| #ifndef _ASM_POWERPC_MMU_HASH64_H_ | 
 | #define _ASM_POWERPC_MMU_HASH64_H_ | 
 | /* | 
 |  * PowerPC64 memory management structures | 
 |  * | 
 |  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> | 
 |  *   PPC64 rework. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <asm/asm-compat.h> | 
 | #include <asm/page.h> | 
 |  | 
 | /* | 
 |  * Segment table | 
 |  */ | 
 |  | 
 | #define STE_ESID_V	0x80 | 
 | #define STE_ESID_KS	0x20 | 
 | #define STE_ESID_KP	0x10 | 
 | #define STE_ESID_N	0x08 | 
 |  | 
 | #define STE_VSID_SHIFT	12 | 
 |  | 
 | /* Location of cpu0's segment table */ | 
 | #define STAB0_PAGE	0x8 | 
 | #define STAB0_OFFSET	(STAB0_PAGE << 12) | 
 | #define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START) | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | extern char initial_stab[]; | 
 | #endif /* ! __ASSEMBLY */ | 
 |  | 
 | /* | 
 |  * SLB | 
 |  */ | 
 |  | 
 | #define SLB_NUM_BOLTED		3 | 
 | #define SLB_CACHE_ENTRIES	8 | 
 | #define SLB_MIN_SIZE		32 | 
 |  | 
 | /* Bits in the SLB ESID word */ | 
 | #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */ | 
 |  | 
 | /* Bits in the SLB VSID word */ | 
 | #define SLB_VSID_SHIFT		12 | 
 | #define SLB_VSID_SHIFT_1T	24 | 
 | #define SLB_VSID_SSIZE_SHIFT	62 | 
 | #define SLB_VSID_B		ASM_CONST(0xc000000000000000) | 
 | #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000) | 
 | #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000) | 
 | #define SLB_VSID_KS		ASM_CONST(0x0000000000000800) | 
 | #define SLB_VSID_KP		ASM_CONST(0x0000000000000400) | 
 | #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */ | 
 | #define SLB_VSID_L		ASM_CONST(0x0000000000000100) | 
 | #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */ | 
 | #define SLB_VSID_LP		ASM_CONST(0x0000000000000030) | 
 | #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000) | 
 | #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010) | 
 | #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020) | 
 | #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030) | 
 | #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP) | 
 |  | 
 | #define SLB_VSID_KERNEL		(SLB_VSID_KP) | 
 | #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) | 
 |  | 
 | #define SLBIE_C			(0x08000000) | 
 | #define SLBIE_SSIZE_SHIFT	25 | 
 |  | 
 | /* | 
 |  * Hash table | 
 |  */ | 
 |  | 
 | #define HPTES_PER_GROUP 8 | 
 |  | 
 | #define HPTE_V_SSIZE_SHIFT	62 | 
 | #define HPTE_V_AVPN_SHIFT	7 | 
 | #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80) | 
 | #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) | 
 | #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL)) | 
 | #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010) | 
 | #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008) | 
 | #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004) | 
 | #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002) | 
 | #define HPTE_V_VALID		ASM_CONST(0x0000000000000001) | 
 |  | 
 | #define HPTE_R_PP0		ASM_CONST(0x8000000000000000) | 
 | #define HPTE_R_TS		ASM_CONST(0x4000000000000000) | 
 | #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000) | 
 | #define HPTE_R_RPN_SHIFT	12 | 
 | #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000) | 
 | #define HPTE_R_PP		ASM_CONST(0x0000000000000003) | 
 | #define HPTE_R_N		ASM_CONST(0x0000000000000004) | 
 | #define HPTE_R_G		ASM_CONST(0x0000000000000008) | 
 | #define HPTE_R_M		ASM_CONST(0x0000000000000010) | 
 | #define HPTE_R_I		ASM_CONST(0x0000000000000020) | 
 | #define HPTE_R_W		ASM_CONST(0x0000000000000040) | 
 | #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078) | 
 | #define HPTE_R_C		ASM_CONST(0x0000000000000080) | 
 | #define HPTE_R_R		ASM_CONST(0x0000000000000100) | 
