; |
| prev = curr; |
| } |
| } |
| } |
| if (prev_valid) { |
| start = (unsigned long) PAGE_ALIGN(prev.start); |
| end = (unsigned long) (prev.end & PAGE_MASK); |
| if (end > start) |
| (*callback) (start, end, arg); |
| } |
| } |
| |
| void __init efi_init(void) |
| { |
| efi_config_table_t *config_tables; |
| efi_runtime_services_t *runtime; |
| efi_char16_t *c16; |
| char vendor[100] = "unknown"; |
| unsigned long num_config_tables; |
| int i = 0; |
| |
| memset(&efi, 0, sizeof(efi) ); |
| memset(&efi_phys, 0, sizeof(efi_phys)); |
| |
| efi_phys.systab = |
| (efi_system_table_t *)boot_params.efi_info.efi_systab; |
| memmap.phys_map = (void *)boot_params.efi_info.efi_memmap; |
| memmap.nr_map = boot_params.efi_info.efi_memmap_size/ |
| boot_params.efi_info.efi_memdesc_size; |
| memmap.desc_version = boot_params.efi_info.efi_memdesc_version; |
| memmap.desc_size = boot_params.efi_info.efi_memdesc_size; |
| |
| efi.systab = (efi_system_table_t *) |
| boot_ioremap((unsigned long) efi_phys.systab, |
| sizeof(efi_system_table_t)); |
| /* |
| * Verify the EFI Table |
| */ |
| if (efi.systab == NULL) |
| printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); |
| if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); |
| if ((efi.systab->hdr.revision >> 16) == 0) |
| printk(KERN_ERR PFX "Warning: EFI system table version " |
| "%d.%02d, expected 1.00 or greater\n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff); |
| |
| /* |
| * Grab some details from the system table |
| */ |
| num_config_tables = efi.systab->nr_tables; |
| config_tables = (efi_config_table_t *)efi.systab->tables; |
| runtime = efi.systab->runtime; |
| |
| /* |
| * Show what we know for posterity |
| */ |
| c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); |
| if (c16) { |
| for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i) |
| vendor[i] = *c16++; |
| vendor[i] = '\0'; |
| } else |
| printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); |
| |
| printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff, vendor); |
| |
| /* |
| * Let's see what config tables the firmware passed to us. |
| */ |
| config_tables = (efi_config_table_t *) |
| boot_ioremap((unsigned long) config_tables, |
| num_config_tables * sizeof(efi_config_table_t)); |
| |
| if (config_tables == NULL) |
| printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); |
| |
| efi.mps = EFI_INVALID_TABLE_ADDR; |
| efi.acpi = EFI_INVALID_TABLE_ADDR; |
| efi.acpi20 = EFI_INVALID_TABLE_ADDR; |
| efi.smbios = EFI_INVALID_TABLE_ADDR; |
| efi.sal_systab = EFI_INVALID_TABLE_ADDR; |
| efi.boot_info = EFI_INVALID_TABLE_ADDR; |
| efi.hcdp = EFI_INVALID_TABLE_ADDR; |
| efi.uga = EFI_INVALID_TABLE_ADDR; |
| |
| for (i = 0; i < num_config_tables; i++) { |
| if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { |
| efi.mps = config_tables[i].table; |
| printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); |
| } else |
| if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { |
| efi.acpi20 = config_tables[i].table; |
| printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); |
| } else |
| if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { |
| efi.acpi = config_tables[i].table; |
| printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); |
| } else |
| if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { |
| efi.smbios = config_tables[i].table; |
| printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); |
| } else |
| if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { |
| efi.hcdp = config_tables[i].table; |
| printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); |
| } else |
| if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { |
| efi.uga = config_tables[i].table; |
| printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); |
| } |
| } |
| printk("\n"); |
| |
| /* |
| * Check out the runtime services table. We need to map |
| * the runtime services table so that we can grab the physical |
