| /* |
| * linux/arch/cris/kernel/process.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 2000-2002 Axis Communications AB |
| * |
| * Authors: Bjorn Wesen (bjornw@axis.com) |
| * Mikael Starvik (starvik@axis.com) |
| * |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/fs.h> |
| #include <arch/svinto.h> |
| #include <linux/init.h> |
| #include <arch/system.h> |
| #include <linux/ptrace.h> |
| |
| #ifdef CONFIG_ETRAX_GPIO |
| void etrax_gpio_wake_up_check(void); /* drivers/gpio.c */ |
| #endif |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| void default_idle(void) |
| { |
| #ifdef CONFIG_ETRAX_GPIO |
| etrax_gpio_wake_up_check(); |
| #endif |
| local_irq_enable(); |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| |
| void exit_thread(void) |
| { |
| /* Nothing needs to be done. */ |
| } |
| |
| /* if the watchdog is enabled, we can simply disable interrupts and go |
| * into an eternal loop, and the watchdog will reset the CPU after 0.1s |
| * if on the other hand the watchdog wasn't enabled, we just enable it and wait |
| */ |
| |
| void hard_reset_now (void) |
| { |
| /* |
| * Don't declare this variable elsewhere. We don't want any other |
| * code to know about it than the watchdog handler in entry.S and |
| * this code, implementing hard reset through the watchdog. |
| */ |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| extern int cause_of_death; |
| #endif |
| |
| printk("*** HARD RESET ***\n"); |
| local_irq_disable(); |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| cause_of_death = 0xbedead; |
| #else |
| /* Since we dont plan to keep on resetting the watchdog, |
| the key can be arbitrary hence three */ |
| *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, 3) | |
| IO_STATE(R_WATCHDOG, enable, start); |
| #endif |
| |
| while(1) /* waiting for RETRIBUTION! */ ; |
| } |
| |
| /* |
| * Return saved PC of a blocked thread. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *t) |
| { |
| return task_pt_regs(t)->irp; |
| } |
| |
| /* setup the child's kernel stack with a pt_regs and switch_stack on it. |
| * it will be un-nested during _resume and _ret_from_sys_call when the |
| * new thread is scheduled. |
| * |
| * also setup the thread switching structure which is used to keep |
| * thread-specific data during _resumes. |
| * |
| */ |
| asmlinkage void ret_from_fork(void); |
| asmlinkage void ret_from_kernel_thread(void); |
| |
| int copy_thread(unsigned long clone_flags, unsigned long usp, |
| unsigned long arg, struct task_struct *p) |
| { |
| struct pt_regs *childregs = task_pt_regs(p); |
| struct switch_stack *swstack = ((struct switch_stack *)childregs) - 1; |
| |
| /* put the pt_regs structure at the end of the new kernel stack page and fix it up |
| * remember that the task_struct doubles as the kernel stack for the task |
| */ |
| |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| memset(swstack, 0, |
| sizeof(struct switch_stack) + sizeof(struct pt_regs)); |
| swstack->r1 = usp; |
| swstack->r2 = arg; |
| childregs->dccr = 1 << I_DCCR_BITNR; |
| swstack->return_ip = (unsigned long) ret_from_kernel_thread; |
| p->thread.ksp = (unsigned long) swstack; |
| p->thread.usp = 0; |
| return 0; |
| } |
| *childregs = *current_pt_regs(); /* struct copy of pt_regs */ |
| |
| childregs->r10 = 0; /* child returns 0 after a fork/clone */ |
| |
| /* put the switch stack right below the pt_regs */ |
| |
| swstack->r9 = 0; /* parameter to ret_from_sys_call, 0 == dont restart the syscall */ |
| |
| /* we want to return into ret_from_sys_call after the _resume */ |
| |
| swstack->return_ip = (unsigned long) ret_from_fork; /* Will call ret_from_sys_call */ |
| |
| /* fix the user-mode stackpointer */ |
| |
| p->thread.usp = usp ?: rdusp(); |
| |
| /* and the kernel-mode one */ |
| |
| p->thread.ksp = (unsigned long) swstack; |
| |
| #ifdef DEBUG |
| printk("copy_thread: new regs at 0x%p, as shown below:\n", childregs); |
| show_registers(childregs); |
| #endif |
| |
| return 0; |
| } |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| #if 0 |
| /* YURGH. TODO. */ |
| |
| unsigned long ebp, esp, eip; |
| unsigned long stack_page; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| stack_page = (unsigned long)p; |
| esp = p->thread.esp; |
| if (!stack_page || esp < stack_page || esp > 8188+stack_page) |
| return 0; |
| /* include/asm-i386/system.h:switch_to() pushes ebp last. */ |
| ebp = *(unsigned long *) esp; |
| do { |
| if (ebp < stack_page || ebp > 8184+stack_page) |
| return 0; |
| eip = *(unsigned long *) (ebp+4); |
| if (!in_sched_functions(eip)) |
| return eip; |
| ebp = *(unsigned long *) ebp; |
| } while (count++ < 16); |
| #endif |
| return 0; |
| } |
| #undef last_sched |
| #undef first_sched |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| unsigned long usp = rdusp(); |
| |
| show_regs_print_info(KERN_DEFAULT); |
| |
| printk("IRP: %08lx SRP: %08lx DCCR: %08lx USP: %08lx MOF: %08lx\n", |
| regs->irp, regs->srp, regs->dccr, usp, regs->mof ); |
| printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n", |
| regs->r0, regs->r1, regs->r2, regs->r3); |
| printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n", |
| regs->r4, regs->r5, regs->r6, regs->r7); |
| printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n", |
| regs->r8, regs->r9, regs->r10, regs->r11); |
| printk("r12: %08lx r13: %08lx oR10: %08lx\n", |
| regs->r12, regs->r13, regs->orig_r10); |
| } |
| |