 | #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00) | 
 |  | 
 | #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000) | 
 | #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000) | 
 |  | 
 | /* Values for PP (assumes Ks=0, Kp=1) */ | 
 | /* pp0 will always be 0 for linux     */ | 
 | #define PP_RWXX	0	/* Supervisor read/write, User none */ | 
 | #define PP_RWRX 1	/* Supervisor read/write, User read */ | 
 | #define PP_RWRW 2	/* Supervisor read/write, User read/write */ | 
 | #define PP_RXRX 3	/* Supervisor read,       User read */ | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | struct hash_pte { | 
 | 	unsigned long v; | 
 | 	unsigned long r; | 
 | }; | 
 |  | 
 | extern struct hash_pte *htab_address; | 
 | extern unsigned long htab_size_bytes; | 
 | extern unsigned long htab_hash_mask; | 
 |  | 
 | /* | 
 |  * Page size definition | 
 |  * | 
 |  *    shift : is the "PAGE_SHIFT" value for that page size | 
 |  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed | 
 |  *            directly to a slbmte "vsid" value | 
 |  *    penc  : is the HPTE encoding mask for the "LP" field: | 
 |  * | 
 |  */ | 
 | struct mmu_psize_def | 
 | { | 
 | 	unsigned int	shift;	/* number of bits */ | 
 | 	unsigned int	penc;	/* HPTE encoding */ | 
 | 	unsigned int	tlbiel;	/* tlbiel supported for that page size */ | 
 | 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */ | 
 | 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */ | 
 | }; | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | /* | 
 |  * Segment sizes. | 
 |  * These are the values used by hardware in the B field of | 
 |  * SLB entries and the first dword of MMU hashtable entries. | 
 |  * The B field is 2 bits; the values 2 and 3 are unused and reserved. | 
 |  */ | 
 | #define MMU_SEGSIZE_256M	0 | 
 | #define MMU_SEGSIZE_1T		1 | 
 |  | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | /* | 
 |  * The current system page and segment sizes | 
 |  */ | 
 | extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | 
 | extern int mmu_linear_psize; | 
 | extern int mmu_virtual_psize; | 
 | extern int mmu_vmalloc_psize; | 
 | extern int mmu_vmemmap_psize; | 
 | extern int mmu_io_psize; | 
 | extern int mmu_kernel_ssize; | 
 | extern int mmu_highuser_ssize; | 
 | extern u16 mmu_slb_size; | 
 | extern unsigned long tce_alloc_start, tce_alloc_end; | 
 |  | 
 | /* | 
 |  * If the processor supports 64k normal pages but not 64k cache | 
 |  * inhibited pages, we have to be prepared to switch processes | 
 |  * to use 4k pages when they create cache-inhibited mappings. | 
 |  * If this is the case, mmu_ci_restrictions will be set to 1. | 
 |  */ | 
 | extern int mmu_ci_restrictions; | 
 |  | 
 | /* | 
 |  * This function sets the AVPN and L fields of the HPTE  appropriately | 
 |  * for the page size | 
 |  */ | 
 | static inline unsigned long hpte_encode_v(unsigned long va, int psize, | 
 | 					  int ssize) | 
 | { | 
 | 	unsigned long v; | 
 | 	v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); | 
 | 	v <<= HPTE_V_AVPN_SHIFT; | 
 | 	if (psize != MMU_PAGE_4K) | 
 | 		v |= HPTE_V_LARGE; | 
 | 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; | 
 | 	return v; | 
 | } | 
 |  | 
 | /* | 
 |  * This function sets the ARPN, and LP fields of the HPTE appropriately | 
 |  * for the page size. We assume the pa is already "clean" that is properly | 
 |  * aligned for the requested page size | 
 |  */ | 
 | static inline unsigned long hpte_encode_r(unsigned long pa, int psize) | 
 | { | 
 | 	unsigned long r; | 
 |  | 
 | 	/* A 4K page needs no special encoding */ | 
 | 	if (psize == MMU_PAGE_4K) | 
 | 		return pa & HPTE_R_RPN; | 
 | 	else { | 
 | 		unsigned int penc = mmu_psize_defs[psize].penc; | 
 | 		unsigned int shift = mmu_psize_defs[psize].shift; | 