| * address of several of the EFI runtime functions, needed to |
| * set the firmware into virtual mode. |
| */ |
| |
| runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) |
| runtime, |
| sizeof(efi_runtime_services_t)); |
| if (runtime != NULL) { |
| /* |
| * We will only need *early* access to the following |
| * two EFI runtime services before set_virtual_address_map |
| * is invoked. |
| */ |
| efi_phys.get_time = (efi_get_time_t *) runtime->get_time; |
| efi_phys.set_virtual_address_map = |
| (efi_set_virtual_address_map_t *) |
| runtime->set_virtual_address_map; |
| } else |
| printk(KERN_ERR PFX "Could not map the runtime service table!\n"); |
| |
| /* Map the EFI memory map for use until paging_init() */ |
| memmap.map = boot_ioremap(boot_params.efi_info.efi_memmap, |
| boot_params.efi_info.efi_memmap_size); |
| if (memmap.map == NULL) |
| printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); |
| |
| memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); |
| |
| #if EFI_DEBUG |
| print_efi_memmap(); |
| #endif |
| } |
| |
| static inline void __init check_range_for_systab(efi_memory_desc_t *md) |
| { |
| if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) && |
| ((unsigned long)efi_phys.systab < md->phys_addr + |
| ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) { |
| unsigned long addr; |
| |
| addr = md->virt_addr - md->phys_addr + |
| (unsigned long)efi_phys.systab; |
| efi.systab = (efi_system_table_t *)addr; |
| } |
| } |
| |
| /* |
| * Wrap all the virtual calls in a way that forces the parameters on the stack. |
| */ |
| |
| #define efi_call_virt(f, args...) \ |
| ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args) |
| |
| static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| { |
| return efi_call_virt(get_time, tm, tc); |
| } |
| |
| static efi_status_t virt_efi_set_time (efi_time_t *tm) |
| { |
| return efi_call_virt(set_time, tm); |
| } |
| |
| static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled, |
| efi_bool_t *pending, |
| efi_time_t *tm) |
| { |
| return efi_call_virt(get_wakeup_time, enabled, pending, tm); |
| } |
| |
| static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled, |
| efi_time_t *tm) |
| { |
| return efi_call_virt(set_wakeup_time, enabled, tm); |
| } |
| |
| static efi_status_t virt_efi_get_variable (efi_char16_t *name, |
| efi_guid_t *vendor, u32 *attr, |
| unsigned long *data_size, void *data) |
| { |
| return efi_call_virt(get_variable, name, vendor, attr, data_size, data); |
| } |
| |
| static efi_status_t virt_efi_get_next_variable (unsigned long *name_size, |
| efi_char16_t *name, |
| efi_guid_t *vendor) |
| { |
| return efi_call_virt(get_next_variable, name_size, name, vendor); |
| } |
| |
| static efi_status_t virt_efi_set_variable (efi_char16_t *name, |
| efi_guid_t *vendor, |
| unsigned long attr, |
| unsigned long data_size, void *data) |
| { |
| return efi_call_virt(set_variable, name, vendor, attr, data_size, data); |
| } |
| |
| static efi_status_t virt_efi_get_next_high_mono_count (u32 *count) |
| { |
| return efi_call_virt(get_next_high_mono_count, count); |
| } |
| |
| static void virt_efi_reset_system (int reset_type, efi_status_t status, |
| unsigned long data_size, |
| efi_char16_t *data) |
| { |
| efi_call_virt(reset_system, reset_type, status, data_size, data); |
| } |
| |
| /* |
| * This function will switch the EFI runtime services to virtual mode. |
| * Essentially, look through the EFI memmap and map every region that |
| * has the runtime attribute bit set in its memory descriptor and update |
| * that memory descriptor with the virtual address obtained from ioremap(). |
| * This enables the runtime services to be called without having to |
| * thunk back into physical mode for every invocation. |
| */ |
| |
| void __init efi_enter_virtual_mode(void) |
| { |
| efi_memory_desc_t *md; |
| efi_status_t status; |
| void *p; |
| |
| efi.systab = NULL; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if (!(md->attribute & EFI_MEMORY_RUNTIME)) |