 | 		return (pa & ~((1ul << shift) - 1)) | (penc << 12); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Build a VA given VSID, EA and segment size | 
 |  */ | 
 | static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid, | 
 | 				   int ssize) | 
 | { | 
 | 	if (ssize == MMU_SEGSIZE_256M) | 
 | 		return (vsid << 28) | (ea & 0xfffffffUL); | 
 | 	return (vsid << 40) | (ea & 0xffffffffffUL); | 
 | } | 
 |  | 
 | /* | 
 |  * This hashes a virtual address | 
 |  */ | 
 |  | 
 | static inline unsigned long hpt_hash(unsigned long va, unsigned int shift, | 
 | 				     int ssize) | 
 | { | 
 | 	unsigned long hash, vsid; | 
 |  | 
 | 	if (ssize == MMU_SEGSIZE_256M) { | 
 | 		hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift); | 
 | 	} else { | 
 | 		vsid = va >> 40; | 
 | 		hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift); | 
 | 	} | 
 | 	return hash & 0x7fffffffffUL; | 
 | } | 
 |  | 
 | extern int __hash_page_4K(unsigned long ea, unsigned long access, | 
 | 			  unsigned long vsid, pte_t *ptep, unsigned long trap, | 
 | 			  unsigned int local, int ssize, int subpage_prot); | 
 | extern int __hash_page_64K(unsigned long ea, unsigned long access, | 
 | 			   unsigned long vsid, pte_t *ptep, unsigned long trap, | 
 | 			   unsigned int local, int ssize); | 
 | struct mm_struct; | 
 | unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); | 
 | extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); | 
 | int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, | 
 | 		     pte_t *ptep, unsigned long trap, int local, int ssize, | 
 | 		     unsigned int shift, unsigned int mmu_psize); | 
 | extern void hash_failure_debug(unsigned long ea, unsigned long access, | 
 | 			       unsigned long vsid, unsigned long trap, | 
 | 			       int ssize, int psize, unsigned long pte); | 
 | extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | 
 | 			     unsigned long pstart, unsigned long prot, | 
 | 			     int psize, int ssize); | 
 | extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); | 
 | extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); | 
 |  | 
 | extern void hpte_init_native(void); | 
 | extern void hpte_init_lpar(void); | 
 | extern void hpte_init_iSeries(void); | 
 | extern void hpte_init_beat(void); | 
 | extern void hpte_init_beat_v3(void); | 
 |  | 
 | extern void stabs_alloc(void); | 
 | extern void slb_initialize(void); | 
 | extern void slb_flush_and_rebolt(void); | 
 | extern void stab_initialize(unsigned long stab); | 
 |  | 
 | extern void slb_vmalloc_update(void); | 
 | extern void slb_set_size(u16 size); | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | /* | 
 |  * VSID allocation | 
 |  * | 
 |  * We first generate a 36-bit "proto-VSID".  For kernel addresses this | 
 |  * is equal to the ESID, for user addresses it is: | 
 |  *	(context << 15) | (esid & 0x7fff) | 
 |  * | 
 |  * The two forms are distinguishable because the top bit is 0 for user | 
 |  * addresses, whereas the top two bits are 1 for kernel addresses. | 
 |  * Proto-VSIDs with the top two bits equal to 0b10 are reserved for | 
 |  * now. | 
 |  * | 
 |  * The proto-VSIDs are then scrambled into real VSIDs with the | 
 |  * multiplicative hash: | 
 |  * | 
 |  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS | 
 |  *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 | 
 |  *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF | 
 |  * | 
 |  * This scramble is only well defined for proto-VSIDs below | 
 |  * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are | 
 |  * reserved.  VSID_MULTIPLIER is prime, so in particular it is | 
 |  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. | 
 |  * Because the modulus is 2^n-1 we can compute it efficiently without | 
 |  * a divide or extra multiply (see below). | 
 |  * | 
 |  * This scheme has several advantages over older methods: | 
 |  * | 
 |  * 	- We have VSIDs allocated for every kernel address | 
 |  * (i.e. everything above 0xC000000000000000), except the very top | 
 |  * segment, which simplifies several things. | 
 |  * | 
 |  *	- We allow for 16 significant bits of ESID and 19 bits of | 
 |  * context for user addresses.  i.e. 16T (44 bits) of address space for | 
 |  * up to half a million contexts. | 
 |  * | 
 |  * 	- The scramble function gives robust scattering in the hash | 
 |  * table (at least based on some initial results).  The previous | 
 |  * method was more susceptible to pathological cases giving excessive | 
 |  * hash collisions. | 
 |  */ | 
 | /* | 
 |  * WARNING - If you change these you must make sure the asm | 
 |  * implementations in slb_allocate (slb_low.S), do_stab_bolted | 
 |  * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. | 
 |  * | 
 |  * You'll also need to change the precomputed VSID values in head.S | 
 |  * which are used by the iSeries firmware. | 
 |  */ | 
 |  | 
 | #define VSID_MULTIPLIER_256M	ASM_CONST(200730139)	/* 28-bit prime */ | 
 | #define VSID_BITS_256M		36 | 
 | #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1) | 
 |  | 
 | #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */ | 
 | #define VSID_BITS_1T		24 | 
 | #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1) | 
 |  | 
 | #define CONTEXT_BITS		19 | 
 | #define USER_ESID_BITS		16 | 
 | #define USER_ESID_BITS_1T	4 | 
 |  | 
 | #define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT)) | 
 |  | 
 | /* | 
 |  * This macro generates asm code to compute the VSID scramble | 
 |  * function.  Used in slb_allocate() and do_stab_bolted.  The function | 
 |  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS | 
 |  * | 
 |  *	rt = register continaing the proto-VSID and into which the | 
 |  *		VSID will be stored | 
 |  *	rx = scratch register (clobbered) | 
 |  * | 
 |  * 	- rt and rx must be different registers | 
 |  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher | 
 |  * 	  bits may contain other garbage, so you may need to mask the | 
 |  * 	  result. | 
 |  */ | 
 | #define ASM_VSID_SCRAMBLE(rt, rx, size)					\ | 
 | 	lis	rx,VSID_MULTIPLIER_##size@h;				\ | 
 | 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\ | 
 | 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\ | 
 | 									\ | 
 | 	srdi	rx,rt,VSID_BITS_##size;					\ | 
 | 	clrldi	rt,rt,(64-VSID_BITS_##size);				\ | 
 | 	add	rt,rt,rx;		/* add high and low bits */	\ | 
 | 	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\ | 
 | 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\ | 
 | 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\ | 
 | 	 * the bit clear, r3 already has the answer we want, if it	\ | 
 | 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\ | 
 | 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ | 
 | 	addi	rx,rt,1;						\ | 
 | 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\ | 
 | 	add	rt,rt,rx | 
 |  | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
 | /* | 
 |  * For the sub-page protection option, we extend the PGD with one of | 
 |  * these.  Basically we have a 3-level tree, with the top level being | 
 |  * the protptrs array.  To optimize speed and memory consumption when | 
 |  * only addresses < 4GB are being protected, pointers to the first | 
 |  * four pages of sub-page protection words are stored in the low_prot | 
 |  * array. | 
 |  * Each page of sub-page protection words protects 1GB (4 bytes | 
 |  * protects 64k).  For the 3-level tree, each page of pointers then | 
 |  * protects 8TB. | 
 |  */ | 
 | struct subpage_prot_table { | 
 | 	unsigned long maxaddr;	/* only addresses < this are protected */ | 