| continue; |
| |
| md->virt_addr = (unsigned long)ioremap(md->phys_addr, |
| md->num_pages << EFI_PAGE_SHIFT); |
| if (!(unsigned long)md->virt_addr) { |
| printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", |
| (unsigned long)md->phys_addr); |
| } |
| /* update the virtual address of the EFI system table */ |
| check_range_for_systab(md); |
| } |
| |
| BUG_ON(!efi.systab); |
| |
| status = phys_efi_set_virtual_address_map( |
| memmap.desc_size * memmap.nr_map, |
| memmap.desc_size, |
| memmap.desc_version, |
| memmap.phys_map); |
| |
| if (status != EFI_SUCCESS) { |
| printk (KERN_ALERT "You are screwed! " |
| "Unable to switch EFI into virtual mode " |
| "(status=%lx)\n", status); |
| panic("EFI call to SetVirtualAddressMap() failed!"); |
| } |
| |
| /* |
| * Now that EFI is in virtual mode, update the function |
| * pointers in the runtime service table to the new virtual addresses. |
| */ |
| |
| efi.get_time = virt_efi_get_time; |
| efi.set_time = virt_efi_set_time; |
| efi.get_wakeup_time = virt_efi_get_wakeup_time; |
| efi.set_wakeup_time = virt_efi_set_wakeup_time; |
| efi.get_variable = virt_efi_get_variable; |
| efi.get_next_variable = virt_efi_get_next_variable; |
| efi.set_variable = virt_efi_set_variable; |
| efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; |
| efi.reset_system = virt_efi_reset_system; |
| } |
| |
| void __init |
| efi_initialize_iomem_resources(struct resource *code_resource, |
| struct resource *data_resource) |
| { |
| struct resource *res; |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > |
| 0x100000000ULL) |
| continue; |
| res = kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| switch (md->type) { |
| case EFI_RESERVED_TYPE: |
| res->name = "Reserved Memory"; |
| break; |
| case EFI_LOADER_CODE: |
| res->name = "Loader Code"; |
| break; |
| case EFI_LOADER_DATA: |
| res->name = "Loader Data"; |
| break; |
| case EFI_BOOT_SERVICES_DATA: |
| res->name = "BootServices Data"; |
| break; |
| case EFI_BOOT_SERVICES_CODE: |
| res->name = "BootServices Code"; |
| break; |
| case EFI_RUNTIME_SERVICES_CODE: |
| res->name = "Runtime Service Code"; |
| break; |
| case EFI_RUNTIME_SERVICES_DATA: |
| res->name = "Runtime Service Data"; |
| break; |
| case EFI_CONVENTIONAL_MEMORY: |
| res->name = "Conventional Memory"; |
| break; |
| case EFI_UNUSABLE_MEMORY: |
| res->name = "Unusable Memory"; |
| break; |
| case EFI_ACPI_RECLAIM_MEMORY: |
| res->name = "ACPI Reclaim"; |
| break; |
| case EFI_ACPI_MEMORY_NVS: |
| res->name = "ACPI NVS"; |
| break; |
| case EFI_MEMORY_MAPPED_IO: |
| res->name = "Memory Mapped IO"; |
| break; |
| case EFI_MEMORY_MAPPED_IO_PORT_SPACE: |
| res->name = "Memory Mapped IO Port Space"; |
| break; |
| default: |
| res->name = "Reserved"; |
| break; |
| } |
| res->start = md->phys_addr; |
| res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| if (request_resource(&iomem_resource, res) < 0) |
| printk(KERN_ERR PFX "Failed to allocate res %s : " |
| "0x%llx-0x%llx\n", res->name, |
| (unsigned long long)res->start, |
| (unsigned long long)res->end); |
| /* |
| * We don't know which region contains kernel data so we try |
| * it repeatedly and let the resource manager test it. |
| */ |
| if (md->type == EFI_CONVENTIONAL_MEMORY) { |
| request_resource(res, code_resource); |
| request_resource(res, data_resource); |
| #ifdef CONFIG_KEXEC |
| request_resource(res, &crashk_res); |
| #endif |
| } |
| } |
| } |
| |
| /* |
| * Convenience functions to obtain memory types and attributes |
| */ |
| |
| u32 efi_mem_type(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && (phys_addr < |
| (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) |
| return md->type; |
| } |
| return 0; |
| } |
| |
| u64 efi_mem_attributes(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && (phys_addr < |
| (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) |
| return md->attribute; |
| } |
| return 0; |
| } |