 | 	unsigned int **protptrs[2]; | 
 | 	unsigned int *low_prot[4]; | 
 | }; | 
 |  | 
 | #define SBP_L1_BITS		(PAGE_SHIFT - 2) | 
 | #define SBP_L2_BITS		(PAGE_SHIFT - 3) | 
 | #define SBP_L1_COUNT		(1 << SBP_L1_BITS) | 
 | #define SBP_L2_COUNT		(1 << SBP_L2_BITS) | 
 | #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS) | 
 | #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS) | 
 |  | 
 | extern void subpage_prot_free(struct mm_struct *mm); | 
 | extern void subpage_prot_init_new_context(struct mm_struct *mm); | 
 | #else | 
 | static inline void subpage_prot_free(struct mm_struct *mm) {} | 
 | static inline void subpage_prot_init_new_context(struct mm_struct *mm) { } | 
 | #endif /* CONFIG_PPC_SUBPAGE_PROT */ | 
 |  | 
 | typedef unsigned long mm_context_id_t; | 
 | struct spinlock; | 
 |  | 
 | typedef struct { | 
 | 	mm_context_id_t id; | 
 | 	u16 user_psize;		/* page size index */ | 
 |  | 
 | #ifdef CONFIG_PPC_MM_SLICES | 
 | 	u64 low_slices_psize;	/* SLB page size encodings */ | 
 | 	u64 high_slices_psize;  /* 4 bits per slice for now */ | 
 | #else | 
 | 	u16 sllp;		/* SLB page size encoding */ | 
 | #endif | 
 | 	unsigned long vdso_base; | 
 | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
 | 	struct subpage_prot_table spt; | 
 | #endif /* CONFIG_PPC_SUBPAGE_PROT */ | 
 | #ifdef CONFIG_PPC_ICSWX | 
 | 	struct spinlock *cop_lockp; /* guard acop and cop_pid */ | 
 | 	unsigned long acop;	/* mask of enabled coprocessor types */ | 
 | 	unsigned int cop_pid;	/* pid value used with coprocessors */ | 
 | #endif /* CONFIG_PPC_ICSWX */ | 
 | } mm_context_t; | 
 |  | 
 |  | 
 | #if 0 | 
 | /* | 
 |  * The code below is equivalent to this function for arguments | 
 |  * < 2^VSID_BITS, which is all this should ever be called | 
 |  * with.  However gcc is not clever enough to compute the | 
 |  * modulus (2^n-1) without a second multiply. | 
 |  */ | 
 | #define vsid_scramble(protovsid, size) \ | 
 | 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) | 
 |  | 
 | #else /* 1 */ | 
 | #define vsid_scramble(protovsid, size) \ | 
 | 	({								 \ | 
 | 		unsigned long x;					 \ | 
 | 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \ | 
 | 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ | 
 | 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ | 
 | 	}) | 
 | #endif /* 1 */ | 
 |  | 
 | /* This is only valid for addresses >= PAGE_OFFSET */ | 
 | static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) | 
 | { | 
 | 	if (ssize == MMU_SEGSIZE_256M) | 
 | 		return vsid_scramble(ea >> SID_SHIFT, 256M); | 
 | 	return vsid_scramble(ea >> SID_SHIFT_1T, 1T); | 
 | } | 
 |  | 
 | /* Returns the segment size indicator for a user address */ | 
 | static inline int user_segment_size(unsigned long addr) | 
 | { | 
 | 	/* Use 1T segments if possible for addresses >= 1T */ | 
 | 	if (addr >= (1UL << SID_SHIFT_1T)) | 
 | 		return mmu_highuser_ssize; | 
 | 	return MMU_SEGSIZE_256M; | 
 | } | 
 |  | 
 | /* This is only valid for user addresses (which are below 2^44) */ | 
 | static inline unsigned long get_vsid(unsigned long context, unsigned long ea, | 
 | 				     int ssize) | 
 | { | 
 | 	if (ssize == MMU_SEGSIZE_256M) | 
 | 		return vsid_scramble((context << USER_ESID_BITS) | 
 | 				     | (ea >> SID_SHIFT), 256M); | 
 | 	return vsid_scramble((context << USER_ESID_BITS_1T) | 
 | 			     | (ea >> SID_SHIFT_1T), 1T); | 
 | } | 
 |  | 
 | /* | 
 |  * This is only used on legacy iSeries in lparmap.c, | 
 |  * hence the 256MB segment assumption. | 
 |  */ | 
 | #define VSID_SCRAMBLE(pvsid)	(((pvsid) * VSID_MULTIPLIER_256M) %	\ | 
 | 				 VSID_MODULUS_256M) | 
 | #define KERNEL_VSID(ea)		VSID_SCRAMBLE(GET_ESID(ea)) | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #endif /* _ASM_POWERPC_MMU_HASH64_H_ */ |